
Order Ahead for Pickup: Promise or Peril?

Problem definition: Mobile technologies have increasingly enabled remote customers to order ahead at

quick-service restaurants. As customers travel to the service facility to pick up their orders, their orders also

advance in the food preparation queue. It is widely believed that the ability to order ahead reduces customers’

total delay and therefore allows restaurants to attract more orders and achieve higher throughput than if

customers must order onsite. Methodology/results: We build a queueing-game-theoretic model to study

a hybrid order-ahead scheme where some customers order ahead and some order onsite. Our analysis shows

that the common practice of accepting all orders as they come in and requiring all orders to be irrevocable

can cause a hybrid order-ahead scheme to surprisingly achieve lower throughput than a pure order-onsite

scheme. The throughput shortfall can persist even when the service provider freely chooses whether to share

queue-length information with remote customers. However, allowing remote customers to cancel orders not

ready for pickup when they arrive at the service facility can restore the throughput advantage of ordering

ahead over ordering onsite, but the cancellation scheme may nevertheless fall short of the non-cancellation

scheme in throughput. We then study another mitigation strategy that rejects new remote orders if the num-

ber of outstanding orders reaches a certain threshold. When the service provider optimally sets the rejection

threshold, the hybrid order-ahead-with-rejection scheme outperforms both its non-rejection counterpart and

the pure-order-onsite scheme in throughput, but not necessarily the cancellation scheme. Finally, we propose

an integrated mechanism that allows for both rejection and cancellation, subsuming all the previously con-

sidered hybrid order-ahead schemes as special cases. Managerial implications: Our paper highlights the

unintended consequences of ordering ahead and provides prescriptive guidance for managing such a service

system.
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1. Introduction

In today’s on-demand economy, customers value instant gratification more than ever before and

would like to have their demand fulfilled as promptly as possible. In response, quick-service restau-

rants are increasingly enabling customers to order ahead on demand and pick up their orders at

the restaurant. Online food ordering is projected to be a $106 billion industry by 2031 (Business

Research Insights 2024) and the key ingenuity of ordering ahead is that it allows customer orders

to virtually advance in the order-processing queue while customers themselves physically travel

to the restaurant. By the time they arrive, their orders will be near completion or even ready for

pickup. This parallel effect contrasts with the tandem nature of a traditional order-onsite scheme

in which customers must travel to the service facility and place orders only after they arrive onsite.
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Hence, ordering ahead is believed to reduce customers’ total delay, thereby attracting more orders

and generating higher “transaction volume” (Pucci 2017) than the pure order-onsite scheme.

Ordering ahead of time usually also means commitment ahead of time. It is not uncommon for

restaurants to require that all orders be final once they are placed. For example, Starbucks (2017)

says in the FAQs about its Mobile Order & Pay that “once your order has been placed it cannot

be delayed or canceled.” Other restaurant chains (Peet’s Coffee 2019, Subway 2020) have similar

terms of use. While this lock-in effect is characteristic of ordering ahead, the pure order-onsite

scheme does not require pre-travel commitment. Customers who order onsite can postpone their

ordering decision until they arrive at the restaurant and see the status of the queue (i.e., how many

people are waiting for their orders). Given that allowing customers to order ahead both attracts

orders (with less delay) and retains orders (with a no-cancellation policy), one would naturally

think that it would increase the restaurant’s throughput. Our paper challenges this view.

We develop a queueing-game-theoretic model in which a service provider faces a mix of remote

and local customers, both of whom are delay-sensitive. Remote customers are distanced from the

service facility and it takes time for them to travel to the facility, whereas local customers are

nearby and their travel time is negligible. Upon experiencing a need, a remote (local) customer

decides whether to place an irrevocable order ahead (onsite). The service provider operates in a

hybrid mode, taking both remote and onsite orders, and processing them following a first-come-

first-served rule. Remote customers who order ahead travel to the service facility to pick up their

orders. We compare the above hybrid order-ahead scheme with a pure order-onsite scheme in which

all customers may only order onsite. In both schemes, customers see the number of outstanding

orders onsite but not remotely. This is consistent with the practice that restaurants often put up

digital screens in store to show the list of outstanding orders but nevertheless only share with

remote customers a wait-time estimate at best rather than the length of the order-processing queue.

We find that contrary to conventional wisdom, the hybrid order-ahead scheme has lower through-

put than the pure order-onsite scheme when the market size is intermediate and travel time is

short (Theorem 1). The key culprit for this throughput shortfall is the lock-in effect of ordering

ahead, which is a double-edged sword. On the one hand, customer demand is secured early on,

which puts upward pressure on throughput. On the other hand, remote customers who order ahead

may unknowingly place and commit to orders when the queue is already long. This mismatch can

exacerbate congestion and make the actual wait time more unpredictable, which in turn, deters

customers from placing orders in the first place. Hence, the lock-in effect also puts downward pres-

sure on throughput. In fact, it outweighs the upward pressure from both the lock-in effect and the
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parallel effect combined when the market size is intermediate (which implies abundant orders and

nontrivial congestion) and travel time is short (which implies a limited benefit from parallelization),

causing the hybrid order-ahead scheme to fall short of the pure order-onsite scheme in throughput.

The argument above reveals two driving forces for the throughput shortfall: (1) remote customers

place orders without knowing the real-time queue length; (2) remote customers commit to their

orders even if they see a long queue upon arrival at the service facility. This begs the question of

whether the throughput shortfall can be eliminated if the service provider has discretion in whether

to share the real-time queue-length information with remote customers or if the service provider

allows for order cancellation. We investigate the effectiveness of these two mitigation strategies.

We find that the throughput shortfall can persist even after the first mitigation strategy is put in

place (Theorem 2). The service provider’s dilemma is that sharing such queue-length information

remotely directly causes remote customers to stop ordering at the sight of a long queue but doing

so also regulates congestion, which indirectly increases customers’ willingness to order. When the

market size is intermediate, the indirect benefit of regulating congestion can still give way to the

direct fear of losing orders, prompting the service provider to prefer not sharing information. Hence,

the throughput shortfall cannot be eliminated by merely adjusting the information policy.

By contrast, we find that the second mitigation strategy—allowing remote customers to cancel

their orders when they are updated on their orders’ queue positions upon arrival at the service

facility—can eliminate the throughput shortfall, enabling the hybrid-order ahead scheme to outper-

form the pure-order onsite scheme (analytically shown in Theorem 3 for a small buffer system and

numerically confirmed more broadly). Allowing cancellation is a self-regulating mechanism that

does not deter remote customers with a long queue at the moment of ordering; rather, customers

abandon on their own only if the queue is actually long when they have to wait onsite. However,

cancellation addresses an existing problem by creating a new one: allowing cancellation reduces the

throughput of the hybrid order-ahead scheme when the market size is small (and thus regulating

congestion is a secondary concern) as it forgoes orders that could otherwise be captured (Theorem

4). Thus, allowing order cancellation is not an all-encompassing solution.

The limitations of the two proposed mitigation strategies motivate us to examine a third one:

proactively rejecting new remote orders when the number of existing outstanding orders reaches

a threshold that is optimally determined by the service provider to maximize throughput. Order

rejection is practiced by some Starbucks stores that turn off point-of-sale systems used for mobile

ordering when the stores are too busy (Dean 2021). We show that the service provider should not

reject any incoming orders if the market size is small, but as the market size grows, the service
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provider may reject remote orders to tame the increased amount of congestion; in fact, when the

market size is sufficiently large, the optimal rejection scheme will mimic the outcome of information

sharing (Theorem 5). Thus, the service provider who can optimize the rejection threshold no

longer has the incentive to share queue-length information remotely (Theorem 6). Importantly,

the hybrid order-ahead-with-rejection scheme (with an optimal rejection threshold) achieves higher

throughput than both the hybrid order-ahead scheme (without rejection or cancellation) and the

pure order-onsite scheme when queue-length information is not shared remotely (Theorem 7). Like

information sharing, the rejection scheme regulates congestion by forgoing orders at the outset,

but unlike information sharing, the rejection threshold in the rejection scheme can be fine-tuned

to ensure that inducing more customers to place orders does not come at the expense of letting

go too many orders that have already been placed. We show that the rejection scheme beats

the cancellation scheme in throughput when the market size is small or large (Theorem 8) but

numerically find that the opposite can be true when the market size is intermediate. This speaks

to the complementary strengths of the proactive approach of forgoing orders at the outset (i.e.,

rejection) and the reactive approach of forgoing orders in the process (i.e., cancellation).

This complementarity motivates us to propose an integrated mechanism that allows the

throughput-maximizing service provider to control both the amount of order rejection and can-

cellation and thus subsumes all the previously considered hybrid order-ahead schemes as special

cases. We show that this integrated mechanism reduces to the optimal rejection scheme (without

cancellation) when the market size is extreme (Theorem 9) but numerically find that cancellation

and rejection should be jointly used when the market size is intermediate. We also observe from

our numerical study that overall, the hybrid order-ahead-with-rejection scheme has the smallest

throughput gap from the integrated mechanism among all the simple schemes considered.

We study three model extensions. The first extension captures food quality degradation that may

arise when remote orders are complete before customers arrive at the store. The second extension

captures remote customers’ channel choice on whether to order ahead, order onsite, or not order

at all. The third extension allows the travel speed of remote customers to be heterogeneous. We

demonstrate the robustness of many of our key insights.

2. Related Literature

Our paper contributes to the growing literature on omnichannel retail in general and omnichannel

service operations in particular. Most relatedly, Gao and Su (2018) show that the adoption of

online self-order technologies (such as mobile apps) increases restaurants’ throughput. They argue
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that one driver of this result is the “advance order effect.” However, instead of actually modeling

the act of ordering in advance, they make the simplifying assumption that ordering online entails

a lower waiting cost per unit time than ordering offline. This same assumption has been used by a

series of papers that model customer behavior in settings broadly related to omnichannel services,

including Baron et al. (2023), Cui et al. (2020), Feldman et al. (2023), Chen et al. (2022).

Our paper differs from this line of work in both modeling and insights. On the modeling front,

our paper explicitly models customers’ travel time and therefore the parallelism of travel time

and waiting time (i.e., the system-state evolution during travel). Doing so allows us to capture

the “advance order effect” with higher operational fidelity. Modeling travel time also naturally

gives rise to two potential decision epochs spaced by a time lag (the moment a customer’s need

arises and the moment the customer arrives at the service facility) and enables us to build a

particularly novel model of the hybrid-order-ahead-with-cancellation scheme that captures both

strategic balking (not placing orders at the first decision epoch) and strategic reneging (canceling

orders at the second), a rare combination in the literature. On the insight front, the extant literature

(e.g., Gao and Su 2018, Baron et al. 2023) all points to online ordering as a means to increase

throughput. In contrast, by carefully modeling the operational subtleties and customer incentives

in such a service system, we find that the hybrid-order-ahead scheme can counterintuitively result

in lower throughput than the pure-order-onsite scheme. We further propose mitigation strategies

to overcome the throughput shortfall. Collectively, these new developments highlight the challenges

in managing the order-ahead scheme and advance our theoretical understanding of such a system.

In the omnichannel-service-operations space, our paper complements Farahani et al. (2022), who

also model travel time in ordering ahead—yet the focus is diametrically different. They study how

to manage queues to best meet a pre-specified target of pickup time, balancing the tradeoff between

earliness and tardiness of order readiness. As such, they abstract away from customers’ strategic

ordering decisions and focus on supply-side interventions. By contrast, our work carefully models

customer incentives and examines the demand-side response to different order-ahead mechanisms.

Beyond the application area, our paper contributes to the queueing-economics literature that

studies customers’ strategic behavior in queueing systems, pioneered by Naor (1969). We refer to

Hassin and Haviv (2003), Hassin (2016) for comprehensive reviews. In particular, Hassin and Roet-

Green (2021) form the basis of our benchmark model of the pure-order-onsite scheme in which

traveling and waiting are in tandem. They numerically show that to maximize throughput, the

service provider should withhold queue-length information from remote customers when the market
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size is small but reveal such information when the market size is large. This insight is consistent

with the earlier finding established in a simpler setting (Hassin 1986, Chen and Frank 2004).

We not only extend the framework of Hassin and Roet-Green (2021) from homogeneous cus-

tomers to heterogeneous customers (i.e., a mix of local and remote customers who differ in travel

time) but also enrich this literature with various models of hybrid order-ahead schemes in which

traveling and waiting are in parallel. Further, the ordering-onsite nature of Hassin and Roet-Green

(2021) precludes strategic reneging, which nevertheless emerges in our cancellation model. The

scant literature on strategic reneging has considered reneging triggered by either time-varying ser-

vice rewards (Hassin and Haviv 1995), nonlinear waiting costs (Haviv and Ritov 2001), or random

utility shocks (Ata and Peng 2018). By contrast, our cancellation model is novel in that reneging is

driven by information about customers’ updated queue position upon arrival at the service facility.

3. Model Setup

We model a service provider (e.g., a restaurant) as a single server that processes customer orders.

Order processing times are independent and identically distributed (IID) random variables follow-

ing an exponential distribution with mean 1/µ, where µ is referred to as the capacity of the service

provider. Customer needs arise according to a Poisson process with rate Λ, where Λ is referred

to as the market size. The market consists of two types of customers who differ in their physical

location: remote customers and local customers. Let γ ∈ (0,1] and 1− γ be the fraction of remote

customers and local customers, respectively.

Remote customers are away from the service facility when their needs arise and their travel times

to the service facility are IID random variables following an exponential distribution with mean

1/β, where β is referred to as the travel speed. A remote customer is not entirely certain about her

travel time before travel due to potentially unanticipated (elevator/road) traffic. Upon experiencing

a need, a remote customer decides whether to place an (irrevocable) order online (from where she

is located); if she places an order, she travels to the service facility to pick up her order. Local

customers are near the service facility when their needs arise and their travel times to the service

facility are negligible. Upon experiencing a need, a local customer decides whether to place an order

onsite. Local customers can be thought of as those who stroll down the street and happen to pass

by the store. The service provider processes orders on a first-come-first-served basis. See Figure 1

for an illustration of the process flow for this hybrid order-ahead scheme. We highlight two key

features: (1) the service provider operates in a hybrid mode, with some customers ordering ahead

and some ordering onsite (if at all); (2) ordering ahead has a parallel structure: as remote customers

travel to the service facility, their orders are also advancing in the order-processing queue.
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Figure 1 A Hybrid Order-Ahead Scheme
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Customers receive a reward V for having their needs fulfilled on demand. Each customer incurs

a delay cost c per unit time between the point she experiences a need and the point she receives

her order. Customers are expected-utility maximizers. Consistent with practice, remote customers

are provided with a wait-time estimate based on the historical average (e.g., on a mobile app),

whereas local customers see the real-time queue length (i.e., the number of outstanding orders) as

quick-service restaurants often set up in-store digital screens to display the status of outstanding

orders. We will later investigate in §5 a case where the service provider can also share this real-time

queue-length information with remote customers if doing so increases the system throughput.

To preclude trivial cases in which the service reward is too low for remote customers to ever

place orders, we enforce Assumption 1 for the rest of the paper.

Assumption 1. V > c [1/µ+ 1/β− 1/(β+µ)].

4. Equilibrium and Comparison with Pure Order-Onsite

In this section, we first characterize customers’ order-placing strategies in equilibrium (in which

nobody can strictly increase her own expected utility through unilateral deviation). Next, we

compare the equilibrium throughput of the hybrid order-ahead scheme with that of a pure order-

onsite scheme in which both remote and local customers must order onsite (introduced in §4.3).

4.1. Preliminaries

This subsection derives the expected utility of a remote customer if she places an order for a

given queue length. We first derive the probability distribution of the queue position for a remote

customer’s order after a random travel time. Suppose that when a remote customer’s need arises,

the initial queue length is n≥ 0 (i.e., n outstanding orders yet to be processed). If she places an

order, she joins the back of the queue and her queue position is n+ 1. Let Nn denote her updated

queue position upon arrival at the service facility. Thus, Nn is equal to n+ 1 less the number of

service completions X up to her own order during the customer’s travel. The support of Nn is

{0,1, . . . , n+ 1}, where Nn = 0 means her order is complete and ready for pickup. Formally, the
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random variable Nn
d
= [n+ 1−X]+, where y+ ≡max{y,0} and X is a geometric random variable

with P(X = i) = [β/(β+µ)][µ/(β+µ)]i for i= 0,1, · · · . Denote σ≡ µ/(β+µ). We characterize the

probability distribution of Nn in Lemma 1.

Lemma 1 (Updated queue-position distribution). The probability distribution of Nn is:

pn(0)≡ P(Nn = 0) = σn+1; pn(i)≡ P(Nn = i) = (1−σ)σn−i+1, i= 1, · · · , n+ 1.

For a remote customer who places an order when the initial queue length is n, her expected

utility conditioned on n, Ū(n) = V − c
∑(n+1)

i=0 (i/µ) · pn(i)− c/β. After simplification,

Ū(n)≡ V − c

β

(
σn+1 +

(n+ 1)β

µ

)
. (1)

4.2. Equilibrium

This subsection characterizes customers’ order-placing strategies in equilibrium. Local customers

place an order if and only if the queue length they see is less than ne ≡ bµV/cc, where bxc denotes

the largest integer less than or equal to x. We refer to ne as the Naor threshold (Naor 1969).

Remote customers place an order with probability q ∈ [0,1] (determined in equilibrium) based on

the expected utility. Next, we characterize this equilibrium order-placing probability q.

Given remote customers’ order-placing probability q and local customers’ order-placing threshold

ne, let ρT ≡ [γΛq+ (1− γ)Λ]/µ, ρR ≡ γΛq/µ. Thus, for ρR < 1, the steady-state probability of the

number of outstanding orders being i is

πui (q) =

ρ
i
T

(
1−ρne

T
1−ρT

+
ρne
T

1−ρR

)−1

, for i < ne,

ρi−neR ρneT

(
1−ρne

T
1−ρT

+
ρne
T

1−ρR

)−1

, for i≥ ne.
(2)

The expected utility for a remote customer who places an order is Uu(q) =
∑∞

n=0 Ū(n)πun(q). Thus,

q ∈ (0,1) is an equilibrium only if Uu(q) = 0; q = 1 is an equilibrium if Uu(1)> 0, and q = 0 is an

equilibrium if Uu(0)< 0. Proposition 1 characterizes the equilibrium strategy quA.

Proposition 1 (Equilibrium). There exist thresholds on market size Λ, λuA and λ̄uA, such that

remote customers’ equilibrium order-placing probability quA is:

quA =


1, if Λ≤ λuA,
q̂ ∈ (0,1), if λuA <Λ< λ̄uA,

0, if Λ≥ λ̄uA,
(3)

where q̂ uniquely solves the equation Uu(q̂) = 0. The resulting throughput THu
A = µ(1−πu0 (quA)).



9

When the market size is sufficiently small (Λ ≤ λuA), the service system is not expected to be

congested, and thus all remote customers place orders. Despite this, the resulting throughput is

still lower than the market size Λ because local consumers do not always place orders if they see

a long queue. When the market size is intermediate (λuA < Λ≤ λ̄uA), the system is expected to be

somewhat congested, causing some remote customers to not place orders. When the market size is

sufficiently large (Λ> λ̄uA), all remote customers stop placing orders because the system is expected

to be heavily congested even with local customers only.

4.3. Comparison with a Pure Order-Onsite Scheme

In this subsection, we compare the order-ahead scheme with a pure order-onsite scheme in which

remote customers may place orders (i.e., join the queue) only after they travel to and arrive at the

service facility. In the pure order-onsite scheme, as before, local customers decide whether to place

orders based on the observed queue length; remote customers first decide whether to travel to the

service facility and if they choose to travel, then upon arrival at the service facility, they further

decide whether to place an order based on the observed queue length, just like local customers. See

Figure 2 for an illustration of the process flow. Note that remote customers’ decision process has

a tandem structure: they need to travel to the service facility before placing an order.

Figure 2 A Pure Order-Onsite Scheme
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When onsite, customers (local or remote) place an order if and only if the queue length they

see is less than the Naor threshold ne. Given the onsite order-placing threshold ne and remote

customers’ travel probability q ∈ [0,1] (determined in equilibrium), the system operates as an

M/M/1/ne queue, and the steady-state probability of the number of outstanding orders being

i is πui,S(q) = (ρT )i/
∑ne

j=0(ρT )j, i = 0,1, · · · , ne, where ρT = [γΛq+ (1− γ)Λ]/µ. Then a remote

customer’s expected utility of joining is Uu
S (q) =

∑ne−1

i=0 (V − c(i+ 1)/µ)πui,S(q)−c/β. Thus, similar

to Proposition 1, we can show that there exist thresholds on market size Λ, λuS and λ̄uS, such that

a remote customer’ equilibrium travel probability quS = 1{Λ≤λu
S
}+ q̂S ·1{λu

S
<Λ<λ̄u

S
}, where q̂S ∈ (0,1)

uniquely solves the equation Uu
S (q̂S) = 0. The resulting throughput THu

S = µ(1−πu0,S(quS)). Notably,
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when the market size is large enough, remote customers stop traveling to the service facility, let

alone placing orders. Theorem 1 compares the throughput of the pure order-onsite scheme THu
S

with that of the hybrid order-ahead scheme THu
A.

Theorem 1 (Hybrid order-ahead can be worse than pure order-onsite).

(i) When travel speed β is sufficiently low or market size Λ is sufficiently small, the hybrid order-

ahead scheme has higher throughput than the pure order-onsite scheme (THu
A >TH

u
S).

(ii) When β is sufficiently high, for an intermediate range of the market size, the hybrid order-

ahead scheme has lower throughput than the pure order-onsite scheme (THu
A <TH

u
S).

Theorem 1 shows that whether the hybrid order-ahead scheme can achieve higher throughput

than the pure order-onsite scheme depends on both remote customers’ travel speed and the market

size. Strikingly, if remote customers travel fast, then allowing remote customers to order ahead

results in lower throughput than if they must order onsite when the market size is intermediate.

Here is the rationale. On the one hand, for remote customers, the hybrid order-ahead scheme

parallelizes waiting (for order processing) and traveling (for order pickup). This parallel effect lures

more remote customers and puts upward pressure on throughput. On the other hand, the hybrid

order-ahead scheme requires remote customers to pre-commit to their order before they observe the

real-time congestion, whereas remote customers in the pure order-onsite scheme can defer ordering

decisions until they see the queue onsite. Pre-commitment is a double-edged sword for throughput.

On the positive side, it secures customer orders early on. This lock-in effect puts upward pressure

on the system throughput. On the flip side, remote customers may unknowingly place and commit

to orders when the queue is already long. This exacerbates system congestion, which, in turn,

deters both local and remote customers from placing orders. As a consequence, this lock-in effect

also puts downward pressure on the system throughput. When travel is fast and the market size

is intermediate, the parallel effect dwindles but the increased congestion due to the lock-in effect

becomes formidable. The downward pressure from the lock-in effect on throughput overshadows

the upward pressure from the parallel and lock-in effects combined, causing the hybrid order-ahead

scheme to lag behind the pure order-onsite scheme in throughput.

We supplement Theorem 1 with a numerical trial illustrated by Figure 3. We observe from Figure

3-(a) that when the travel speed is low, the throughput of the hybrid order-ahead scheme always

exceeds the throughput of the pure order-onsite scheme, consistent with Theorem 1-(i). We also

observe from Figure 3-(b) and Figure 3-(c) that when the travel speed is not low, the hybrid order-

ahead scheme has lower throughput than that of the pure order-onsite scheme for an intermediate
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Figure 3 Throughput Comparison of Hybrid Order-Ahead vs. Pure Order-Onsite
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Note. µ= 1, V = 2, c= 0.5, γ = 0.7.

market size, consistent with consistent with Theorem 1-(ii). Additional numerical studies reveal

that the throughput shortfall does not necessarily hinge on the mean travel time being shorter

than the mean processing time. In practice, the order processing time depends on the nature of

the food: coffee may be quick to make but hot meals may take longer.

We further break down the total throughput into the throughput of remote customers and that

of local customers. In the hybrid order-ahead scheme, define remote customer throughput to be

γΛquA and local customer throughput to be (1−γ)Λ
∑ne−1

i=0 πui (quA). In the pure order-onsite scheme,

define remote customer throughput to be γΛquS
∑ne−1

i=0 πui,S(quS) and local customer throughput to

be (1−γ)Λ
∑ne−1

i=0 πui,S(quS). We present our numerical findings in Figure 4. We observe from Figure

4-(a) and Figure 4-(b) that when travel is slow or intermediate, a change from the pure order-

onsite scheme to the hybrid order-ahead scheme increases the throughput of remote customers but

reduces the throughput of local customers. This observation is consistent with the popular belief

that remote customers who order ahead crowd out local customers who order onsite (Buell 2020).

It further reveals that the shortfall of the total throughput observed in Figure 3-(b) occurs as

the increase in remote customers’ orders does not make up for the loss of local customers’ orders.

Moreover, we observe from Figure 3-(c) that when travel is fast enough and the market size is

large enough, remote customers’ throughput falls while local customers’ throughput rises, contrary

to popular belief. Collectively, our analytical and numerical results demonstrate the intricacies of

the hybrid order-ahead scheme. Neither the conventional wisdom that allowing remote customers

to order ahead attracts more orders in total nor the popular belief that doing so at least attracts

more orders from remote customers is always valid.
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Figure 4 Throughput Comparison of Hybrid Order-Ahead vs. Pure Order-Onsite by Customer Type

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

R
em

ot
e 

cu
st

om
er

 th
ro

ug
hp

ut

(a) β = 0.5

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8
(b) β = 1

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8
(c) β = 2

0 0.5 1 1.5 2 2.5
Λ

0

0.2

0.4

0.6

0.8

Lo
ca

l c
us

to
m

er
 th

ro
ug

hp
ut

Order-ahead
Order-onsite

0 0.5 1 1.5 2 2.5
Λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5
Λ

0

0.1

0.2

0.3

0.4

0.5

Note. µ= 1, V = 2, c= 0.5, γ = 0.7.

5. Mitigation Strategies

In this section, we consider three strategies that might mitigate the potential throughput shortfall

of the hybrid order-ahead scheme: (i) in §5.1, we allow the service provider to share queue-length

information with remote customers; (ii) in §5.2, we allow order cancellation from remote customers;

and (iii) in §5.3, we allow order rejection from the service provider.

5.1. Information

Recall that a driver for the throughput shortfall of the hybrid order-ahead scheme discussed in

§4.3 is that remote customers—who have access to wait time estimates based only on historical

averages—may unknowingly place orders when the queue is already long. This begs the question of

whether the throughput shortfall can be eliminated if the service provider has discretion in whether

to share the real-time queue-length information with remote customers. This subsection explores

remote queue-length information as a mitigation strategy.

5.1.1. Hybrid Order-Ahead Scheme We first study the hybrid order-ahead scheme. We

start by characterizing remote customers’ order-placing strategy when queue-length information

is shared remotely, i.e., when remote customers are informed of the number of outstanding orders

when deciding whether to place orders. Note that the expected utility of a remote customer who

places an order after observing n outstanding orders, Ū(n), is derived in (1). Thus, a remote cus-

tomer places an order if and only this expected utility is non-negative. Proposition 2 characterizes

the order-placing strategy of a remote customer.
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Proposition 2 (Remote customer strategy with information). When queue-length

information is shared remotely, remote customers follow a threshold order-placing strategy:

(i) A remote customer places an order if and only if she observes a queue length n less than

threshold n∗e (i.e., n<n∗e), where n∗e is uniquely determined by n∗e ≡min{n∈N : Ū(n)< 0}.

(ii) Threshold n∗e is no greater than the Naor threshold ne, i.e., n∗e ≤ ne. Specifically, if bµV
c
c= µV

c
,

then n∗e < ne for any 0 < β <∞; otherwise, n∗e < ne if and only if travel speed β is low, i.e.,

β < β, where β uniquely solves V − cne
µ
− c

β
σne = 0.

While the threshold structure of remote customers’ order-placing strategy in Proposition 2-(i)

is intuitive, Proposition 2-(ii) may be slightly less straightforward. Here is the rationale. The total

delay remote customers experience is either (a) the travel time (if the order is ready before travel

is complete) or (b) the delay between order generation and order completion (if travel is complete

before the order is ready), whichever is longer. Hence, the total delay is expected to be longer than

the delay in (b) alone, which is what local customers would endure for the same queue length.

This implies that remote customers will generally be less receptive to a long queue than their local

counterparts (i.e., n∗e ≤ ne). In particular, when travel time is expected to be long, the total delay

is also expected to be much longer than the delay in (b), inducing remote customers to adopt a

strictly lower joining threshold than that of local customers (i.e., n∗e <ne).

Given local customers’ order-placing threshold ne and remote customers’ order-placing threshold

n∗e, let ρ≡Λ/µ be the potential traffic intensity. Thus, the steady-state probability of the number

of outstanding orders being i is

πoi =

ρ
i
(

1−ρn
∗
e

1−ρ + ρn
∗
e (1−((1−γ)ρ)ne−n

∗
e+1)

1−(1−γ)ρ

)−1

, i= 0,1, · · · , n∗e,

((1− γ)ρ)i−n
∗
eρn

∗
e

(
1−ρn

∗
e

1−ρ + ρn
∗
e (1−((1−γ)ρ)ne−n

∗
e+1)

1−(1−γ)ρ

)−1

, i= n∗e + 1, · · · , ne.

The resulting system throughput is THo
A = µ(1 − πo0). Next, we take the perspective of

a throughput-maximizing service provider who chooses whether to share queue-length infor-

mation with remote customers, i.e., a service provider who solves the optimization problem:

max{THo
A, TH

u
A}, where throughput THu

A is defined in Proposition 1. Proposition 3 characterizes

the service provider’s information-sharing policy in the hybrid order-ahead scheme.

Proposition 3 (Whether to share information). There exists a unique threshold Λ̃ such

that the throughput-maximizing service provider should not share queue-length information with

remote customers (THu
A ≥ THo

A) if Λ≤ Λ̃ and should share information otherwise.
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Proposition 3 generalizes the classical result of Chen and Frank (2004) to a setting of heteroge-

neous customers. When the market size is small, congestion is light, and withholding queue-length

information from remote customers can induce all of them to place orders whereas if queue-length

information is shared, remote customers who happen to see a long queue will refrain from ordering.

Hence, not sharing information is preferred. By contrast, when the market size is large, conges-

tion is nontrivial, and revealing queue-length information to remote customers induces them to

place orders only when the queue is sufficiently short, which keeps the queue length in check and

regulates congestion. This, in turn, entices more customers.

5.1.2. Pure Order-Onsite Scheme In the pure order-onsite scheme, customers follow a

simple Naor joining threshold when onsite. However, if queue-length information is shared, then

remote customers’ strategy in deciding whether to travel after observing the queue length is highly

complex. Hassin and Roet-Green (2021) study a simplified version of this problem that contains

only (homogeneous) remote customers but not local customers. They show that finding remote

customers’ traveling equilibrium is analytically intractable and instead develop an algorithm to

numerically search for the equilibrium. We extend their numerical procedure to our setting of

heterogeneous customers and obtain the resulting throughput of the pure order-onsite scheme THo
S.

5.1.3. Throughput Comparison Let TH∗A and TH∗S denote the maximum throughputs

achieved by the optimal remote-information-sharing policy in the hybrid order-ahead scheme and

the pure order-onsite scheme, respectively. That is, TH∗i ≡max{THo
i , TH

u
i } , i∈ {A,S}. Theorem

2 compares TH∗A with TH∗S.

Theorem 2 (Hybrid order-ahead can still backfire). When travel speed β is sufficiently

high, for an intermediate range of the market size, the hybrid order-ahead scheme has lower through-

put than the pure order-onsite scheme even if the service provider optimally chooses whether to

share queue-length information with remote customers in each respective scheme (TH∗A <TH
∗
S) .

Theorem 2 shows that the potential throughput shortfall of the hybrid order-ahead scheme can-

not be eliminated even when the service provider freely decides whether to share queue-length

information with remote customers. The conundrum is that withholding queue-length information

from remote customers causes a supply-demand mismatch that drives congestion (which is partic-

ularly problematic when congestion is already high, i.e., when the market size is large), but sharing

the information turns customers away outright (which is particularly problematic when the service

provider desperately needs customers, i.e., when the market size is small). Thus, when the market
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Figure 5 Throughput Comparison of Hybrid Order-Ahead vs. Pure Order-Onsite Under Optimal Information
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Note. µ= 1, V = 2, c= 0.5, γ = 0.7.

size is neither too small nor too large, the service provider is pushed into a tight corner and cannot

salvage the hybrid order-ahead scheme by merely adjusting information.

We supplement Theorem 2 with a numerical study that compares the throughput of the hybrid

order-ahead scheme (TH∗A) with that of the pure order-onsite scheme (TH∗S) when the service

provider optimally chooses whether to share queue-length information with remote customers in

each respective scheme. The result is presented in Figure 5. Consistent with Theorem 2, we observe

from Figure 5-(b) and Figure 5-(c) that when the travel speed is not too low and the market size is

intermediate, the pure-order-onsite scheme outperforms the hybrid order-ahead scheme. Notably,

comparing Figure 5-(b) and Figure 5-(c) with their counterparts of Figure 3 reveals instances in

which the service provider switches to sharing queue information with remote customers in the

hybrid order-ahead scheme while sticking to no-sharing in the pure order-onsite scheme, yet the

throughput of the hybrid order-ahead scheme still falls behind that of the pure order-onsite scheme.

5.2. Cancellation

Recall that another driver for the throughput shortfall of the hybrid order-ahead scheme discussed

in §4.3 is that remote customers commit to orders when the queue is already long. This begs the

question of whether non-commitment (i.e., allowing remote customers to cancel orders when they

arrive onsite) helps. This subsection explores order cancellation as a mitigation strategy.

In the hybrid order-ahead-with-cancellation scheme, the service provider informs onsite cus-

tomers of the number of outstanding orders and the queue position of each order (e.g., by displaying

a sequence of order ID’s on in-store digital screens); further, (remote) customers who order ahead



16

can freely cancel their unfinished orders when they arrive at the service facility. Upon cancellation,

an order will be withdrawn from the order queue and will no longer be processed. Hence, not all

orders initially placed will eventually be prepared. See Figure 6 for a process-flow illustration.

Figure 6 Hybrid Order-Ahead with Cancellation
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Note. Customers and orders are depicted by squares and circles, respectively. The onsite order-placing threshold is

ne = 4. Customers 1 and 3 are onsite, waiting to pick up their orders (represented by the two solid circles); customers

2, 4, and 5 are still traveling; customer 6 is about to arrive at the service facility and cancel her order; customer 7 is

about to place an order.

On the surface, this cancellation scheme bears a resemblance to the pure order-onsite scheme

in that remote customers in both may choose not to stay after traveling to the service facility.

Nevertheless, the key distinction is that in the pure order-onsite scheme, customers may choose

to balk from the physical queue before committing to the service; while in the hybrid order-ahead

scheme with cancellation, remote customers may choose to renege on a previously secured spot

in the virtual order queue. As such, our model of the cancellation scheme captures both strategic

balking (not placing orders) and strategic reneging (canceling orders).

We first characterize the cancellation strategy of remote customers who arrive at the service

facility and observe their queue positions. One complication is that an arriving customer cannot

tell whether those with order IDs ahead of hers have arrived or not. Customers who have not yet

arrived may later cancel their orders upon arrival, thus affecting the focal customer’s calculation

about her own expected wait time if she does not cancel. Thus, each arriving customer needs to

think strategically about the cancellation strategies of those who have not arrived. Yet, Lemma 2

shows that customers’ cancellation strategy has a surprisingly simple threshold structure.

Lemma 2 (Cancellation strategy). In the hybrid order-ahead-with-cancellation scheme, each

remote customer cancels her order upon arrival at the service facility if and only if her queue

position (the number of outstanding orders ahead of hers plus her own order) is greater than ne.
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Here is the rationale behind Lemma 2. If a customer’s queue position does not exceed the Naor

threshold ne, then her dominant strategy is to keep waiting for her order. This result further implies

that the first ne outstanding orders in the queue will not get canceled. Therefore, if a customer’s

queue position exceeds ne upon arrival at the service facility, then she would definitely cancel her

order because she knows that at least the first ne orders will not get canceled and thus will be

processed before hers (regardless of when their order-placing customers arrive), which implies that

the reward from getting her own order is not worth the wait. Following the same logic, a local

customer places an order if and only if the order queue length is less than ne.

5.2.1. Queue-Length Information Not Shared Remotely We next divide our analysis

by whether queue-length information is shared with remote customers when they decide whether

to order. We start with the case in which such information is not shared.

Given remote customers’ cancellation threshold ne and local customers’ joining threshold ne

at the service facility, we now derive remote customers’ ordering placing probability q when they

experience a need. Given q, the system state of the order queue, i.e., the number of outstanding

orders i, evolves according to a birth-death process with a state-dependent birth rate λi(q) =

γΛq+(1−γ)Λ ·1{i≤ne−1} for i= 0,1, . . . and a state-dependent death rate µi: µi = µ+β(i−ne)+, i=

0,1, · · · . Birth rates λi(q) correspond to order arrivals. When the queue is short (i≤ ne− 1), both

remote and local customers place orders, hence the birth rate γΛq + (1 − γ)Λ; otherwise, only

remote customers place orders, hence the birth rate γΛq. Next, we explain death rate µi. An order

cancellation occurs only when a remote customer completes traveling and finds a long order queue

ahead of her order at the service facility. A remote customer who sees less than ne outstanding

orders ahead of hers will not cancel her order. Such a customer’s arrival at the service facility will

not trigger a “death” event in the system. Therefore, when all customers have a short queue ahead

of their orders (i.e., the number of outstanding orders i≤ ne), the order queue length can only be

decremented by a service completion (which occurs at rate µ). On the other hand, if i > ne, it must

imply that i−ne remote customers have an order-queue position above ne, and furthermore, these

customers must all be traveling and have not yet arrived onsite (because otherwise, they would

have already canceled their orders). Hence, in addition to a service-completion event, the order

queue length can also be decremented by an order cancellation (which corresponds to one of those

i−ne customers arriving at the service facility) at rate β(i−ne).
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Given the birth and death rates, the steady-state probability of the number of the outstanding

orders being i, πui,C(q), satisfies the flow balance equations λi(q)π
u
i,C(q) = µi+1π

u
i+1,C(q) for i =

0,1, . . ., from which, we obtain the following product-form steady-state probabilities:

πui,C(q) =

(
1− ρne+1

T

1− ρT
+ ρneT

∞∑
j=1

j∏
k=1

γΛq

µ+ kβ

)−1

ρ
(i∧ne)
T

(i−ne)+∏
k=1

γΛq

µ+ kβ
, i= 0,1, · · · , (4)

where ρT = [γΛq+ (1− γ)Λ]/µ. Next, similar to Lemma 1, Lemma 3 characterizes remote cus-

tomers’ updated queue position upon arrival at the service facility (before she cancels, if at all),

denoted by NC
n , when her queue position is n+ 1 at the moment of ordering.

Lemma 3 (Updated queue-position distribution under cancellation). (i) If n>ne, the

probability distribution of NC
n is pCn (0) ≡ P(NC

n = 0) =
∏n

k=0
µk

µk+β
; pCn (i) ≡ P(NC

n = i) =

β
µi−1+β

∏n

k=i
µk

µk+β
, 1≤ i≤ n+1, where µi = µ+β(i−ne)+, i= 0,1, · · · and

∏j

k=i xk = 1 for i > j;

(ii) If n≤ ne, NC
n has the same distribution as Nn given by Lemma 1.

Given q, the expected utility of a remote customer who places an order is

Uu
C(q)≡

ne−1∑
i=0

Ū(i)πui,C(q) +
∞∑
i=ne

[
ne∑
j=0

(
V − cj

µ

)
pCi (j)− c

β

]
πui,C(q), (5)

where Ū(i), πui,C(q), and pCi (j) are given by Equations (1), (4), and Lemma 3, respectively. Propo-

sition 4 characterizes remote customers’ equilibrium order-placing probability quC .

Proposition 4 (Equilibrium in the cancellation model).

In the hybrid order-ahead-with-cancellation scheme, when queue-length information is not shared

remotely, there exist thresholds on market size Λ, λuC and λ̄uC, such that remote customers’ equi-

librium order-placing probability quC = 1{Λ≤λu
C
}+ q̃C · 1{λu

C
<Λ<λ̄u

C
}, where q̃C ∈ (0,1) uniquely solves

Uu
C(q̃C) = 0, with Uu

C(q) given in Equation (5). The resulting throughput is THu
C = µ[1−πu0,C(quC)].

5.2.2. Queue-Length Information Shared Remotely We next consider the case in which

queue-length information is shared with remote customers when they decide whether to order.

Recall from Proposition 2 that in such a case, remote customers place orders only when the observed

queue length is less than n∗e with n∗e ≤ ne. By the time they arrive onsite, their queue position will

only be improved (at least no worse than n∗e). Since Lemma 2 shows that a customer will only

cancel if her queue position is worse than ne, it implies that no customers have the incentive to

cancel in the original order-ahead scheme. Hence, enabling cancellation does not make a difference

when queue-length information is shared with remote customers. Hence, the system throughput in

this case THo
C equals the throughput in its non-cancellation counterpart, THo

A, i.e., THo
C = THo

A.
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5.2.3. Throughput Comparison Let TH∗C = max{THo
C , TH

u
C} denote the maximum

throughput achieved by optimal information sharing in the hybrid order-ahead-with-cancellation

scheme. We next compare this throughput with that in the pure-order onsite scheme, TH∗S.

Theorem 3 (Hybrid order-ahead-with-cancellation v.s. pure order-onsite). When

queue-length information is optimally shared remotely, for ne = 1, the hybrid order-ahead-with-

cancellation scheme has higher throughput than the pure order-onsite scheme, i.e., TH∗C ≥ TH∗S.

Theorem 3 shows that enabling cancellation mitigates the throughput shortfall under optimal

information sharing; we prove the result analytically for ne = bV µ/cc= 1, but numerically, we find

that it holds for all the problem instances tested (see §5.4 for details of our numerical study).

Cancellation is a self-regulating mechanism that alleviates the issue of over-congestion created by

the lock-in effect without turning remote customers away from the outset just because the queue

is long initially (which would be the case if the service provider resorts to information sharing

alone). Customers abandon only after they arrive at the service facility and actually expect a

long wait onsite. Therefore, cancellation restores the advantage of the hybrid order-ahead scheme

over the pure order-onsite scheme. Next, we investigate the impact of enabling cancellation on the

throughput of the hybrid order-ahead scheme.

Theorem 4 (To cancel or not to cancel). When queue-length information is optimally

shared remotely, allowing cancellation in the hybrid order-ahead scheme results in lower throughput

(TH∗C <TH
∗
A) if market size Λ is small.

While Theorem 3 suggests that enabling cancellation is a promising solution that allows the

hybrid order-ahead scheme to outperform the pure-order-onsite scheme, Theorem 4 shows that the

cancellation scheme nevertheless falls short of the non-cancellation one when the market size is

small. The cancellation scheme forgoes orders that the non-cancellation scheme would hold on to

otherwise. This order loss is critical when there are not too many orders to begin with, i.e., when the

market size is small. In this case, the cancellation scheme falls short of the non-cancellation scheme

in retaining orders. Hence, cancellation addresses an existing problem (i.e., the throughput shortfall

relative to the pure order-onsite scheme) by creating a new one (i.e., a potential throughput loss

relative to the hybrid order-ahead scheme without cancellation).

Figure 7 illustrates a three-way throughput comparison of the hybrid order-ahead scheme (TH∗A),

the pure order-onsite scheme (TH∗S), and the hybrid order-ahead-with-cancellation scheme (TH∗C)

when the service provider chooses the optimal information in each respective scheme. We observe

that the hybrid order-ahead-with-cancellation scheme always outperforms the pure-order-onsite
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Figure 7 Throughput Comparison of Hybrid Order-Ahead, Pure Order-Onsite, and Hybrid Order-Ahead-with-

Cancellation Under Optimal Information
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Note. µ= 1, V = 2, c= 0.5, γ = 0.7.

scheme, i.e., TH∗C >TH
∗
S (confirming Theorem 3 for general ne), mitigating the throughput short-

fall of the non-cancellation scheme. Nevertheless, we also observe that the cancellation scheme falls

short of its non-cancellation counterpart when the market size is small (confirming Theorem 4).

Further, we observe that the cancellation scheme coincides with the non-cancellation scheme when

the market size is large because both choose to share information and that the former achieves

strictly higher throughput than the latter only when the market size is intermediate.

5.3. Rejection

The limitations of the previous two mitigation strategies motivate us to explore yet another alterna-

tive: a hybrid order-ahead-with-rejection scheme in which the service provider accepts new remote

orders (placed by remote customers online) if the total number of outstanding orders is strictly

less than a threshold N ∈N∪{∞} and rejects any new remote orders otherwise. Threshold N is a

decision variable of the service provider. Rejecting remote orders is in the spirit of Starbucks stores

turning off point-of-sale systems for mobile ordering when the stores are too busy (Dean 2021).

See Figure 8 for a process-flow illustration of the hybrid order-ahead-with-rejection scheme.

5.3.1. Queue-Length Information Not Shared Remotely We start with the case in

which queue-length information is not shared with remote customers when they decide whether

to order. We first characterize the equilibrium order-placing probability of remote customers for a
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Figure 8 Hybrid Order-Ahead with Rejection
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given rejection threshold N . If N >ne, then given remote customers’ order placing probability q,

the steady-state probability of the number of outstanding orders being i is

πui,R(q) =


ρiT

(
1−ρne

T
1−ρT

+
ρne
T (1−ρN−ne+1

R )
1−ρR

)−1

, if i < ne,

ρi−neR ρneT

(
1−ρne

T
1−ρT

+
ρne
T (1−ρN−ne+1

R )
1−ρR

)−1

, if i= ne, · · · ,N,
(6)

where ρT = [γΛq + (1 − γ)Λ]/µ and ρR = γΛq/µ. If N ≤ ne, the steady-state probability of the

number of outstanding orders being i is

πui,R(q) =


ρiT

(
1−ρNT
1−ρT

+
ρNT (1−ρne−N+1

L
)

1−ρL

)−1

, if i <N,

ρi−NL ρNT

(
1−ρNT
1−ρT

+
ρNT (1−ρne−N+1

L
)

1−ρL

)−1

, if i=N, · · · , ne,
(7)

where ρT = [γΛq + (1 − γ)Λ]/µ and ρL = (1 − γ)Λ/µ. Thus, for a remote customer who places

an order, with probability πuN,R(q), her order will be rejected (from which she gets zero utility);

with probability 1− πuN,R(q), her order will be accepted (which implies the queue length at the

moment is less than N). Recall from (1) that a remote customer’s expected utility conditioned

on the queue length being n is Ū(n). Thus, her unconditional expected utility from ordering is

Uu
R,N(q) =

∑N−1

n=0 Ū(n)πun,R(q).

Proposition 5 characterizes remote customers’ equilibrium order-placing probability.

Proposition 5 (Equilibrium in the N-rejection model). In the hybrid-order-ahead

scheme with a rejection threshold N , when queue-length information is not shared remotely,

remote customers’ equilibrium order-placing probability quR,N is as follows: if Ū(N − 1) ≥ 0,

quR,N = 1; otherwise, there exist thresholds on market size Λ, λuR,N and λ̄uR,N , such that quR,N =

1{Λ≤λu
R,N
} + q̂R,N · 1{λu

R,N
<Λ<λ̄u

R,N
}, where q̂uR,N uniquely solves Uu

R,N(q̂uR,N) = 0. The resulting

throughput is THu
R,N = µ[1−πu0,R(quR,N)].
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Building on Proposition 5, we characterize the optimal rejection threshold N∗ that maximizes

the system throughput. Theorem 5 establishes the structural properties of N∗. Let the maximum

throughput achieved by N∗ be THu
R, i.e., THu

R = THu
R,N∗ = maxN∈N∪{∞}{THu

R,N}.

Theorem 5 (The optimal rejection threshold). In the hybrid-order-ahead-with-rejection

scheme, when queue-length information is not shared remotely, the optimal rejection threshold N∗

satisfies N∗ ≥ n∗e, with N∗ = n∗e when Λ is large enough and N∗ =∞ when Λ is small enough.

In setting the rejection threshold, the service provider faces the following tradeoff: a lower, more

aggressive rejection threshold forgoes a bigger fraction of remote orders placed but prompts more

remote consumers to place remote orders because it shortens the queue and better regulates con-

gestion. When the market size is small enough, there is not much congestion anyway, so the service

provider should not reject any orders (i.e., N∗ =∞). In this case, the rejection scheme degenerates

into a non-rejection scheme. As the market size increases, congestion becomes a growing concern, so

the service provider may reject orders to tame congestion. However, the optimal rejection threshold

should never be set any lower than n∗e, the order-placing threshold that remote customers employ

in the non-rejection scheme when they have queue-length information at the time of ordering (see

Proposition 2). Recall that Ū(n∗e − 1) ≥ 0. Thus, if N = n∗e, then from Proposition 5, quR,N = 1,

i.e., if N = n∗e, the queue is guaranteed to be short enough that all remote customers place orders.

Reducing the rejection threshold even further will only forgo a bigger fraction of the remote orders

without prompting more remote customers to place orders and is therefore not fruitful. In fact,

N∗ = n∗e is indeed the optimal rejection threshold for a sufficiently large market size, in which case,

the rejection scheme without information sharing mimics the information-sharing scheme without

rejection (characterized in Proposition 2) in the induced customer behavior and throughput.

5.3.2. Queue-Length Information Shared Remotely When queue-length information is

shared with remote customers, let the maximum throughput achieved by the optimal rejection

threshold in this case be THo
R. Theorem 6 shows that if the service provider can choose both

whether to share information and the rejection threshold, then sharing information is not necessary.

Theorem 6 (No Incentive to share information in the rejection scheme).

In the hybrid order-ahead scheme with an optimized rejection threshold, not sharing queue-length

information with remote customers achieves higher throughput than sharing, i.e., THu
R ≥ THo

R.

Sharing queue-length information with remote customers drives them away when the queue is

long, which helps regulate congestion. Yet, the same effect can also be achieved by rejecting orders
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when the queue is long. Therefore, the service provider can replicate the order-placing outcome

of information sharing with an appropriate rejection threshold without sharing information. More

specifically, if queue-length information is shared, the service provider cannot improve throughput

by imposing a rejection threshold. This is because a rejection threshold higher than n∗e will not

be reached (since remote customers will voluntarily stop ordering once the queue length reaches

n∗e), whereas a rejection threshold lower than n∗e will only hurt throughput by turning down too

many orders. Therefore, the service provider who does not share information can at least match the

throughput of the information-sharing case by simply imposing a rejection threshold of n∗e, which

ensures all remote customers are willing to place orders. Optimizing over the rejection threshold

will only increase the throughput further. Hence, the service provider will not bother to share

queue-length information with remote customers. In other words, let TH∗R ≡max{THo
R, TH

u
R} be

the maximum throughput achieved by optimizing over whether to share queue-length information

with remote customers along with the rejection threshold; Theorem 6 establishes that TH∗R = THu
R.

So far, we have implicitly assumed that customers rejected remotely will exit the system. Yet, one

may naturally wonder if these customers, upon rejection, will instead travel to the service facility

and order onsite. Proposition 6 shows that in the optimal rejection scheme, rejected customers

indeed have no incentive to make such an attempt even when given the opportunity.

Proposition 6 (Rejected customers will not order onsite). In the optimal hybrid-order-

ahead-with-rejection scheme, rejected customers will not choose to order onsite.

Recall from Theorems 5 and 6 that the optimal rejection threshold is at least n∗e. When customers

are rejected remotely, they know the queue is too long for ordering ahead to be worth it anyway

(recall from Proposition 2 that customers will not order ahead if there are n∗e outstanding orders).

We further show that ordering onsite will be even worse than ordering ahead and thus, rejected

customers have no incentive to travel to the service facility and make a second ordering attempt.

5.3.3. Throughput Comparison We next compare the throughput of the hybrid order-

ahead-with-rejection scheme (with a throughput-maximizing rejection threshold) with those of the

three schemes introduced earlier: (1) the non-rejection scheme; (2) the pure order-onsite scheme;

and (3) the cancellation scheme, when each scheme has its respective optimal remote informa-

tion sharing policy. As for (1), the non-rejection scheme essentially has a rejection threshold of

N =∞ and is thus a special case of the rejection scheme with an optimized rejection threshold.

Hence, it follows that the rejection scheme outperforms the non-rejection scheme, i.e., TH∗R ≥ TH∗A.

Theorems 7 and 8 address comparisons (2) and (3), respectively.
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Theorem 7 (Hybrid order-ahead with rejection vs. pure order-onsite).

When queue-length information is optimally shared remotely, for ne = 1, the hybrid order-ahead-

with-rejection scheme has higher throughput than the pure order-onsite scheme, i.e., TH∗R ≥ TH∗S.

Theorem 7 shows that the twist of order rejection mitigates the throughput shortfall of the hybrid

order-ahead scheme, enabling it to capture more customers than the pure order-onsite scheme. We

prove that this throughput dominance holds for general ne if queue-length information is not shared

remotely (i.e., THu
R ≥ THu

S for general ne), but when information is shared in the pure order-onsite

scheme, the underlying queueing system becomes analytically intractable and thus we can only

analytically prove this result for ne = 1, even though numerically, we find that it holds for all the

problem instances tested (see §5.4 for details of our numerical study). The introduction of order

rejection keeps the queue length in check. Thus, order rejection regulates congestion and enables

customers who successfully order ahead to enjoy the benefit of the parallel effect without worrying

about the longer-than-usual delay they might otherwise encounter in the non-rejection scheme.

Therefore, customers are more willing to place orders. Moreover, the rejection threshold can be

fine-tuned to strike the balance between acquisition (getting more customers to place orders) and

retention (keeping more orders that have been placed) so that the hybrid order-ahead throughput

will indeed be higher than the pure-order-onsite throughput.

Theorem 8 compares the throughput of the rejection scheme with that of the cancellation scheme.

Theorem 8 (To cancel or to reject). When queue-length information is optimally shared

remotely, the hybrid order-ahead-with-rejection scheme has higher throughput than the cancellation

scheme (TH∗R ≥ TH∗C) when the market size is sufficiently small or large.

When the market size is small, recall from Theorem 5 that the rejection scheme reduces to

the non-rejection scheme, which has higher throughput than the cancellation scheme, according

to Theorem 4. Therefore, in this case, the rejection scheme outperforms the cancellation scheme.

When the market size is large, the rejection scheme fends off orders at the outset, which more

sharply regulates congestion that the cancellation scheme that lets customers voluntarily withdraw

orders in the process. Hence, in this case, the rejection scheme again outperforms the cancellation

scheme. However, when the market size is intermediate, it is unclear whether the rejection still

beats the cancellation scheme. We explore this question numerically in Figure 9.

Figure 9 conducts a four-way throughput comparison of the hybrid order-ahead scheme (TH∗A),

the pure order-onsite scheme (TH∗S), the hybrid order-ahead-with-cancellation scheme (TH∗C), and

the hybrid order-ahead-with-rejection scheme (TH∗R) when the service provider optimally chooses
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Figure 9 Throughput Comparison of Hybrid Order-Ahead, Pure Order-Onsite, Hybrid Order-Ahead-with-

Cancellation, Hybrid Order-Ahead-with-Rejection Under Optimal Information
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Note. µ= 1, V = 2, c= 0.5, γ = 0.7.

whether to share queue-length information with remote customers in each respective scheme. We

observe that the hybrid order-ahead-with-rejection scheme always outperforms both the hybrid

order-ahead scheme (TH∗R ≥ TH∗A), which is by construction, and the pure-order-onsite scheme

(TH∗R ≥ TH∗S), confirming Theorem 7 for general ne. Hence, like the cancellation scheme, order

rejection can be yet another approach to mitigate the throughput shortfall. Yet, unlike the can-

cellation scheme, order rejection does not have the unintended consequence of falling short of the

basic scheme without cancellation or rejection (since the rejection threshold can be optimized).

Further, in many instances, the rejection scheme also dominates the cancellation scheme (echoing

Theorem 8), but this is not always the case. For example, Figure 9-(c) shows that when travel is

fast and the market size is intermediate, the rejection scheme results in lower throughput than the

cancellation scheme (although the magnitude of the difference seems small). The rationale is that

order rejection is a more drastic measure of regulating congestion than allowing order cancellation

and therefore can overshoot.

We have also numerically examined the impact of γ (the share of remote customers) on the

throughput comparison. We observe that when γ is small, the throughputs of the various schemes

considered are barely distinguishable from each other. This is not surprising since these schemes

differ in how they affect remote customers; if the vast majority of customers are locals, then there

clearly will not be any sizable differences across these schemes. As γ increases, the throughputs of

the different schemes diverge, making our findings (e.g., the throughput shortfall of ordering ahead
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and the throughput restoration of the rejection scheme) more salient. This observation suggests

that our insights are particularly relevant for restaurants with broad geographical coverage and a

keen interest in remote ordering, which might be a growing industry trend.

In sum, the hybrid order-ahead-with-rejection scheme holds promise as it attains higher through-

put than both the hybrid order-ahead scheme (by construction) and the pure order-onsite scheme

(proved analytically in Theorem 7 for ne = 1 and confirmed numerically for general ne). While it is

not guaranteed to outperform the hybrid order-ahead-with-cancellation scheme, it tends not to fall

far behind (based on numerical observation). However, in order for the rejection scheme to work

in practice, the rejection threshold must be carefully calibrated to the business characteristics and

clearly communicated to remote customers, both of which are not without practical challenges.

5.4. An Integrated Mechanism

In this subsection, we consider an integrated mechanism that subsumes all the previously studied

hybrid order-ahead schemes. In this integrated mechanism, the service provider (1) rejects remote

orders if the total number of outstanding orders reaches or exceeds threshold N1 ∈N∪{∞} and (2)

cancels online orders from remote customers when they arrive at the service facility and still have a

queue position exceeding threshold N2 ∈N∪{∞}. Both thresholds N1 and N2 are decision variables

of the throughput-maximizing service provider. We focus on rejection thresholds with N1 ≥ n∗e to

prevent creating perverse incentives for rejected customers to reorder onsite (Proposition 6); we

focus on cancellation thresholds with N2 ≥ ne to prevent creating perverse incentives for canceled

customers to reorder onsite. When queue-length information is shared remotely, this integrated

mechanism reduces to the hybrid order-ahead scheme with information sharing in §5.1 and is

throughput-dominated by the optimal rejection scheme without information sharing (Theorem 6).

We henceforth focus on the case without information sharing (which is without loss of optimality).

Further, when N1 =∞ and N2 = ne, this integrated mechanism degenerates into the cancellation

scheme in §5.2; when N2 =∞, this integrated mechanism degenerates into the rejection scheme in

§5.3. Theorem 9 (partially) characterizes the structure of the optimal integrated mechanism for

the throughput-maximizing service provider.

Theorem 9 (The Optimal Integrated Mechanism). In the integrated mechanism, not

rejecting or canceling orders (N1 = N2 =∞) is optimal if the market size is sufficiently small;

rejecting orders at threshold n∗e (N1 = n∗e,N2 =∞) is optimal if the market size is sufficiently large.

Theorem 9 shows that the integrated mechanism matches the optimal rejection scheme (without

cancellation) when the market size is extreme (cf. Theorem 5). However, we observe from Figure
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10 that when the market size is intermediate, the integrated mechanism can strictly outperform all

of the four previously considered schemes (each under its respective optimal information sharing).

This indicates that in such instances, both order rejection and cancellation are active in the optimal

integrated mechanism (N2 <N1 <∞), even though Figure 10 seems to suggest a small throughput

gap between the rejection scheme and the integrated mechanism.

Figure 10 Throughput Comparison with the Integrated Mechanism
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We next quantify such a gap more systematically through a numerical study. We generate

625 representative instances from the following parameter combinations: µ = 1, c = 0.5, V ∈

{1.5,2.5, · · · ,5.5}, γ ∈ {0.1,0.3, · · · ,0.9}, Λ ∈ {0.5,1, · · · ,2.5}, β ∈ {0.5,1, · · · ,2.5} (all satisfying

Assumption 1). In each instance, we compute the percentage throughput gap between the optimal

integrated mechanism and each of the four previously considered schemes under optimal informa-

tion sharing (the percentage throughput gap is the throughput difference divided by the throughput

of the integrated mechanism). We present statistics of these percentage throughput gaps in Table

1, including the mean, median, maximum, minimum, first quartile, and third quartile.

Table 1 indicates that the hybrid order-ahead-with-rejection scheme is overall the closest to

the integrated mechanism in throughput, with a maximum throughput loss of only 2.45% (even

though it does not always dominate the cancellation scheme). Hybrid order-ahead-with-cancellation

is also relatively effective but shows more variability in performance. While its throughput gap

is substantially smaller than the hybrid order-ahead scheme (without cancellation) in worst-case

scenarios (9.58% vs 17.26%), its median throughput gap turns out to be larger (0.11% vs 0.02%).
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Table 1 The Percentage Throughput Gap of Different Schemes

Scheme Mean Median Max. Min. 1st Qu. 3rd Qu.

Hybrid order-ahead-with-rejection 0.07% 0 2.45% 0 0 0
Hybrid order-ahead-with-cancellation 0.71% 0.11% 9.68% 0 0.01% 0.72%
Hybrid order-ahead 1.12% 0.02% 17.26% 0 0 0.81%
Pure order-onsite 2.76% 0.44% 89.88% 0 0.08% 2.3%

µ = 1, c = 0.5, V ∈ {1.5,2.5,3.5,4.5,5.5}, γ ∈ {0.1,0.3,0.5,0.7,0.9}, β ∈ {0.5,1,1.5,2,2.5}, Λ ∈
{0.5,1,1.5,2,2.5}.

The pure order-onsite scheme is overall the least effective in maintaining throughput, demonstrating

the biggest gaps in all statistical measures (even though it outperforms the hybrid order-ahead

scheme in some instances). In sum, our numerical study underscores the value of ordering ahead

and points to order rejection within the hybrid order-ahead scheme as an effective control lever

that balances simplicity and performance.

6. Extensions
6.1. Food-Quality Degradation

This extension incorporates the issue of food-quality degradation. Specifically, when remote cus-

tomers order ahead, food can be ready before customers arrive, and thus may be “soggy” at the

time of pickup. Our base model assumes away the disutility caused by “soggy” food and still finds

that the hybrid order-ahead scheme may result in lower throughput than the pure order-onsite

scheme. Incorporating such disutility in ordering ahead would imply that remote customers are

even less inclined to place orders, leading to even lower throughput, thus only strengthening this

key insight. In §EC.1.1, we formally model food deteriorating in quality over time after an order is

complete. We find that our most interesting results that occur when travel is fast are particularly

robust in that incorporating food-quality degradation hardly affects the system throughput of any

scheme. This is because when travel is fast, customers are likely to arrive at the service facility

before their order is complete, making food-quality degradation a secondary concern.

6.2. Channel Choice

This extension expands remote customers’ strategy space and allows for channel choice in hybrid

order-ahead schemes. When a need arises, remote customers decide whether to order ahead, order

onsite, or not order at all. That is, remote customers not only choose whether to order (as in

the base model), but also which channel to order from. When queue-length information is shared

remotely, remote customers will not choose to order onsite, and therefore our results from the

base model carry over. However, when queue-length information is not shared remotely, remote

customers face a tradeoff in the channel choice: ordering ahead allows an order to join the queue
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earlier but ordering onsite prevents customers from unknowingly joining a long queue. Thus, a

remote customer may choose to order onsite with a certain probability. Nevertheless, if remote

customers can cancel their orders upon arrival at the service facility, then they again will not order

onsite. Thus, even when queue-length information is not shared remotely, modeling the channel

choice may only affect the hybrid order-ahead scheme (with or without rejection), but not the

cancellation scheme or the pure order-onsite scheme. In §EC.1.2, we formally characterize the

order-placing equilibrium in these affected schemes and demonstrate the robustness of our insights.

6.3. Heterogeneous Travel Speed of Remote Customers

This extension allows remote customers’ travel speed to be heterogeneous. Let remote customers’

travel speed β be continuously distributed over support [a, b], where 0≤ a < b≤∞. For a remote

customer with travel speed β, her travel time is drawn from an exponential distribution with rate

β. In the hybrid order-ahead scheme, each remote customer chooses whether to order ahead, order

onsite, or not order, based on their own travel speed β. We set up the model in §EC.1.3 and

characterize remote customers’ ordering strategy in Proposition 7.

Proposition 7 (A double-threshold strategy). Under heterogeneous travel speed, in the

hybrid order-ahead scheme without queue-length information shared remotely, there exist two

thresholds β1, β2 with a ≤ β1 ≤ β2 ≤ b such that a remote customer with travel speed β does not

order if β < β1, orders ahead if β1 ≤ β ≤ β2, and orders onsite if β > β2.

Proposition 7 shows that customers adopt a double-threshold ordering strategy in the hybrid

order-ahead scheme. Those with a high β (those who live near or travel fast, e.g., by car) order

onsite because the benefit of ordering ahead (parallelization) for these customers is outweighed

by the benefit of ordering onsite (queue-length information); those with an intermediate β order

ahead because their time savings from ordering ahead (due to parallelization) is significant enough

to prevail over the lack of information; and those with a low β (tho who live afar or travel slowly,

e.g., by foot) do not place orders because they expect too much delay with either ordering mode.

We numerically compare the throughputs of three schemes: (i) pure order-onsite, (ii) hybrid

order-ahead, and (iii) hybrid order-ahead with rejection (with the optimal rejection threshold)

when queue-length information is not shared remotely. We observe from Figure 11 that consistent

with the base model, the hybrid order-head scheme can have lower throughput than the pure-order-

onsite scheme, yet introducing order rejection into the order-ahead scheme restores its throughput

advantage. In fact, we analytically prove this result of throughput dominance in Theorem 10.
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Figure 11 Throughput Comparison Under Heterogeneous Travel Speed of Remote Customers
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Theorem 10. Under heterogeneous travel speed, when queue-length information is not shared

remotely, the hybrid order-ahead-with-rejection scheme (with the rejection threshold optimized) has

higher throughput than the pure order-onsite scheme.

We acknowledge that one limitation of this extension is the omission of the cases where queue-

length information is shared remotely and those that permit order cancellations due to their

intractability. Due to the heterogeneity in remote customers’ travel speed, if information is shared

or cancellation is allowed, then the computation of throughput requires deriving the steady-state

distribution of a high-dimensional Markov chain that tracks the travel speed of every single trav-

eling customer en route to the service facility, which would be best left for future research.

7. Conclusions

A key value proposition of letting customers order ahead is that doing so presumably attracts more

orders and achieves higher throughput than if customers must order onsite. Our paper cautions

that whether ordering ahead delivers this value hinges on the way it is operationalized. Specifically,

a common practice in the field—all orders are final once placed—can generate orders that are

placed and locked in when the queue is already long, burdening the service system and prolonging

congestion-driven delay, which, in turn, deters customers from placing orders. As a result, a hybrid

order-ahead scheme may alarmingly achieve lower throughput than a pure order-onsite scheme.

To overcome this throughput shortfall, we consider a variety of mitigation strategies. The first

one is to let restaurants optimally choose whether to share queue-length information with remote
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customers. We find that the throughput shortfall can persist despite this intervention. The second

strategy is to allow remote customers who order ahead to cancel orders after they arrive at the

service facility. While this strategy is promising in eliminating the throughput shortfall, it triggers

a new problem as allowing cancellation in the hybrid order-ahead scheme reduces throughput when

the market size is small. The third strategy is to reject new remote orders at the outset in the

event of too many outstanding orders. If the rejection threshold can be optimally determined, then

the hybrid order-ahead-with-rejection scheme will outperform both the one without rejection and

the pure order-onsite scheme, but not necessarily the hybrid-order-ahead-with-cancellation scheme.

Finally, we consider an integrated hybrid order-ahead mechanism that allows for both rejection

and cancellation of remote orders and subsumes all the previously considered order-ahead schemes

as special cases. We numerically find that overall, the rejection scheme has the smallest throughput

gap from the integrated mechanism among all the schemes considered.

We conclude by discussing the caveats of our model and future research directions. First, a

practical concern of order rejection or cancellation is the loss of goodwill, which might hurt future

business. Second, our paper focuses on on-demand services (Taylor 2018) in which customers value

instant gratification and prefer to have their requests fulfilled as soon as possible. That is why

our model assumes that customers incur the same unit delay cost regardless of the nature of the

delay (onsite or during travel), consistent with Hassin and Roet-Green (2021). Thus, in such an

on-demand setting, customers have no incentive to postpone their travel because delay is equally

costly regardless of where it occurs. In settings without such a salient on-demand feature, one may

argue that waiting at home is less annoying and thus less costly than waiting at the service facility

and that customers can have an incentive to postpone their travel after placing their order. Such

strategic postponement prolongs total delay and can be left for future research.
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Electronic Companion

Appendix EC.1: More Details about the Extensions in §6

EC.1.1. Food-Quality Degradation

Let t≥ 0 be the time elapsed after an order is complete. If a customer arrives at the service facility and picks up her

order at time t, her reward from the order is V e−d·t, where d > 0 is a parameter that measures the magnitude of quality

degradation. The pure-order-onsite scheme is not affected by d since, by definition, orders will be complete only after

customers arrive. Next, we re-derive the equilibria for various order-ahead schemes. To begin with, local customers

still follow the Naor threshold. For remote customers, the expected utility of ordering given initial queue length

n is Ud(n) = V P(Nn > 0) +E[V e−d(T−X)|T >X]P(Nn = 0) − c
∑(n+1)
i=0

i
µ
· pn(i) − c

β
, where T is a random variable

denoting travel time and X is a random variable denoting the steady-state sojourn time in the order queue. Note

that in computing the expected service reward, quality degradation only arises in the event that the order is ready

for pickup upon arrival at the service facility, i.e., {Nn = 0}, which is equivalent to saying that travel time exceeds

sojourn time, i.e., {T >X}. Since T follows an exponential distribution with rate β, due to its memoryless property,

E[V e−d(T−X)|T >X] = E[V e−dT ] = β
β+d

V . Therefore, Ud(n) =
(

1−σn+1 d
β+d

)
V − c

β

(
σn+1 + (n+1)β

µ

)
.

EC.1.1.1. Hybrid Order-Ahead (1) Queue-length information not shared remotely. Suppose all

remote customers place an order with probability q ∈ [0,1] and local customers follow the Naor-threshold. The steady-

state probability of the number of outstanding orders being i, πui (q), is the same as (2). The unconditional expected

utility for a remote customer who places an order is UA,d(q) =
∑∞
n=0Ud(n)πun(q), which is decreasing in q. Thus,

q ∈ (0,1) is an equilibrium only if UA,d(q) = 0, q = 1 is an equilibrium if UA,d(1) > 0 and q = 0 is an equilibrium

if UA,d(0)< 0. Hence, remote customers’ equilibrium order-placing probability is: qA,d = 0, if Λ≥ λ̄A,d; qA,d = q̂A,d ∈

(0,1), if λA,d < Λ< λ̄A,d; qA,d = 1, if Λ≤ λA,d, where q̂A,d uniquely solves the equation UA,d(q̂A,d) = 0. The resulting

system throughput THu
A,d = µ(1−πu0 (q̂A,d)). (2) Queue-length information shared remotely. Remote customers

follow a threshold joining strategy. The joining threshold of remote customers n̂e ≤ n∗e ≤ ne is uniquely solved by n̂∗e ≡

min{n∈N :Ud(n)< 0}. Accordingly, the steady-state probability of the number of outstanding orders being i is πoi =

ρiπo0 , i= 0,1, · · · , n̂e;πoi = ((1− γ)ρ)i−n̂eρn̂eπo0 , i= n̂e + 1, · · · , ne, where π̂o0 =
(

1−ρn̂e

1−ρ + ρn̂e (1−((1−γ)ρ)ne−n̂e+1)
1−(1−γ)ρ

)−1

.

with ρ≡Λ/µ. The resulting system throughput is THo
A,d = µ(1− π̂o0).

EC.1.1.2. Hybrid Order-Ahead with (Optimal) Rejection (1) Queue-length information not

shared remotely. Suppose that the service provider accepts new remote orders if the number of outstanding orders

is strictly less than threshold N and rejects any new remote orders otherwise. The unconditional expected utility

from ordering is UNR,d(q) =
∑N−1
n=0 Ud(n)πn,R(q), The steady-state probability of the number of outstanding orders

being i is given in (6) and (7). The remote customers’ equilibrium order-placing probability qNR,d is as follows: if

Ud(N − 1)≥ 0, qNR,d = 1; otherwise, qNR,d = 0, if Λ≥ λ̄NR,d; qNR,d = q̂NR,d ∈ (0,1), if λNR,d < Λ< λ̄NR,d; qR,d = 1, if Λ≤ λNR,d,

where q̂NR,d uniquely solves the equation UNR,d(q̂) = 0. The resulting system throughput is THN
R,d = µ[1−πu0,R(qNR,d)].

(2) Queue-length information shared remotely. Suppose that the rejection threshold is N . Thus, a remote

order effectively joins the queue according to a threshold min{N, n̂e}. The steady-state probability of the number of

outstanding orders being i is π̃oi = ρiπ̃o0 , i= 0,1, · · · , x; π̃oi = ((1−γ)ρ)i−xρxπ̃o0 , i= x+1, · · · , ne, where x= min{N, n̂e}

and π̃o0 =
(

1−ρx
1−ρ + ρx(1−((1−γ)ρ)ne−x+1)

1−(1−γ)ρ

)−1

. The resulting system throughput is THo
R,d = µ(1− π̃o0).
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EC.1.1.3. Hybrid Order-Ahead with Cancellation (1) Queue-length information not shared

remotely. If a remote customer places an order when the queue length is n, then her expected util-

ity is given by UC,d(n) = V P(0<NC
n ≤ ne) +E[V e−d(T−X)|T >X]P(NC

n = 0) − cwCd (n) − c
β
, where P(0 <

NC
n ≤ ne) =

{
1− pCn (0) = 1−

∏n
k=0

µk
µk+β

, if n< ne,∑ne
i=1 p

C
n (i) =

∑ne
i=1

β
µi−1+β

∏n
k=i

µk
µk+β

, otherwise,
where µn = µ + (n − ne)

+β. The

expected onsite delay is wC,d(n) ≡ E[W (n)] =
∑(n+1)∧ne
i=0 E[W (n)|Nn = i] · pCn (i) =

∑(n+1)∧ne
i=0

i
µ
· pCn (i) ={

1
β

(
σn+1 + (n+1)β

µ
− 1
)
, if n< ne;

β
µ+β

∑ne
i=1

i
µ

∏n
k=i

µk
µk+β

, otherwise.
Therefore, the expected utility of a remote customer who places an

order is UC,d(n) = ŪC,d(n)1{n<ne} + ŨC,d(n)1{n≥ne}, where 1A is the indicator of event A, and the two

functions ŪC,d(n) and ŨC,d(n) are given by ŪC,d(n) ≡ V
(

1− d
d+β

∏n
k=0

µk
µk+β

)
− c

β

(
σn+1 + (n+1)β

µ

)
, ŨC,d(n) ≡

V β
µ+β

∑ne
j=1

∏n
k=j

µk
µk+β

+ V β
β+d

∏n
k=0

µk
µk+β

− c β
µ+β

∑ne
j=1

j
µ

∏n
k=i

µk
µk+β

− c
β
. Given that all other remote customers

place orders with probability q, the expected utility of a tagged remote customer who places an order is UC,d(q) =∑ne−1
i=0 ŪC,d(i)π

u
i,C(q) +

∑∞
i=ne

ŨC,d(i)π
u
i,C(q) =

∑ne−1
i=0

[
V
(

1− d
d+β

∏i
k=0

µk
µk+β

)
− c

β

(
σi+1 + (i+1)β

µ
− 1
)]
πui,C(q) −

c
β

+
∑∞
i=ne

[
V
(

β
β+d

∏i
k=0

µk
µk+β

+ β
µ+β

∑ne
j=1

∏i
k=j

µk
µk+β

)
− c β

µ+β

∑ne
j=1

j
µ

∏i
k=j

µk
µk+β

]
πui,C(q), where tπui,C(q) is

given by (4). Similar to what we show in the proof of Proposition 4, we can show that UC,d(q) is decreasing in q.

Hence, remote customers’ equilibrium order-placing probability is qC,d =


0, if Λ≥ λ̄C,d,
q̂C,d ∈ (0,1), if λC,d <Λ< λ̄C,d,

1, if Λ≤ λC,d,
where

q̂C,d uniquely solves the equation UC,d(q̂C,d) = 0. The resulting system throughput is THC,d = µ[1−πu0,C(qC,d)].

(2) Queue-length information shared remotely. Customers follow the threshold n̂e ≤ n∗e . The resulting system

throughput is the same as in the case without cancellation.

Figure EC.1 Throughput Comparison with Food Quality Degradation
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Note. µ= 1, V = 2, c= 0.5, γ = 0.7.

EC.1.1.4. Throughput Comparison We replicate the four-way throughput comparison in Figure 9 by

incorporating the effect of food-quality degradation. The results are presented in Figure EC.1. We observe that when

travel is fast, the system throughput of any of three order-ahead schemes is hardly affected by incorporating quality

degradation. When travel is fast, quality degradation rarely occurs because customers are unlikely to arrive at the

service facility after their order is complete. However, when travel is slow, quality degradation is more likely to arise

and quality degradation clearly takes its toll on all three order-ahead schemes when travel is slow. In particular,

when quality degradation becomes more intense, as shown in Figure EC.1-(b)-(a), the hybrid order-ahead scheme

can fall short of the pure order-onsite scheme. This issue can be addressed by strategic idleness as suggested by

Farahani et al. (2022) and geo-location technology that alerts the kitchen when customers are getting close so it does
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not start preparing orders too early. It is worth emphasizing that these supply-side interventions to mitigate quality

degradation cannot address the throughput shortfall of the hybrid order-ahead scheme when travel is fast because

the throughput shortfall arises even in the absence of quality degradation.

EC.1.2. Channel Choice

As argued in 6.2, modeling the channel choice will not affect the pure order-onsite scheme or the hybrid order-

ahead-with-cancellation scheme. It will not affect the hybrid order-ahead scheme (with or without rejection) when

queue-length information is shared remotely. The only cases in which modeling the channel choice will make a

difference are the hybrid order-ahead scheme and that with rejection when queue-length information is not shared

remotely. We rederive the equilibria below for these two cases.

EC.1.2.1. Hybrid Order-Ahead All customers who order onsite follow a threshold strategy ne. We suppose

that remote customers order ahead with probability qA ∈ [0,1] and order onsite with probability qS ∈ [0,1], and do

not order with probability 1− qA− qS , where qA + qS ≤ 1. The corresponding steady-state probability of the number

of outstanding orders being i is πui (qA, qS) =

{
ρiT1π

u
0 (qA, qS), i < ne,

ρi−ne
R1 ρne

T1π
u
0 (qA, qS), i≥ ne,

for ρR1 < 1, and ρT1 = γΛ(qA+qS)+(1−γ)Λ
µ

and ρR1 = γΛqA
µ

, and πu0 (qA, qS) =
(

1−ρne
T1

1−ρT1
+

ρ
ne
T1

1−ρR1

)−1

. The expected utility for a remote customer who orders ahead

is URA (qA, qS) =
∑∞
n=0 Ū(n)πun(qA, qS). The expected utility for a remote customer who orders onsite is URS (qA, qS) =∑ne−1

n=0

(
V − (n+1)c

µ

)
πun(qA, qS) − c

β
. Thus, remote customers’ equilibrium order-placing probability is: (qeA, q

e
S) =

(qRA ,0), if URA (qRA ,0)≥ 0 and URA (qRA ,0)>URS (qRA ,0),

(0, qRS ), if URS (0, qRS )≥ 0 and URS (0, qRS )>URA (0, qRS ),

(qRA1,1− qRA1), if URA (qRA1,1− qRA1) =URS (qRA1,1− qRA1)≥ 0,

(qRA2, q
R
S2), if URA (qRA2, q

R
S2) =URS (qRA2, q

R
S2) = 0.

When qRA ∈ (0,1), it is solved by URA (qRA ,0) = 0; when

qRS ∈ (0,1), it is solved by URS (0, qRS ) = 0. The resulting system throughput is THu = µ[1−πu0 (qeA, q
e
S)].

EC.1.2.2. Hybrid Order-Ahead with (Optimal) Rejection Given rejection threshold N and the order-

placing probabilities (qA, qS) of remote customers, we first give the steady-state probability of the number of outstand-

ing orders being i. If N >ne the steady-state probability of the number of outstanding orders being i is πui,R(qA, qS) ={
ρiT1π

u
0,R(qA, qS), i < ne,

ρi−ne
R1 ρne

T1π
u
0,R(qA, qS), i= ne, · · · ,N,

where πu0,R(qA, qS) =

(
1−ρne

T1
1−ρT1

+
ρ
ne
T1

(1−ρN−ne+1
R1

)

1−ρR1

)−1

. If N ≤ ne, the steady-

state probability of the number of outstanding orders being i is πui,R(qA, qS) =

{
ρiT1π

u
0,R(qA, qS), i <N,

ρi−NL ρNT1π
u
0,R(qA, qS), i=N, · · · , ne,

where πu0,R(q) =

(
1−ρNT1
1−ρT1

+
ρNT1(1−ρne−N+1

L1
)

1−ρL1

)−1

, and ρT1 = γΛ(qA+qS)+(1−γ)Λ
µ

and ρR1 = γΛqA
µ

, and ρL1 =

γΛqS+(1−γ)Λ
µ

. Thus, for a remote customer who places an order ahead, with probability πuN,R(qA, qS), her order will

be rejected (from which she gets zero utility); with probability 1− πuN,R(qA, qS), her order will be accepted (which

implies the queue length at the moment is less than N). Thus, her unconditional expected utility from ordering

ahead is UuR,N (qA, qS) =
∑N−1
n=0 Ū(n)πun,R(qA, qS). For a remote customer who places an onsite order, her uncondi-

tional expected utility from ordering is URS,R(qA, qS) =
∑ne−1
n=0

(
V − (n+1)c

µ

)
πun,R(qA, qS)− c

β
. Thus, remote customers’

equilibrium order-placing probability is: (qeA, q
e
S) =


(qRA ,0), if URA,R(qRA ,0)≥ 0 and URA,R(qRA ,0)>URS,R(qRA ,0),

(0, qRS ), if URS,R(0, qRS )≥ 0 and URS (0, qRS )>URA,R(0, qRS ),

(qRA ,1− qRA), if URA,R(qRA ,1− qRA) =URS,R(qRA ,1− qRA)≥ 0,

(qRA , q
R
S ), if URA,R(qRA , q

R
S ) =URS,R(qRA , q

R
S ) = 0.

When qRA ∈ (0,1), it is solved by URA,R(qRA ,0) = 0; when qRS ∈ (0,1), it is solved by URS,R(0, qRA) = 0. The resulting

system throughput is THu = µ[1−πu0 (qeA, q
e
S)].
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Figure EC.2 Throughput Comparison with Channel Choice
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Note. µ= 1, V = 2, c= 0.5, γ = 0.7.

EC.1.2.3. Throughput Comparison We replicate the four-way throughput comparison in Figure 9 by

incorporating the channel choice. The result is presented in Figure EC.2. We observe that Figure EC.2 is qualitatively

similar to Figure 9, suggesting that the insights from our base model carry over. When travel is slow, incorporating

the channel choice barely affects the equilibrium outcome, as judged by the similarly between Figure EC.2-(a) and

Figure 9-(a). In such a case, ordering ahead has such a substantial advantage that remote customers will not forgo it.

When travel is fast, some remote customers switch to ordering onsite, making the hybrid order-ahead scheme more

similar to the pure-order-onsite scheme, as illustrated by Figure EC.2-(c). Still, we find that providing the order-ahead

option can result in lower throughput, but such shortfall can be addressed through cancellation or rejection.

EC.1.3. Heterogeneous Travel Speed of Remote Customers

Denote the cumulative distribution function of β by F . In the hybrid order-ahead scheme, when queue-length infor-

mation is not shared remotely, we represent remote customers’ equilibrium by (λA, λS), where λA and λS denote the

arrival rates of remote customers who choose to order ahead and order onsite, respectively, By definition, λA +λS ≤

γΛ. Further, the arrival rate of local customers is λL = (1− γ)Λ. Given the triplet λ≡ (λA, λS , λL), let ρ̂T = (λA +

λS + λL)/µ and ρ̂R = λA/µ; for ρ̂R < 1, the corresponding steady-state probability of the number of outstanding

orders being i is: π̂u0 (λ) =
(

1−ρ̂ne
T

1−ρ̂T
+

ρ̂
ne
T

1−ρ̂R

)−1

; π̂ui (λ) = ρ̂iT π̂
u
0 (λ), i < ne; π̂

u
i (λ) = ρ̂i−ne

R ρ̂ne
T π̂u0 (λ), i≥ ne. For a remote

customer with travel speed β, let UA(λ, β) and US(λ, β) be her expected utility of ordering ahead and that of ordering

onsite, respectively. Thus, UA(λ, β) =
∑∞
n=0 Ū(n)π̂un(λ) and US(λ, β) =

∑ne−1
n=0

(
V − (n+1)c

µ

)
π̂un(λ)− c

β
. Therefore,

the equilibrium (λA, λS) solves the following set of fixed-point equations: λA = Λγ
∫ b
a

1{UA(λ,β)>[US(λ,β)]+}dF (β);

λS = Λγ
∫ b
a

1{US(λ,β)>[UA(λ,β)]+}dF (β). The equilibrium for the hybrid order-ahead-with-rejection scheme and that

for the pure order-onsite scheme can be similarly defined.

Appendix EC.2: Proofs

We first give the following two technical lemmas that will be repeatedly used in the subsequent proofs.

Lemma EC.2.1. For a strictly decreasing function f(n) and two probability distributions π1 and π2, supported

over {0,1, · · · , n̄}, where n̄ can possibly be ∞, if π1 and π2 cross each other only once (there exists an n∗ such that

π1
n ≥ π2

n when n≤ n∗ and π1
n <π

2
n when n> n∗), then for two random variables X1 and X2 following π1 and π2, we

have E[f(X1)] =
∑n̄
n=0 f(n)π1

n >
∑n̄
n=0 f(n)π2

n = E[f(X2)].
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Proof of Lemma EC.2.1 We write
∑n̄
n=0 f(n)π1

n −
∑n̄
n=0 f(n)π2

n =
∑n∗

n=0 f(n)(π1
n − π2

n) +
∑n̄
n=n∗+1 f(n)(π1

n −
π2
n)> f(n∗)

(∑n∗

n=0(π1
n−π2

n) +
∑n̄
n=n∗+1(π1

n−π2
n)
)

= 0, where the inequality holds due to the single-crossing prop-

erty, and the last equality holds because both π1 and π2 are well defined probability distributions over {0,1, · · · , n̄},
i.e., 0 = 1− 1 =

∑n̄
n=0(π1

n−π2
n) =

∑n∗

n=0(π1
n−π2

n) +
∑n̄
n=n∗+1(π1

n−π2
n). �

Lemma EC.2.2. Consider a birth-and-death process with birth rate λi−1 and death rate µi for state i and denote

ρi = λi−1/µi. We consider two systems indexed by (1) and (2) with stationary distributions π(1) and π(2), respectively.

If ρ
(1)
i ≥ ρ

(2)
i for all i= 1, · · · , we must have π

(1)
0 ≤ π

(2)
0 , and the queue length of the first system is stochastically larger

than that of the second system, i.e., Q(1) ≥st Q(2).

Proof of Lemma EC.2.2 In a birth-and-death system, π0 = 1
1+ρ1+ρ1ρ2+···+

∏n
i=1 ρi+···

. Therefore, a larger ρi induces

a smaller π0. Hence, π
(1)
0 ≤ π

(2)
0 . The steady-state probability of the number of customers being i in the two systems

are π
(1)
i = ρ

(1)
1 · · ·ρ

(1)
i π

(1)
0 , and π

(2)
i = ρ

(2)
1 · · ·ρ

(2)
i π

(2)
0 . Thus, π

(1)
i /π

(2)
i is increasing in i. Hence, Q(1) ≥st Q(2) in the

likelihood ratio order. �

Proof of Lemma 1 Consider a remote customer with n existing orders upon her arrival. Let T ∼ Exp(β) be

her travel time, and let I.I.D. Exp(µ) r.v.’s S1, · · · , Sn denote the service times for the n outstanding orders, with Si

corresponding to the ith order to be processed in the order queue. Let S0 be the service time of the tagged customer.

We next derive the distribution of Nn, the tagged remote customer’ updated queue position (including herself) when

she arrives at the service facility. Note that Nn ∈ {0,1, · · · , n+1}. We denote the probabilities by pn(0), . . . , pn(n+1).

It is straightforward to see that the updated queue position is i if and only if there are exactly n− i+ 1 service

completions when the tagged customer arrives at the service facility; this corresponds to the event {S1 + · · ·+Sn−i+1 <

T <S1 + · · ·+Sn−i+1 +Sn−i+2}. Let σ≡ µ/(µ+β). By the memoryless property of the exponential distribution, we

have pn(n+ 1)≡ P(Nn = n+ 1) = P(T < S1) = 1− σ;pn(i)≡ P(Nn = i) = P(T > S1)× · · · × P(T > Sn−i+1)× P(T <

Sn−i+2) = (1−σ)σn−i+1, i= 1,2, · · · , n;pn(0)≡ P(Nn = 0) = P(T >S1)× · · ·×P(T >Sn)×P(T >S0) = σn+1. �

Proof of Proposition 1 The proof of Proposition 1 will be based on Lemmas EC.2.1 and EC.2.2. Recall that

when the queue-length information is not shared remotely, the expected utility for a remote customer who places an

order is Uu(q) =
∑∞
n=0 Ū(n)πun(q). The next lemma establishes properties of Uuρ (q).

Lemma EC.2.3 (Property of Uu function). The utility function Uu has the following properties: (i)Uu∞(1) =

−∞, Uu0 (1)> 0, Uu∞(0) = Ū(ne)< 0 and Uu0 (0)> 0; (ii) Uuρ (q) is continuous and strictly decreasing in q for a fixed

ρ; (iii) Uuρ (1) and Uuρ (0) are continuous and strictly decreasing in ρ.

Proof of Lemma EC.2.3 To prove Part (i), first, we have Uu0 (1) =Uu0 (0) = Ū(0)> 0 by Assumption 1. When the

system load goes to infinity and if all remote customers place orders (i.e., q = 1), the birth-death process becomes

unstable so that Uu∞(1) = −∞. When the system load goes to infinity and if no other remote customers join (i.e.,

q = 0), the steady-state probability πune
= 1 because there are infinite local customers keeping the queue size at its

capacity ne. Hence, we have Uu∞(0) = Ū(ne) < 0. For Part (ii), continuity is obvious. To prove monotonicity, we

pick q1 < q2 and consider the two corresponding steady state distributions {πun(q1)} and {πun(q2)}, we have that

πu0 (q1)>πu0 (q2) since the system 2 is busier than system 1 according to Lemma EC.2.2. In addition, there must exist

some integers n′ such that πun′(q1)< πun′(q2). Otherwise, we cannot have
∑∞
n=0 π

u
n(q1) =

∑∞
n=0 π

u
n(q2) = 1. We then

claim that for any n′, if πun′(q1)< πun′(q2), then πun(q1)< πun(q2) for n≥ n′ + 1 due to the geometric structure of π

distribution. Then it is straightforward to see these two distributions satisfy Condition (ii) of Lemma EC.2.1. And

because Ū(n) is decreasing in n, it follows from Lemma EC.2.1 that Uuρ (q1)>Uuρ (q2). Hence, Uuρ (q) is decreasing in

q. The proof of (iii) is similar to that of (ii). �
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Finishing the proof of Proposition 1. From Parts (i) and (iii) of Lemma EC.2.3 and Uu0 (1) = Ū(0)> 0 by Assumption

1, there must be a unique solution ρu
A

to equation Uuρ (1) = 0 for ρ∈ (0,1). Similarly, there must be a unique solution

ρ̄uA to equation Uuρ (0) = 0. Denote λuA = ρu
A
µ and λ̄uA = ρ̄uAµ. By Lemma EC.2.3, Uu(1) > 0 when Λ < λuA, which

implies that quA = 1. On the other hand, when Λ≥ λ̄uA, quA = 0. Otherwise, quA must satisfy Uu(q) = 0. �

Proof of Theorem 1 We first consider the small β case. When β = β0 ≡ c/(V − c/µ), the cost of travel and

undergoing a single service time becomes too high so no remote customer will join in the order-onsite model. Hence,

the order-onsite model reduces to a standard M/M/1/ne model with arrival rate (1−γ)Λ and service rate µ. On the

other hand, the parallelization effect achieves some waiting time reduction so some remote customers may still join

the system which makes the order-ahead model stochastically busier than the order-onsite model (to see this we again

invoke Lemma EC.2.2). Hence, the order-ahead model yields higher throughput than the order-onsite model. We next

consider the large β case. We define ∆λ≡ λuS− λ̄
u
A, where λuS is defined in the order-onsite model and λ̄uA is defined in

(3). Our strategy is to study the asymptotic behavior of λuS and λ̄uA when β is sufficiently large. We will show that, when

β grows large, λuS increases without bound whereas λ̄uA does not (it approaches a finite number). Then, we will have an

interval [λ̄uA, λ
u
S ] such that quA(Λ) = 0 and quS(Λ) = 1 for all Λ∈ [λ̄uA, λ

u
S ], as long as β is sufficiently large. This result will

ensure that the order-onsite Continuous Time Markov Chain (CTMC) is stochastically busier than the order-ahead

CTMC when Λ∈ [λ̄uA, λ
u
S ]. To see this, note that the two models have an equal death rate but the former has a strictly

larger birth rate than the latter. Hence, invoking Lemma EC.2.2, we must have πS0 (Λ)< πA0 (Λ), so that the order-

onsite model yields strictly higher throughput for all Λ∈ [λ̄uA, λ
u
S ]. For λ̄uA, we let β→∞, so that a remote customer’s

utility in the order-ahead model with q= 0 is Uu(0) =
∑ne
i=0

(
V − (i+1)c

µ
− c

β
σi+1

)
πui (0)→

∑ne
i=0

(
V − (i+1)c

µ

)
πui (0) =∑ne−1

i=0

(
V − (i+ 1)c

µ

)
︸ ︷︷ ︸

≥0

πui (0) +

(
V − (ne + 1)c

µ

)
︸ ︷︷ ︸

<0

πune
(0), where πui (0) =

ρiL(1−ρL)

1−ρne+1
L

, i = 0,1, . . . , ne, and ρL = (1 −

γ)Λ/µ. As Λ increases, πune
(0) will have a bigger weight so the negative term in Uu(0) will dominate the positive

terms, so that Uu(0) will become negative when Λ> Λ̄ for some finite Λ̄. Recall that λ̄uA is the root of Uu(0) = 0, λ̄uA

must be a finite number as β grows large. On the other hand, recall that the utility function of remote customers

in the order-onsite model is UuS (q) =
∑ne−1
i=0

(
V − (i+1)c

µ

)
πui,S(q)− c

β
. When β is sufficiently large, UuS (q)> 0 for any

q ∈ [0,1] (because V − (i+ 1)c/µ > 0 for all i= 0, . . . , ne− 1). So we must have λuS =∞ and ∆λ=−∞. Hence, ∆λ is

sufficiently negative when β is large. Because ∆λ is continuous in β, there exists a β̄ such that ∆λ< 0 for all β > β̄.

By the definition of λuS and λ̄uA, we now have quA(Λ) = 0 and quS(Λ) = 1 for all Λ ∈ [λ̄uA, λ
u
S ], as long as β > β̄. Thus,

Lemma EC.2.2 implies that the order-ahead scheme has lower throughput than the order-onsite model. �

Proof of Proposition 2 Recall that the expected utility of a remote customer who sees a queue length n and

places an order is Ū(n) = V − c
β

(
σn+1 + (n+1)β

µ

)
. We leverage the following properties of Ū(n): (i) limn→∞ Ū(n) =

−∞; (ii) Ū(n) is strictly decreasing in n since Ū(n)− Ū(n− 1) = c(σn+1− 1)/µ< 0. Since Ū(0)> 0 (Assumption 1),

the equilibrium strategy must be of a threshold type, given by n∗e ≡min{n≥ 0 : Ū(n)< 0}, and the threshold n∗e is

at most ne. Since Ū(ne) = V − c
β

(
σne+1 + (ne+1)β

µ

)
= V − c(ne+1)

µ
− c

β
σne+1 < 0, and Ū(n) is decreasing in n, the

joining threshold n∗e must be attained in {0,1, . . . , ne}, i.e., n∗e = min{n≥ 0 : Ū(n)< 0}. When bµV
c
c= µV

c
, for any

finite β, Ū(ne− 1) =− c
β
σne < 0, so that the joining threshold n∗e ≤ ne− 1<ne. Otherwise, from Equation (1), Ū(n)

decreases in n and increases in β. Note that n∗e = ne if and only if Ū(ne − 1) = V − cne
µ
− c

β
σne ≥ 0, which requires

that β ≥ β, where β is given by V − cne
µ
− c

β
σne = 0. �

Proof of Proposition 3 Given any Λ, there exists a unique order-placing probability q̃ ∈ (0,1), which induces

the same throughput regardless of whether queue-length information is shared directly or not remotely, i.e.,
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THu
A(q̃) = THo

A. It holds since THu
A(0) < THo

A < THu
A(1) by Lemma EC.2.3 and the throughput when queue-

length information is not shared remotely increases in the order-placing probability q given the market size. Recall

from Proposition 1 that the equilibrium order-placing probability of remote customers under the hybrid order-

ahead scheme decreases in the market size, and quA = 1 when the market size Λ < λuA. Hence, q̃ < quA = 1 when

Λ < λuA. Pick two market sizes Λ1,Λ2 (λuA < Λ1 < Λ2), there exist two order-placing probabilities q̃1(Λ1), q̃2(Λ2)

that satisfy THu
A(q̃1(Λ1)) = THo

A(Λ1) and THu
A(q̃2(Λ2)) = THo

A(Λ2). We next prove Uu(q̃1(Λ1)) − Uu(q̃2(Λ2)) =∑∞
i=0 Ū(n)(πui (q̃1(Λ1)) − πui (q̃2(Λ2)) > 0. Since THu

A(q̃1(Λ1)) = THo
A(Λ1) and THu

A(q̃2(Λ2)) = THo
A(Λ2) , we also

have πu0 (q̃1(Λ1)) = πo0(Λ1)> πo0(Λ2) = πu0 (q̃2(Λ2)), and there must exists some ñ such that πuñ(q̃1(Λ1))< πuñ(q̃2(Λ2)).

Otherwise, we cannot have
∑∞
i=0 π

u
i (q̃1(Λ1)) =

∑∞
i=0 π

u
i (q̃2(Λ2)) = 1. Recall that πu0 (q̃1) =

(
1−ρne

T1
1−ρT1

+
ρ
ne
T1

1−ρR1

)−1

and

πu0 (q̃2) =
(

1−ρne
T2

1−ρT2
+

ρ
ne
T2

1−ρR2

)−1

, where ρT1 = γΛ1q̃1+(1−γ)Λ1
µ

, ρT2 = γΛ2q̃2+(1−γ)Λ2
µ

, ρR1 = γΛ1q̃1
µ

, ρR2 = γΛ2q̃2
µ

. First, we

aim to show that ρT1 < ρT2. To see this, assume ρT1 ≥ ρT2, then because Λ1 <Λ2, we must have ρR1 > ρR2. The geo-

metric structure of the steady-state probability in (2), along with πu0 (q̃1)>πu0 (q̃2) implies that πui (q̃1)>πui (q̃2) for all

i. Hence, a contradiction. Next, we aim to show that ρR1 < ρR2. To see this, assume that ρR1 ≥ ρR2 which is equivalent

to Λ1q̃1 ≥Λ2q̃2. Consider the special case γ = 1, where the steady-state distribution follows an exact geometric struc-

ture with ρT1 = ρR1 ≥ ρT2 = ρR2. Because πu0 (q̃1) > πu0 (q̃2), similarly, we have a contradiction. Hence, we conclude

that ρT1 < ρT2 as well as ρR1 < ρR2. Note that the two probability distributions have the same structure (both are

geometric-like, with the former having a bigger probability mass at 0 than the latter. Hence, it is straightforward to

see that there must exists some ñ such that πun(q1(Λ1))> (≤)πun(q2(Λ2)) when n< ñ (n≥ ñ). We shall show that the

probability distribution {πun(q̃2)}∞n=0 stochastically dominates the probability distribution {πun(q̃1)}∞n=0. Hence, the

distribution of {πun(q̃)}∞n=0 satisfies the condition (ii) of technical Lemma EC.2.1 and Uu(q̃1(Λ1))−Uu(q̃2(Λ2))> 0. is

proved. Further, the utility function of remote customers under equilibrium is Uu(Λ) = 0 when λuA ≤Λ< λ̄uA. Then,

Uu(q̃(Λ))−Uu(quA) is decreasing in Λ, and this indicates q̃− quA increases in Λ ∈ (λuA, λ̄
u
A). Since we have know that

the equilibrium order-placing probability quA = 0< q̃ ∈ (0,1) when the market size Λ≥ λ̄uA and quA = 1> q̃ ∈ (0,1) when

the market size Λ≤ λ̄uA, this reminds us that there exists a unique market size Λ̃ ∈ (λuA, λ̄
u
A) that enables quA > (≤)q̃

when Λ< (≥)Λ̃. Therefore, the throughput under two information provision policies are equal when the market size

Λ = Λ̃, and when Λ< Λ̃, THu
A(quA)>THu

A(q̃) = THo
A; when Λ> Λ̃, THu

A(quA)<THu
A(q̃) = THo

A. �

Proof of Theorem 2 To compare the throughput of the two models under optimal information, we first consider

the order-onsite model. Recall that when the market size Λ≤ λuS , the equilibrium order-placing probability of remote

customers is quS = 1 of the order-onsite model. We then focus on the specific market size Λ = λuS . In this case,

TH∗S = THu
S by using the result in technical Lemma EC.2.2. We compare the throughput under optimal information

of the two models by considering two cases: First, when TH∗A = THo
A, the order-onsite model outperforms the order-

ahead model by achieving a higher throughput (THu
S >TH

∗
A = THo

A) by using the result in technical Lemma EC.2.2.

Otherwise, when the maximum throughput of the order-ahead model is TH∗A = THu
A, the equilibrium order-placing

probability quS = 1 while quA is solved by Proposition 1. The rest of the proof is similar to the last part of the proof of

Theorem 1, where we showed that for a sufficiently large β, we must have THu
S >TH

u
A when Λ = λuS . �

Proof of Lemma 2 Consider an arriving customer with N outstanding orders ahead of hers. (i) If N <ne, her

expected utility if she keeps on waiting is no less than V − c(N + 1)/µ≥ 0. This lower bound V − c(N + 1)/µ would

be attained if no customers ahead of her were to cancel their order. Since even the lower bound is nonnegative,

any customer seeing N < ne keeps on waiting. (ii) If N ≥ ne, the arriving customer knows (based on the preceding

argument) that the first ne outstanding orders will not be canceled. Thus, her expected utility if she keeps on waiting

is no greater than V − c(ne + 1)/µ < 0. This upper bound V − c(ne + 1)/µ would be attained if all customers ahead
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of her beyond the first ne were to cancel their order. Since even the upper bound is negative, any customer seeing

N ≥ ne abandons and cancels her order. �

Proof of Lemma 3 Consider a tagged remote customer who observes n existing orders upon her arrival. Let

T ∼ Exp(β) denote her travel time, and S0 ∼ Exp(µ) denote her service time. Let r.v.’s Y1, . . . , Yn denote inter-

departure time of the order for the n outstanding orders (excluding the tagged customer), either by service completion

or by order cancellation, with Yi corresponding to the ith order in the order queue. The corresponding departure rate

is µi = µ+ (i− ne)+β, i= 0,1, · · · . We next derive the distribution for NC
n , the tagged remote customer’ updated

queue position (including herself) when she arrives at the service facility. Note that NC
n ∈ {0,1, · · · , n+1}. We denote

the probabilities by pCn (0), . . . , pCn (n+ 1). It is straightforward to see that the updated queue position is i if and only

if there are exactly n− i+ 1 orders removed (either for service completion or cancellation) from the order queue

when the tagged customer arrives at the service facility; this corresponds to the event {Y1 + · · · + Yn−i+1 < T <

Y1 + · · ·+Yn−i+1 +Yn−i+2}. (i) If n> ne, the probability distribution of NC
n is given by pCn (n+ 1)≡ P(NC

n = n+ 1) =

P(T < Yn+1) = β
µn+β

;pCn (i)≡ P(NC
n = i) = P(T > Yn+1)× · · · × P(T > Yi+1)× P(T < Yi) = β

µi−1+β

∏n
k=i

µk
µk+β

,1≤ i≤
n;pCn (0)≡ P(NC

n = 0) = P(T > Yn+1)× · · ·×P(T > Y1)×P(T >S0) =
∏n
k=0

µk
µk+β

; (ii) If n≤ ne, the departure rate of

outstanding orders is µn = µ and then NC
n has the same distribution as Nn given by Lemma 1. �

Proof of Proposition 4 First, we characterize remote customers’ expected utility function. Consider a

tagged remote customer who observes n outstanding orders upon experiencing a need and places an order.

The probability she will continue to wait upon arriving onsite is ϑC(n) = P(NC
n ≤ (n + 1) ∧ ne) ={

1, if n< ne∑ne
i=0 p

C
n (i) =

∏n
k=0

µk
µk+β

+ β
µ+β

∑ne
i=1

∏n
k=i

µk
µk+β

, otherwise
where the probabilities pCn (i) are given in Lemma

3, and x ∧ y ≡ min{x, y}. Hence, the mean remaining onsite waiting time if joining is wC(n) ≡
∑(n+1)∧ne
i=0

i
µ
·

pCn (i) =

{
1
β

(
σn+1 + (n+1)β

µ
− 1
)
, if n< ne;

β
µ+β

∑ne
i=1

i
µ

∏n
k=i

µk
µk+β

, otherwise.
Let UC(n) denote the expected utility of a remote cus-

tomer who observes a queue length n and places an order to join the queue at Stage 1. Thus, UC(n) =

V ϑC(n) − cwC(n) − c
β

= ŪC(n)1{n<ne} + ŨC(n)1{n≥ne}, where the indicator function 1A is equal to 1 if

condition A holds and 0 otherwise, and the two functions ŪC(n) and ŨC(n) are given by ŪC(n) ≡ V −
c
β

(
σn+1 + (n+1)β

µ
− 1
)
− c

β
= Ū(n), ŨC(n) ≡ V

(∏n
k=0

µk
µk+β

+ β
µ+β

∑ne
j=1

∏n
k=j

µk
µk+β

)
− c β

µ+β

∑ne
j=1

j
µ

∏n
k=j

µk
µk+β

−
c
β
. Therefore, when the queue-length information is not shared remotely in the cancellation model, given that

all other remote customers place orders with probability q, the expected utility for a tagged customer to place

an order is UuC(q) =
∑ne−1
i=0 ŪC(i)πui,C(q) +

∑∞
i=ne

ŨC(i)πui,C(q) =
∑ne−1
i=0

(
V − c

β

(
σi+1 + (i+1)β

µ
− 1
))

πui,C(q)− c
β

+∑∞
i=ne

[
V
(∏i

k=0
µk

µk+β
+ β

µ+β

∑ne
j=1

∏i
k=j

µk
µk+β

)
− c β

µ+β

∑ne
j=1

j
µ

∏i
k=j

µk
µk+β

]
πui,C(q), where the steady-state proba-

bilities are given by πui,C(q) =

(
1−ρne+1

T
1−ρT

+ ρne
T

∑∞
j=1

∏j
k=1

γΛq
µ+kβ

)−1

ρ
(i∧ne)
T

∏(i−ne)+

k=1
γΛq
µ+kβ

, i = 0,1, · · · , and ρT =

[γΛq+(1−γ)Λ]/µ. To show UC(n) is strictly decreasing in n, we have ŪC(n)− ŪC(n−1) = c
µ

(
σn+1− 1

)
< 0, ŨC(n)−

ŨC(n− 1) =
(

µn
µn+β

− 1
)[
V
∏n−1
k=0

µk
µk+β

+ β
µ+β

∑ne
i=1

(
V − ic

µ

)∏n−1
k=i

µk
µk+β

]
< 0. In addition, ŨC(ne)− ŪC(ne − 1) =

(σ− 1)
(
V − nec

µ

)
+ c

µ+β
(σne − 1)< 0, which implies that UC(n) is decreasing in n. To give customers’ equilibrium

joining strategy, we first give some properties of UuC(q) in (5) in the following Lemma. Let UuC,ρ(q) denote the expected

utility of a joining remote customer when Λ/µ= ρ and other remote customers join with probability q.

Lemma EC.2.4 (Property of UuC function). The utility function UuC has the following prop-

erties: (i) UuC,∞(1) = UuC,∞(0) = −c/β < 0 and UuC,0(1) = UuC,0(0) = Ū(0) > 0. (ii) UuC(q)

is continuous and strictly decreasing in q. (iii) UuC(1) is continuous and strictly decreas-

ing in ρ, where UuC(1) is given by UuC(1) =
∑ne−1
i=0

(
V − c

β

(
σi+1 + (i+1)β

µ
− 1
))

πui,C(1) − c
β

+∑∞
i=ne

[
V
(∏i

k=0
µk

µk+β
+ β

µ+β

∑ne
j=1

∏i
k=j

µk
µk+β

)
− c β

µ+β

∑ne
j=1

j
µ

∏i
k=j

µk
µk+β

]
πui,C(1).
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The proof of Lemma EC.2.4 is similar to that of Lemma EC.2.3 and thus omitted due to the page limit.

Finishing the proof of Proposition 4. Similar to the proof of Proposition 1, and by the property of the UuC function,

there must be a unique solution ρu
C

to equation UuC(1) = 0. Similarly, there must be a unique solution ρ̄uC to equation

UuC(0) = 0. Denoting λuC = µρu
C

and λ̄uC = µρ̄uC completes the proof. �

Proof of Theorem 3 The proof proceeds in two steps. Step 1: We first prove THu
C ≥ THu

S . We compare the

system throughput of the order-ahead-with-cancellation (OAC) model and the order-onsite model in the following

cases specified by the equilibrium order-placing probabilities of remote customers (quC and quS): Case 1: quC ≥ quS . This

case includes three subcases: (a) quC = 1, quS ∈ [0,1], (b) quS = quC = 0, and (c) quC ∈ (0,1), quS = 0. Note that πu0,C(q) =(
1−ρne+1

T
1−ρT

+ ρne
T

∑∞
j=1

∏j
k=1

γΛq
µ+kβ

)−1

≤
(

1−ρne+1
T

1−ρT

)−1

= πu0,S(q). Therefore, πu0,C(quC) ≤ πu0,C(quS) ≤ πu0,S(quS), which

implies that THu
C ≥ THu

S . Case 2: quC < q
u
S . In this case, the equilibrium order-placing probability of remote customers

must be strictly positive with quS > 0 and we must have quC < 1. When ne = 1, in the order-onsite model, the remote

customer’s expected utility from traveling is πu0,S(quS)(V − c/µ)− c/β ≥ 0, where πu0,S is the idle probability. We then

consider the following two subcases specified by the value of quC . Case 2a: We first consider the case quC ∈ (0,1). In

the OAC model, the remote customer’s expected utility from ordering is p0V + p1(V − c/µ)− c/β = 0, where p0 is

the probability that the order is ready when the customer arrives at the service facility, p1 is the probability that the

order is not ready when the customer arrives at the service facility, and 1− p0 − p1 is the cancellation probability.

Let πu0,C be the idle probability in the OAC model. Thus, p0 + p1 > πu0,C , because if the system is idle when a

customer places the order, the customer will surely not cancel the order. Moreover, we have πu0,S(V − c/µ)− c/β︸ ︷︷ ︸
≥0

≥

p0V + p1(V − c/µ)− c/β︸ ︷︷ ︸
=0

> (p0 +p1)(V −c/µ)−c/β, which implies πu0,S > p0 +p1. Hence πu0,S >π
u
0,C⇐⇒ µ(1−πu0,C)>

µ(1− πu0,S). Therefore, the OAC model yields higher throughput than the order-onsite model. Case 2b: We next

consider the case quC = 0. First, we must have p0V +p1(V −c/µ)−c/β ≤ 0. The OAC system with quC = 0 is equivalent

to an M/M/1/1 queue. Thus, the steady-state probability that the system has exactly one outstanding order is

πu1,C = Λ(1−γ)
µ+Λ(1−γ)

, and the steady-state probability that the system is empty is πu0,C = 1 − πu1,C . The cancellation

probability is (1− p0− p1), i.e., the probability of seeing exactly two outstanding orders (including one’s own order)

ahead after arriving onsite. Hence, 1 − p0 − p1 = πu1,C
β

β+µ
< πu1,C . Thus, p0 + p1 > πu0,C . Note that in the order-

onsite system, πu0,S(q) is decreasing in q and πu0,S(0) = πu0,C(0). Because quS > 0, we have πu0,C(0) > πu0,S(quS). Thus,

p0 + p1 > πu0,C(0) > πu0,S(quS), which implies that p0V + p1(V − c/µ)− c/β > πu0,S(quS)(V − c/µ)− c/β ≥ 0. That is,

p0V + p1(V − c/µ)− c/β > 0. However, this contradicts p0V + p1(V − c/µ)− c/β ≤ 0. Therefore, the case quC = 0 and

quS > 0 does not exist. In summary, when ne = 1, THu
C ≥ THu

S .

Step 2: We next prove THo
C ≥ THo

S for ne = 1. Note that THo
C = THo

A. Hence, we need to prove THo
A ≥ THo

S for

ne = 1. This is done later in Theorem EC.1. �

To facilitate our proofs, we introduce an order-ahead model variant when queue information is shared with remote

customers. In this variant, remote customers can cancel their orders upon arrival at the store, based on the updated

queue position of their order at that time. We refer to this variant as “order-ahead with onsite balking” (OAOB).

Lemma EC.2.5. In the OAOB model, a remote customer orders if and only if the queue length n< n∗e.

Proof of Lemma EC.2.5 Consider a tagger remote customer who observes n orders upon arriving, NOB
n denotes

her updated queue position (including herself) upon arrival at the service facility if she places an order. If she

places an order and travels to the service facility, she will keep the order with probability ϑ(n) ≡ P(NOB
n ≤ ne).

Because NOB
n ≤ n+ 1, we have ϑ(n) = P(NOB

n ≤ (n+ 1)∧ne) =

{
1, if n< ne,∑ne
i=0 pn(i) = σn−ne+1, otherwise,

where prob-

abilities pn(i) are given in Lemma 1, and x ∧ y ≡ min{x, y}. Her expected onsite waiting time, w(n), is w(n) =
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∑(n+1)∧ne
i=0

i
µ
·pn(i) =


1
β

(
σn+1 + (n+1)β

µ
− 1
)
, if n< ne,

1
β

(
σn+1−

(
1− neβ

µ

)
σn−ne+1

)
, otherwise.

Let UOB(n) denote her expected utility. Then

UOB(n) = V ϑ(n)− cw(n)− c
β

= Ū(n)1{n<ne} + Ũ(n)1{n≥ne}, where Ū(n) is given by (1) and Ũ(n) = V σn−ne+1 −
c
β

(
σn+1−

(
1− neβ

µ

)
σn−ne+1 + 1

)
. It remains to show that UOB(n)< 0 for all n≥ n∗e . If n∗e <ne, U

OB(n∗e) = Ū(n∗e)<

0; otherwise, UOB(n∗e) = Ũ(ne) and Ũ(ne) = σ
(
V − nec

µ

)
+ c

β
(σ (1−σne)− 1) = σ

[(
V − c(ne+1)

µ

)
− c

β
σne

]
< 0.

We then conclude that UOB(n∗e) < 0. To show the monotonicity of UOB(n) in n, we establish the monotonic-

ity for both Ū(n) and Ũ(n), namely, Ū(n) − Ū(n − 1) = c
µ

(
σn+1− 1

)
< 0 and Ũ(n) − Ũ(n − 1) = −σn−ne(1 −

σ)
(
V − nec

µ
+ (1−σne )c

β

)
< 0. Further, Ũ(ne) − Ū(ne − 1) = −(1 − σ)

(
V − nec

µ
+ (1−σne )c

β

)
< 0. Hence, UOB(n) is

decreasing in n. We then have UOB(n)< 0 for all n≥ n∗e . �

Theorem EC.1. When queue-length information is shared remotely and ne = 1, the hybrid order-ahead scheme

has higher throughput than the pure order-onsite scheme, i.e., THo
A ≥ THo

S.

Proof of Theorem EC.1 In the pure order-onsite system, given that remote customers observe n≤ ne orders in

the onsite queue, we will show that the maximum onsite queue length under which a remote customer is willing to

travel with a positive probability must be less than n∗e . We draw on the results of the auxiliary OAOB model given in

Lemma EC.2.5. Consider a tagged remote customer who observes n outstanding orders upon arrival, let NS
n denote

her updated queue position (including herself) if she places an onsite order upon arrival at the service facility. We then

have US(n) = E
[
V − cNS

n
µ

]+
− c

β
≤ E

[
V − cNOB

n
µ

]+
− c

β
= UOB(n), where NOB

n and UOB(n) are the updated queue

position and expected utility function defined in the OAOB model, and the inequality holds because NS
n ≥st NOB

n .

Because remote customers in the OAOB model will not place an order when n≥ n∗e (as shown in Lemma EC.2.5),

neither will the aforementioned tagged customer in the present order-onsite model when n≥ n∗e .
Now consider the case ne = 1. Since we have proved n∗e ≤ ne in Proposition 2. Also, we have that n∗e ≥ 1 according to

Assumption 1. Hence, n∗e = 1 in this case. The throughput in the hybrid order-ahead system is THo
A = Λµ/(Λ+µ). We

consider the following two cases for the pure order-onsite system: (1) No remote customers travel in the order-onsite

system. Then clearly, the order-ahead throughput is higher. (2) Remote customers in the order-onsite system travel

with a positive probability p > 0 if and only if they see an empty onsite queue. Let λL = Λ(1−γ) be the arrival rate of

local customers and λR = Λγp be the travel rate of remote customers, and λL +λR ≤Λ. Let πk,i be the steady-state

probability of state (k, i), where k ∈ {0,1} is the number of customers in the onsite queue and i ∈ {0,1, ...} is the

number of traveling customers. The balance equations are

(iβ+µ)π1,i = λLπ0,i + (i+ 1)βπ0,i+1 + (i+ 1)βπ1,i+1, i= 0,1, ... (EC.1)

(λR +λL + iβ)π0,i = µπ1,i +λRπ0,i−1, i= 1,2, ... (EC.2)

(λR +λL)π0,0 = µπ1,0. (EC.3)

We prove the following: λRπ0,i = (i+1)β(π0,i+1 +π1,i+1), i= 0,1, ... We first show that it holds for i= 0. Equation

(EC.1) gives µπ1,0 = λLπ0,i+βπ0,1 +βπ1,1. Combining this with (EC.3) gives (λR+λL)π0,0 = λLπ0,i+βπ0,1 +βπ1,1.

Hence λRπ0,0 = β(π0,1 +π1,1). Next, we prove that λRπ0,i = (i+ 1)β(π0,i+1 +π1,i+1), i= 0,1, ... holds for i≥ 1.

Equation (EC.1) gives µπ1,i − λLπ0,i = (i+ 1)β(π0,i+1 + π1,i+1)− iβπ1,i for i≥ 0. Equation (EC.2) gives µπ1,i −
λLπ0,i = (λR+iβ)π0,i−λRπ0,i−1 for i≥ 1. Hence, for i≥ 1, (i+1)β(π0,i+1 +π1,i+1)−iβπ1,i = (λR+iβ)π0,i−λRπ0,i−1,

(i + 1)β(π0,i+1 + π1,i+1) − iβ(π1,i + π0,i) = λR(π0,i − π0,i−1),
∑j
i=1 [(i+ 1)β(π0,i+1 +π1,i+1)− iβ(π1,i +π0,i)] =∑j

i=1 λR(π0,i − π0,i−1), (j + 1)β(π0,j+1 + π1,j+1)− β(π1,1 + π0,1) = λR(π0,j − π0,0). Since we have proven λRπ0,0 =

β(π0,1 + π1,1), it follows that λRπ0,i = (i+ 1)β(π0,i+1 + π1,i+1) for i ≥ 0. Hence, iβπ0,i ≤ λRπ0,i−1 for i ≥ 1. Com-

bining this inequality with (EC.2) shows that (λR + λL)π0,i ≥ µπ1,i. Thus, µ
∑∞
i=0 π1,i ≤ (λL + λR)

∑∞
i=0 π0,i. Since∑∞

i=0 π1,i +
∑∞
i=0 π0,i = 1, the throughput THo

S = µ
∑∞
i=0 π1,i ≤ µ(λL + λR)/(λL + λR + µ). Since λR + λL ≤ Λ and

THo
A = Λµ/(Λ +µ), it follows that THo

S ≤ THo
A. �
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Proof of Theorem 4 When we compare the order-ahead-with-cancellation (OAC) model and the plain order-

ahead model, we note that given any fixed q, the birth rates of the two models are equal and the death rate of

the OAC model is higher (µi > µ when i > ne). Hence, invoking Lemma EC.2.2 gives πu0,C(q) > πu0 (q) and then

πui,C(q) = ρiTπ
u
0,C(q) > πui (q) = ρiTπ

u
0 (q) for i = 0,1, · · · , ne. There must exist some n′ > ne such that πun′,C(q) <

πun′(q). Otherwise, we cannot have
∑∞
n=0 π

u
n,C(q) =

∑∞
n=0 π

u
n(q) = 1. We then claim that for any n̂≥ ne, if πun̂,C(q)>

πun̂(q) and πun̂+1,C(q) ≤ πun̂+1(q), then πun,C(q) < πun(q) for all n > n̂+ 1. To show this claim, note that πun̂+1,C(q) =

πun̂,C(q) γΛq
µ+(n̂−ne)β

, πun̂+1(q) = πun̂(q) γΛq
µ

. Hence, γΛq
µ+(n̂−ne)β

< γΛq
µ

. This implies γΛq
µ+(n−ne)β

< γΛq
µ

for any n ≥ n̂+ 1,

which further implies πun,C(q)<πun(q) for n> n̂+ 1. And this satisfies Part (ii) of Lemma EC.2.1, where πC and πA

cross each other only once: there exists an n̂ such that πun,C ≥ πun when n≤ n̂ and πun,C <π
u
n when n> n̂. In addition,

ŪC(n) = Ū(n), and ŨC(n)> Ū(n) and thus UC(n)≥ Ū(n) for all n. Both Ū(n) and UC(n) are decreasing in n. Hence,

UuC(q) =
∑∞
n=0UC(n)πun,C(q) ≥

∑∞
n=0 Ū(n)πun,C(q) >

∑∞
n=0 Ū(n)πun(q) = Uu(q), and the second inequality holds by

Lemma EC.2.1. The above ranking of the utility functions implies the ranking of the solutions for UuC(q) = 0 and

Uu(q) due to the properties established for the two utility functions in Lemmas EC.2.3 and EC.2.4. That is, λuA <λ
u
C

and λ̄uA < λ̄
u
C , hence the equilibrium joining probabilities exhibit quA ≤ quC . Note that in the plain order-ahead model,

quA = 1 for Λ ≤ λuA. In the OAC model, quC = 1 for Λ ≤ λuC . The birth-rate of the two systems are equal while the

death-rate in the OAC model is larger, which implies (based on Lemma EC.2.2) that the plain order-ahead system is

busier, and thus THu
A >TH

u
C for Λ<min{λuA, λ

u
C}= λuA. It remains to show that for sufficiently small Λ, TH∗A = THu

A

(which has already been proved in Proposition 3) and TH∗C = THu
C , which can be similarly proved. �

Proof of Proposition 5 The expected utility of placing a remote order in the order-ahead-with-rejection (OAR)

model is UuR,N (q) =
∑N−1
n=0 Ū(n)πun,R(q). If Ū(N − 1)≥ 0, because Ū(n) decreases in n, we have UuR,N (q)≥ 0 for all

q ∈ [0,1], so that the equilibrium order-placing probability is quR,N = 1. Next, we consider the case Ū(N−1)< 0. Define

ŨuR,N (q) ≡ Uu
R,N (q)∑N−1

j=0 πu
j,R

(q)
=
∑N−1
n=0 Ū(n)

πu
n,R(q)∑N−1

j=0 πu
j,R

(q)
≡
∑N−1
n=0 Ū(n)fun,R(q). We first consider q = 1 (the case q = 0 is

similar). To establish that there exists a unique ρ > 0 such that UuR,N (q) = 0, it suffices to show that there exists a

unique ρ > 0 such that ŨuR,N (q) = 0 because the latter is the former scaled by a positive term
∑N−1
j=0 πuj,R.

Lemma EC.2.6 (Property of ŨuR,N function). The function ŨuR,N exhibits the following properties: (i) ŨuR,N (q)

is continuous and strictly decreasing in q for a fixed ρ. (ii) ŨuR,N (1) and ŨuR,N (0) are continuous and strictly decreasing

in ρ. (iii) When ρ= 0, ŨuR,N (0) = ŨuR,N (1) = Ū(0)> 0; when ρ→∞, ŨuR,N (0)< 0 and ŨuR,N (1)< 0.

Proof of Lemma EC.2.6 To prove Part (i), we consider two cases: (1) If N > ne. Define f̄ui,R(ρ) ≡ fui,R(q) =
ρiT∑ne−1

j=0 ρi
T

+
∑N−1

j=ne
ρ
i−ne
R

ρ
ne
T

, if i < ne,

ρ
i−ne
R

ρ
ne
T∑ne−1

j=0 ρ
j
T

+
∑N−1

j=ne
ρ
j−ne
R

ρ
ne
T

, if i= ne, · · · ,N − 1,
where ρR = γρq and ρT = γρq + (1− γ)ρ. For two traffic inten-

sities ρ1 < ρ2, we have f̄u0,R(ρ2) < f̄u0,R(ρ1). We find that f̄ui,R(ρ2)/f̄ui,R(ρ1) increases in i since γρ1q < γρ2q and

γρ1q + (1− γ)ρ1 < γρ2q + (1 − γ)ρ2. This satisfies condition (ii) of Lemma EC.2.1. Because Ū(n) decreases in n,

we conclude that ŨuR,N (q) decreases in ρ. Next, when the traffic intensity ρ goes to infinity, it is evident that

limρ→∞ f̄
u
N−1,R(ρ) = 1 when q ∈ (0,1], and limρ→∞ f̄

u
ne,R(ρ) = 1 when q = 0. Hence, the joining utility of a tagged

remote customer approaches Ū(N − 1)) when q > 0 and Ū(ne) when q = 0; in both cases, it converges to a negative

value. (2) If N ≤ ne, from equation (7) we have f̄ui,R(ρ)≡ fui,R(q) =
ρiT∑N−1

j=0 ρ
j
T

, i= 0, · · · ,N − 1. For two traffic inten-

sities ρ1 < ρ2, we have f̄u0,R(ρ2)< f̄u0,R(ρ1). We find that f̄ui,R(ρ2)/f̄ui,R(ρ1) increases in i for i= 0,1, · · · ,N − 1 since

γρ1q+ (1− γ)ρ1 < γρ2q+ (1− γ)ρ2. Hence, ŨuR,N (q) decreases in q for a fixed ρ. When ρ→∞, the joining utility of

a tagged remote customer is ŨuR,N (q) approaches Ū(N − 1)< 0 for all q ∈ [0,1] because limρ→∞ f̄
u
N−1,R(ρ) = 1. The

proof of Part (ii) is similar to Part (i). To prove Part (iii), ŨuR,N (0) = ŨuR,N (1) = Ū(0)> 0 by Assumption 1. Combined

with Part (ii), we have ŨuR,N (0)< 0 and ŨuR,N (1)< 0 when ρ→∞. �
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Finishing the proof of Proposition 5. Similar to the proof of Proposition 1, and by the property of the utility function

ŨuR,N , both UuR,N (0) = 0 and UuR,N (1) = 0 have a unique solution, denoted by ρ̄uR,N , ρ
u

R,N
, respectively. Furthermore,

let λ̄uR,N = µρ̄uR,N , λuR,N = µρu
R,N

. �

Proof of Theorem 5 First, if the service provider uses a rejection threshold N ≤ n∗e , then all remote customers

have nonnegative utilities so that their order-placing probability is q = 1. In addition, the system throughput under

rejection threshold N < n∗e is lower than that under threshold n∗e , because the former model rejects customers who

observe i, i= n∗e , · · · ,N − 1 outstanding orders, who are supposed to place an order in the latter model. Therefore,

the optimal rejection threshold N∗ must satisfy N∗ ≥ n∗e . Hence, it suffices to focus on the case N ≥ n∗e below.

Next, we prove that N∗ = n∗e for sufficiently large Λ. For any rejection threshold N > n∗e , Ū(N − 1) < 0, and

Proposition 5 shows that the order-placing probability q = 0 for sufficiently large Λ. By contrast, q = 1 for N = n∗e .

Hence, by Lemma EC.2.2, the throughput under rejection threshold n∗e is higher than that under any rejection

threshold N >n∗e for sufficiently large Λ.

Next, we prove that N∗ =∞ for sufficiently small Λ. Let ρ= Λ/µ, ρT = (γΛq + (1− γ)Λ)/µ, ρR = γΛq/µ, ρL =

(1−γ)Λ/µ. Define steady-state probabilities: πui,R(q) =

{
ρi∧ne
T ρ

(i−ne)+

R πu0,R(q), if N >ne,

ρi∧NT ρ
(i−N)+

L πu0,R(q), if N ≤ ne,
, i= 0,1, . . . ,N ∨ne,

where πu0,R(q) =


(

1−ρne
T

1−ρT
+

ρ
ne
T (1−ρN−ne+1

R )
1−ρR

)−1

, if N >ne,(
1−ρNT
1−ρT

+
ρNT (1−ρne−N+1

L )
1−ρL

)−1

, if N ≤ ne.
Let πun,R(q;N) be the steady-state probability of n

orders in the OAR model with rejection threshold N , where remote customers place orders with probability q. Also, let

UuR(q;N)(q;N) denote the joining utility of a remote customer in the OAR model with rejection threshold N , where

remote customers place orders with probability q. (1) We first prove that the expected utility when all customers join

UuR(1;N) =
∑N−1
n=0 Ū(n)πun,R(1;N) is decreasing in rejection threshold N for N ≥ n∗e . To prove this claim, recognize

that πun,R(1;N) > πun,R(1;N + 1) for n = 0,1, . . . ,N . Hence, distribution {πun,R(1;N + 1)} stochastically dominates

distribution {πun,R(1;N)}. That is, we can stochastically rank the steady-state queue length Q(N) and Q(N + 1)

under the two thresholds N and N + 1 as: Q(N) ≤st Q(N + 1). Define the function f(x) ≡ Ū(x)1{x≤N}, we have

UuR(1;N) =
∑N−1
n=0 Ū(n)πun,R(1;N)>

∑N
n=0 Ū(n)πun,R(1;N) = E[f(Q(N))]≥ E[f(Q(N + 1))] =

∑N
n=0 Ū(n)πun,R(1;N +

1) =UuR(1;N+1), where the first inequality holds because Ū(n)< 0 for n≥ n∗e , and the second inequality holds because

the function f(x) decreases in x. (2) Given that all customers join, the throughput µ(1− πu0,R(1)) is increasing in

rejection threshold N due to a larger birth-rate (see Lemma EC.2.2). (3) It follows from (1) and (2) that if UuR(1;∞)≥
0, then the optimal rejection threshold is ∞. Further UuR(1;∞) is decreasing in Λ ∈ (0, µ) because distribution

{πun,R(1;∞,Λ)} stochastically increases with Λ. Hence, ∃Λ such that if Λ≤Λ, the optimal rejection threshold is ∞.

Note that when N =∞, this model reduces to the plain order-ahead model, hence Λ = λuA. �

Proof of Theorem 6 When queue-length information is shared remotely, we define N∗o to be the optimal rejec-

tion threshold in the rejection model. First, we consider the case where N∗o ≥ n∗e . In this case, the joining behavior of

remote customers coincides with the behavior of the plain order-ahead model when queue-length information is shared

remotely (balk with threshold n∗e), that is THo
R,N∗o

= THo
A. We next consider the case where N∗o < n∗e . In this case,

customers will always join since Ū(N∗o )> 0, which further implies that the joining probability of remote customers

is qoR = 1. Compared to the case where N∗o = n∗e , in which all remote customers place orders, the birth rate in the

former case is smaller. Lemma EC.2.2 implies that the latter system is busier, which consequently results in a higher

system throughput, i.e., THo
R,N∗o

<THo
A. This implies that system throughput in the OAR model when queue-length

information is shared remotely will not exceed that of the plain order-ahead model when queue-length information is

shared remotely, that is, THo
R ≤ THo

A. Recall from Theorem 5 that when the queue-length information is not shared
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remotely, the optimal rejection threshold satisfies N∗ ≥ n∗e , thus resulting in a higher system throughput than that

of the plain order-ahead model when queue-length information is shared remotely. In summary, THu
R ≥ THo

R. �

Proof of Proposition 6 From Theorem 5, we have proved the optimal rejection threshold N∗ ≥ n∗e . Consider

a tagged rejected remote customer. The number of outstanding orders satisfies n≥ n∗e . Let NS
n denote her updated

queue position (including herself) upon arrival at the service facility if she travels to the service facility. Let US(n) be

her expected utility if she travels, and we then have US(n) = E
[
V − cNS

n
µ

]+
− c
β
≤E

[
V − cNOB

n
µ

]+
− c
β

=UOB(n)< 0,

where NOB
n and UOB(n) are the updated queue size and utility function defined in the OAOB model (see proof of

Lemma EC.2.5), the first inequality holds because NS
n ≥st NOB

n , and the last inequality holds by Lemma EC.2.5. �

Proof of Theorem 7 First, consider the case of queue-length information not being shared remotely. We sup-

pose the rejection threshold N = ne. Recall that the steady-state probability of the number of outstanding orders

in OAR model is πui,R(q) =
ρiT∑ne

j=0 ρ
j
T

, i = 0,1, · · · , ne. and the steady-state probability of the number of outstand-

ing orders in the order-onsite model is πui,S(q) =
ρiT∑ne

j=0 ρ
j
T

= πui,R(q), i = 0,1, · · · , ne. We next compare the util-

ities of a tagged remote customer who decides to join the order-onsite model and the OAR model. We have

UuR,N (q) =
∑ne−1
i=0 Ū(i)πui,R(q) =

∑ne−1
i=0

(
V − (i+1)c

µ

)
πui,R(q)− c

β

∑ne−1
i=0 σiπui,R(q)>

∑ne−1
i=0

(
V − (i+1)c

µ

)
πui,S(q)− c

β
=

UuS (q), for any given q, where the strict inequality holds because σ < 1 and πu0,R(q)< 1 under a rejection threshold

ne. We next use the normalized utility ŨuR,N (q). According to the above inequality, we have ŨuR,N (1) ≥ UuR,N (1) >

UuS (1), whenever ŨuR,N (1) ≥ 0 because the normalization factor of ŨuR,N (1) is
∑N−1
j=0 πuj,R(1) ∈ (0,1). Also, since

ŨuR,N (q) decreases in q, the two solutions of ŨuR,N (1) = 0 and UuS (1) = 0 must satisfy λuR,N > λuS . Similarly, we have

ŨuR,N (0)≥ UuR,N (0)> UuS (0), whenever ŨuR,N (0)≥ 0, so that the two solutions of ŨuR,N (0) = 0 and UuS (0) = 0 satisfy

that λ̄uR,N > λ̄
u
S . By Proposition 5 and the order-onsite model, the equilibrium order-placing probability in the OAR

model and travel probability in the order-onsite model must satisfy the ordering quR,N ≥ quS . Finally, the steady-state

probabilities of πui,R(q) and πui,S(q) imply that πu0,R ≤ πu0,S , showing that the OAR model achieves higher throughput

under rejection threshold N = ne. The OAR model under the optimal rejection threshold only achieves even higher

throughput and thus, THu
R ≥ THu

S .

Next, consider the case of queue-length information being shared remotely. We know that THo
R = THo

A. We further

know from Theorem EC.1 that THo
A ≥ THo

S for ne = 1. Hence, THo
R ≥ THo

S for ne = 1. �

Proof of Theorem 8 Recall from Theorem 6 that the service provider has no incentive to share queue-length

information in the OAR model. Moreover, when the queue-length information is shared in the OAC model, customers

behave the same as they would in the hybrid order-ahead model, which represents a special case of the OAR model

with an optimal rejection threshold. Hence, under optimal information, when it is optimal for the OAC model to share

information (TH∗C = THo
C), we always have TH∗R = THu

R ≥ THo
A = THo

C ; when it is optimal for the OAC model not

to share information (TH∗C = THu
C), since TH∗R = THu

R, it suffices to prove that THu
R ≥ THu

C when the market size

is sufficiently small or large. The rest of the proof focuses on the case where queue-length information is not shared

remotely. First, according to Theorem 4, we know that the throughput of the plain order-ahead model dominates that

of the OAC model when the market size is small (i.e., when Λ≤ λuA). In addition, under the optimal rejection threshold,

the OAR model yields higher throughput than the plain order-ahead model. Hence, the OAR model dominates the

OAC model when the market size is sufficiently small. When the market size is large, we consider the OAR model with

rejection threshold N = ne and show that this model already yields higher throughput than the OAC model. Case 1:

If Ū(ne−1)≥ 0, the joining probability of remote customers is quR = 1 in the OAR model (Proposition 5). On the other

hand, in the OAC model, if Λ≥ λ̄uC , the joining probability of remote customers is quC = 0, so that the OAR model is
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stochastically more congested than the OAC model (to see this, we again invoke Lemma EC.2.2). Hence, OAR yields

higher throughput than OAC under a large market size (Λ≥ λ̄uC). Case 2: Suppose Ū(ne− 1)< 0. Assume that the

order-placing probability of remote customers in the OAC model is 0, so that the joining utility for a remote customer

is UuC(0) =
∑ne−1
n=0

(
Ū(n) + c

β

)
πun,C(0)+

(
Ũ(ne) + c

β

)
πune,C(0)− c

β
, where the corresponding steady-state probabilities

are given by: πui,C(0) =
ρiT (1−ρT )

1−ρne+1
T

, i= 0,1, · · · , ne, where ρT = (1− γ)ρ. On the other hand, the utility of a remote

customer in the OAR model is UuR,ne
(0) =

∑ne−1
n=0 Ū(n)πun,R(0), where the steady-state probability of the number

of outstanding orders being i is πui,R(0) =
ρiT (1−ρT )

1−ρne+1
T

= πui,C(0), i = 0, · · · , ne. A straightforward comparison of the

above the two utility functions reveals UuR,ne
(0)−UuC(0) = πune,C(0) c

β
−
(
Ũ(ne) + c

β

)
πune,C(0) =−πune,C(0)Ũ(ne)> 0,

where the inequality holds because Ũ(ne) < Ū(ne − 1) < 0. Consequently, we must have that λ̄uC < λ̄uR. When the

market size Λ ∈ (λ̄uC , λ̄
u
R), the OAR model is stochastically more congested than the OAC model (Lemma EC.2.2),

so the former yields higher throughput than the latter. When the market size Λ≥ λ̄uR, the order-placing probabilities

under the two models are quC = quR = 0, which yields identical system throughput. Hence, the OAR model under the

rejection threshold ne already dominates the OAC model by giving higher throughput when the marker size Λ> λ̄uC .

We conclude that the OAR model has higher throughput than the OAC model in this case. �

Proof of Theorem 9 We first characterize the queueing system for a given rejection threshold N1 and cancel-

lation threshold N2. Given remote customers’ order-placing probability q, the number of outstanding orders i evolves

according to a birth-death process with a state-dependent birth rate λi(q) and death rate µi:

λi(q) = γΛq ·1{i≤N1−1}+ (1− γ)Λ ·1{i≤ne−1} and µi = µ+β(i−N2)+, i= 0,1, · · · , (EC.4)

Given the birth and death rates, the steady-state probability of the number of the outstanding orders X being i,

π̂ui,C(q)≡ P(X = i), satisfies the balance equations below:

[γΛq ·1{i≤N1−1}+ (1− γ)Λ ·1{i≤ne−1}]π̂
u
i,C(q) = [µ+ (i−N2)+β]π̂ui+1,C(q), i= 0,1, · · · ,max{N1, ne}.

Denote Xa as the steady-state number of outstanding orders when a remote customer’s order is accepted. Thus, given

q, P(Xa = i) = P(X = i|X <N1) = π̂ui,C(q)/(1− π̂uN1,C(q)). The expected utility of a remote customer who places an

order is

UuR,C(q)≡E
[(
V − c ·NXa

µ

)
1{NXa<N2}

]
− c

β
(EC.5)

=

N2−1∑
i=0

Ū(i)π̂ui,C(q) +

N1−1∑
i=N2

[
N2∑
j=0

(
V − cj

µ

)
pR,Ci (j)− c

β

]
π̂ui,C(q),

where pR,Ci (j) represents the probability distribution of the updated queue position NXa in the rejection-cancellation

system, which is the same as in Lemma 3, except that ne is replaced by N2.

We next derive the optimal (N1,N2) for a sufficiently small market size Λ. In the integrated scheme: the birth

rate λi(q) = γΛq · 1{i≤N1} + (1− γ)Λ · 1{i≤ne−1} is maximized when N1 =∞ and q = 1, and the death rate µi =

µ+ β(i−N2)+ is minimized when N2 =∞. Hence, from Lemma EC.2.2, the throughput is indeed maximized by

setting N1 = N2 =∞ and q = 1. On the other hand, According to Proposition 1, when Λ is sufficiently small, the

hybrid order-ahead model (with N1 = N2 =∞) induces the remote customers’ order-placing probability quA = 1.

Hence, when Λ is sufficiently small, N1 =N2 =∞ achieves the maximum throughput.

We next derive the optimal (N1,N2) when the market size Λ is sufficiently large. Suppose that the service provider

adopts a rejection threshold N1 ≤ n∗e , then cancellation will not kick in since the cancellation threshold satisfies

N2 ≥ ne and the queue position of each remote arrival at the service facility will never exceed n∗e . Thus, according to

Theorem 5, any rejection threshold N1 <n
∗
e is throughput-dominated by rejection threshold n∗e .
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Suppose that the service provider adopts a rejection threshold N1 > n∗e . We next show that if N1 > n∗e , then for

any N2 ≥ ne, remote customers’ order-placing probability quR,N1
= 0 for sufficiently large Λ. To see this, first, for

a birth-death process with birth rates {λi,0 ≤ i ≤ N1 − 1} and death rates {µi,1 ≤ i ≤ N1}, we know its steady-

state probability πi =
∏i−1
j=0 ρi/(

∑N1
k=0

∏k−1
l=0 ρl) for i= 0, . . . ,N1, where ρ̄i ≡ λi/µi+1. We prove by contradiction. Now

suppose quR,N1
> 0, we know from (EC.4) and (EC.5) that as Λ→∞, we have ρi ≡ λi−1(quR,N1

)/µi(q
u
R,N1

)→∞, and

the probability that a remote customer is accepted at state N1− 1 is

π̂uN1−1,C(quR,N1
)

1− π̂uN1,C
(quR,N1

)
=

∏N1−2
j=0 ρi/(

∑N1
k=0

∏k−1
l=0 ρl)

1−
∏N1−1
j=0 ρi/(

∑N1
k=0

∏k−1
l=0 ρl)

=

∏N1−2
j=0 ρi

1 + ρ0 + ρ0ρ1 + · · ·+
∏N1−2
j=0 ρi

→ 1,

so that

UuR,C(quR,N1
)→E

[(
V − c ·NN1−1

µ

)
1{NN1−1<N2}

]
− c

β

=

(
E
[(
V − c ·NN1−1

µ

)]
− c

β

)
︸ ︷︷ ︸

Ū(N1−1)

·P(NN1−1 <N2) +

(
− c
β

)
·P(NN1−1 ≥N2).

Because Ū(N1−1)≤ Ū(n∗e)< 0, the above limit is strictly negative regardless of the cancellation threshold N2. Thus,

there must exist a sufficiently large Λ̄R,C such that, for any Λ> Λ̄R,C , a remote customer’s joining expected utility

is negative if quR,N1
> 0, which leads to a contradiction. Hence, quR,N1

= 0 for sufficiently large Λ when N1 >n
∗
e .

Thus, for sufficiently large Λ, the model with N1 > n∗e and the model with N1 = n∗e have identical states i =

0,1, · · · , ne and death rates, while the former has smaller birth rates (i.e., (1− γ)Λ) than those of the latter (Λ) at

states i= 0,1, · · · , ne− 1, thus resulting in lower throughput (according to Lemma EC.2.2).

Based on the above analysis, when the market size is sufficiently large, N1 = n∗e ,N2 =∞ is optimal. �

Proof of Proposition 7 We first establish Lemma EC.2.7, where UA(λ, β) and US(λ, β) are defined in §EC.1.3.

Lemma EC.2.7. Given arrival rate λ, the utility functions UA(λ, β) and US(λ, β) are increasing in β. In addition,

∆U(λ, β)≡UA(λ, β)−US(λ, β) is decreasing in β, and the two utility functions have exactly one intersection.

Proof of Lemma EC.2.7. Note that Ū(n) increases in β, and π̂un(λ) is independent of β. It is straightforward to see

that both UA(λ, β) and US(λ, β) increase in β.

Let N be the steady-state queue length of an M/M/1 queue with birth rate λi = Λ if i < ne and λi = λA otherwise,

and death rate µi = µ for i > 0. The expected utility of a tagged customer with β who places a remote order is

UA(λ, β) = V − cE[max{T (β),XN+1,µ}],

where T (β) ∼ Exp(β) is the random travel time with speed β, and XN+1,µ denotes an Erlang random variable

with (N + 1) phases and rate µ. The expected utility of a tagged customer with β who places an onsite order is

US(λ, β) = V P(N <ne)− cE
[
T (β) +XN+1,µ ·1{N<ne}

]
. The difference between the two utility functions is

4U(λ, β) = V P(N ≥ ne)− cE[max{0,XN+1,µ−T (β)}−XN+1,µ ·1{N<ne}].

To show that 4U(λ, β) decreases in β, it suffices to show that the random variable max{0,XN+1,µ−T (β)} stochas-

tically increases in β. To see this, let β1 ≤ β2; it is straightforward to see that T (β1)∼Exp(β1)≥st Exp(β2)∼ T (β2).

Next, because T (β)∼Exp(β), we have limβ→0 ∆U(λ, β) =∞, and

lim
β→∞

∆U(λ, β) = V P(N ≥ ne)− cE[XN+1,µ−XN+1,µ ·1{N<ne}]

= V P(N ≥ ne)− cE[XN+1,µ ·1{N≥ne}]

= E[(V − c ·XN+1,µ) ·1{N≥ne}]< 0,
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where the inequality holds by the definition of ne. Hence, the above analysis ensures that there exists only one

intersection between utility functions UA(λ, β) and US(λ, β). �

Finishing the proof of Proposition 7. From Lemma EC.2.7, there exist thresholds β1 and β2 with a≤ β1 ≤ β2 ≤ b

such that 0>max{UA(λ, β),US(λ, β)} (and hence customers do not order) if β < β1; UA(λ, β)>max{0,US(λ, β)}

(and hence customers order ahead) if β ∈ (β1, β2); US(λ, β)>max{0,UA(λ, β)} (and hence customers order onsite)

if β > β2. �

Proof of Theorem 10 We prove the throughput dominance under rejection threshold ne, which would imply

throughput dominance under the optimal rejection threshold.

In the OAR model, let the arrival rate for remote customers who choose to order ahead and order onsite be λA

and λS respectively, with λA + λS ≤ γΛ; let the arrival rate for local customers be λL = (1− γ)Λ. The order queue

evolves as a birth-death process with state-dependent birth rate λi = (λA +λS +λL) ·1{i<ne} and death rate µi = µ

for i > 0. The steady-state probability of the number of outstanding orders being i ≤ ne is π̂ui (λA + λS + λL) =

(1− (λA+λS +λL)/µ)((λA+λS +λL)/µ)i/(1− (λA+λS +λL)ne+1). Let the expected utility for a remote customer

who orders ahead be URA and that for a remote customer who orders onsite be URS :

URA (λA, λS , λL, β) =

ne−1∑
i=0

(
V − (i+ 1)c

µ
− c

β
σi+1

)
π̂ui (λA +λS +λL),

URS (λA, λS , λL, β) =

ne−1∑
i=0

(
V − (i+ 1)c

µ

)
π̂ui (λA +λS +λL)− c

β
,

where σ = µ/(β + µ). It is straightforward that URA (λA, λS , λL, β) ≥ URS (λA, λS , λL, β). Thus, no remote customers

place onsite orders (λS = 0) in equilibrium. Moreover, since URA (λA, λS , λL, β) increases in β, there exists a threshold

for travel speed β̄A that uniquely solves URA (λA,0, λL, β̄A) =
∑ne−1
i=0

(
V − (i+1)c

µ
− c

β̄A
σi+1

)
π̂ui (λA + λL) = 0 with

λA = γΛ(1−F (β̄A)) such that customers place orders (ahead) if and only if β > β̄A.

In the order-onsite model, let the arrival rate for remote customers be λ′S ≤ γΛ and the arrival rate for local

customers be λL = (1−γ)Λ. The order queue state is a birth-death process with state-dependent birth rate λi = (λ′S +

λL) ·1{i<ne} and death rate µi = µ for i > 0. The corresponding steady-state probability of the number of outstanding

orders being i ≤ ne is π̂ui (λ′S + λL) = (1 − (λ′S + λL)/µ)((λ′S + λL)/µ)i/(1 − (λ′S + λL)ne+1). Thus, the expected

utility of a joining remote customer with travel speed β is USS (λ′S , λL, β) =
∑ne−1
i=0

(
V − (i+1)c

µ

)
π̂ui (λ′S + λL)− c

β
. It

is straightforward to see that USS (λ′S , λL, β) increases in β. Hence, remote customers join when their travel speed

β exceeds a threshold β̄S , which uniquely solves USS (λ′S , λL, β̄S) =
∑ne−1
i=0

(
V − (i+1)c

µ

)
π̂ui (λ′S + λL)− c

β̄S
= 0 with

λ′S = γΛ(1−F (β̄S)).

Next, we prove λA > λ′S , i.e., β̄A < β̄S . Note that 0 = URA (λA,0, λL, β̄A) =
∑ne−1
i=0

(
V − (i+1)c

µ
− c

β̄A
σi+1

)
π̂ui (λA +

λL)>
∑ne−1
i=0

(
V − (i+1)c

µ

)
π̂ui (γΛ(1−F (β̄A))+λL)− c

β̄A
=USS (γΛ(1−F (β̄A)), λL, β̄A). Since USS (γΛ(1−F (β)), λL, β)

is increasing in β and USS (γΛ(1−F (β̄A)), λL, β̄A)< 0 and USS (γΛ(1−F (β̄S)), λL, β̄S) = 0, we have β̄A < β̄S . Hence,

λA >λ
′
S , which implies that π̂0(λA+λL)< π̂0(λ′S +λL). Therefore, the throughput of the OAR model with rejection

threshold ne surpasses that of the order-onsite model. The throughput of the OAR model under the optimal rejection

threshold will only be even higher. �


