
Queueing Systems manuscript No.
(will be inserted by the editor)

November 4, 2024

NeuraliNQ: A Neural Network Method for the
Transient Performance Analysis in non-Markovian
Queues

Spyros Garyfallos · Yunan Liu · Pere
Barlet-Ros · Albert Cabellos-Aparicio

Received: date / Accepted: date

Abstract Many empirical studies have confirmed that service-time and patience-
time distributions in service systems (e.g., call centers and health care) are far from
exponentially distributed. Because non-Markovian queues are rarely amenable
to analytic solutions, performance analysis often resorts to approximating meth-
ods such as heavy-traffic fluid limits or computer simulations. In this paper, we
contribute to the literature on transient performance analysis of non-Markovian
queues by developing a new neural networks method, dubbed Neural network in
non-Markovian Queue (NeuraliNQ). NeuraliNQ is an offline supervised learning
method that uses synthetic training data to learn the system’s intrinsic character-
istics. In real-time applications, NeuraliNQ can recursively estimate the transient
system waiting time performance in a finite time window. Our results confirm that
NeuraliNQ is able to achieve the proper balance between efficiency and accuracy:
on the one hand, it is four orders of magnitude computationally more efficient
than Monte-Carlo simulations; on the other hand, it yields higher solution accu-
racy than standard approximation methods such as the heavy-traffic fluid model,
especially when the system scale is not too large.
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1 Introduction

In the realm of queueing systems, we encounter two primary types: (i) Marko-
vian queues, characterized by Poisson arrivals and exponential service-time distri-
butions, and (ii) non-Markovian queues, featuring nonexponential distributions. In
general, the choice between these models involves a trade-off between tractability
and practicality. Non-Markovian queues, the latter category, find application in
a broader range of real-world scenarios due to their ability to incorporate com-
plex and realistic model features. On the other hand, Markovian queues, the former
type, offer mathematical tractability and ease of analysis through standard Markov
chain methods.

Empirical studies consistently indicate that service times and abandonment
times in contemporary service systems deviate significantly from exponential dis-
tributions. Instances of lognormal-like distributions are prevalent, such as observed
call durations in customer contact centers [4] and patients’ lengths of stay in hos-
pitals [41]. Certain cases may allow effective approximations of non-Markovian
queueing systems by their Markovian counterparts (with the nonexponential dis-
tributions replaced by exponential distributions). For example, steady states of the
M/G/n/n loss model is insensitive to the service distribution beyond the mean.
However, recent research emphasizes the significance of non-Markovian features,
extending beyond means, in analyzing both steady states [1, 47] and transient per-
formance [31, 34] of these queueing systems. These revelations continue to motivate
queueing theorists to explore more realistic queues with non-Markovian probabil-
ity structure. The present work is part of the ongoing efforts in the performance
analysis of non-Markovian queues.

1.1 Challenges of non-Markovian queueing systems

The analytical investigation of models with non-Markovian probability struc-
ture is often notoriously difficult and is rarely amenable to analytic solutions [1].
Moreover, describing the transient queueing performance necessitates capturing
the nonstationary dynamics over time, introducing additional complexities. In
general, analyzing a queueing system requires one to capture the (i) stochastic
variability, which is determined by the complex probabilistic structure, and (ii)
time variability, which is due to the nonstationary model parameters (e.g., arrival
rate). Characterizing the stochastic variability in a non-Markovian queue is much
more involved than its Markovian counterpart because a simple birth-and-death
process can no longer represent the system dynamics. For example, to fully capture
the dynamics of a multi-server G/GI/n+G queue having nonexponential service
and abandonment times, besides the total number of customers in the system,
one needs to keep track of the elapsed waiting times of all waiting customers and
the elapsed service times of those in service; see [46, 33] for the two-parameter
age-and-time representations for the G/GI/n+GI system. In addition, the tran-
sient analysis is more challenging than computing the steady-state distributions
since the transient performance (i.e., the waiting time at t) largely depends on its
preceding values (i.e., the waiting time at s < t).
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1.2 On heavy-traffic methods for non-Markovian queues

In order to analyze non-Markovian queueing systems, researchers often resort
to approximating methods arising from large-scale limits. Fluid limit is a pre-
dominately used model [31, 47, 30, 32]. As the first-order approximation for the
corresponding queueing system, a fluid model intends to focus on characterizing
the system’s temporal dynamics while omitting its stochastic variability. Fluid
limits are established via the functional law of large numbers (FLLN), which re-
quires sufficiently scaling up the queueing system’s demand and service capacity.
Conceptually, in a fluid model, all customers are “shrunk to atoms of fluid” so that
system-level deterministic functions can capture their aggregated behavior. The
computation of fluid models of non-Markovian queues often involves numerically
solving a system of differential equations [31]. Consider a system with scale n (e.g.,
n is the number of servers), the mean queue length E[Qn(t)], server’s occupancy
E[Bn(t)]/n (i.e., mean number of busy servers E[Bn(t)] over the number of servers
n), and waiting time E[Wn(t)] can be approximated by their fluid counterparts as
below:

1

n
E[Qn(t)] ≈ Q(t),

1

n
E[Bn(t)] ≈ B(t) and E[Wn(t)] ≈ w(t) for n large,

(1)

where Q(t), B(t), and w(t) are the corresponding fluid limits of the queue length,
occupancy, and waiting-time processes.

Fluid limits can help approximate the system’s “average” performance as a
function of time, such as the mean waiting time E[W (t)] and mean queue size
E[Q(t)]. Nevertheless, its deterministic nature hinders its ability to capture per-
formance functions encompassing distributional information beyond the mean. For
example, this limitation is particularly evident when dealing with the tail proba-
bility of delay P(W (t) > τ), a predominantly used service-level target in modern
service systems that accounts for the fraction of customers experiencing wait times
exceeding a target τ > 0 [28]. Another major drawback of fluid methods is the
degradation of solution accuracy in medium- and low-traffic systems. In addition,
fluid models may become inaccurate when the system constantly alternates be-
tween low-traffic and heavy-traffic scenarios [31] (e.g., practical queueing systems
with natural daily cycles transition between night-time low traffic levels and rush
hour peaks). Also, solving fluid functions of non-Markovian models is not straight-
forward and can be challenging for practitioners.

Diffusion limits arising from the functional central limit theorem (FCLT) can
be used as a stochastic refinement of the deterministic fluid model. In many cases,
these FCLT limits can effectively account for the random fluctuations of the sys-
tem processes around their mean values. Nevertheless, the FCLT approximations
may fall short in the following cases: First, FCLT limits are primarily available
for Markovian queueing systems [35]; there are several recent successes in the
development of FCLT limits for queues with nonexponential abandonments, see
[33, 28, 29, 17] and references therein. Unfortunately, the development of such a
limit becomes extremely challenging for queues with nonexponential service times
[1, 34]. Next, the analysis and solution formulas of diffusion limits are often quite
involved [33] and not easy to implement in practice. Last, when the system scale
is smaller, similar to the fluid model, its solution accuracy degrades.
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In this paper, we contribute to the performance analysis of non-Markovian
queues by proposing a novel neural network approach. This approach is inspired
by the recent successes of neural networks in computer vision and natural language
processing [12, 14], where deep learning became the state-of-the-art, exceeding all
past approaches based on more conventional methods. Our new method, called
neural network in non-Markovian queue (NeuraliNQ), will produce effective pre-
dictions for transient queueing performance functions for the non-Markovian non-
stationary queueing systems.

1.3 What do natural language translation and queueing theory have in common?

Among the large volume of the neural network literature, we are particularly
inspired by recurrent neural networks (RNNs). Distinct from traditional deep neu-
ral networks which assume that inputs and outputs are independent of each other,
RNNs have the ability to maintain internal state (also called hidden representa-
tion or simply, memory) of past inputs, and to characterize how they affect future
system states. Their ability to process long context windows and track the state of
sequential data makes them applicable to language-related learning tasks, such as
language translation, natural language processing, speech recognition, and image
captioning.

Similar to the above example, in queueing systems, the transient trajectory of
the performance function (e.g., waiting times) St−1, St, St+1, . . ., is a sequence
of inter-correlated system states indexed by time t. The distribution of St+1 is
jointly determined by (i) the external system input βt (e.g., the arrival rate
λt), and (ii) the internal memory of the previous state of the system (e.g., the
waiting time at t). For example, the system’s congestion level at t+1 is determined
by both the congestion level at t and the new demand between t and t+ 1.
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System state 
𝑺!

Time t+1

System state 
𝑺!"#

System state 
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Fig. 1: NeuraliNQ: The feedforward topology of time-indexed RNNs.

At the heart of NeuraliNQ is a one-step lookahead learning procedure that
learns to recursively predict the next-step system state (at time t + 1) using the
latest state (at time t), utilizing the intrinsic correlation of the system dynam-
ics between the two time steps. Two neural networks trained using simulated
data within a local problem space accomplish this stepwise prediction. Figure 1
provides a schematic illustration of NeuraliNQ formed as an unrolled (unfolded)
computational graph into a full network.

In contrast to conventional RNN models, where hidden representations are con-
structed by sequentially replaying past information in order to provide the past
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context of up until the point of inference, we explore the option of using snapshot
state information (information only from the previous time frame) and experiment
with various state feature combinations that are descriptive enough to remove the
need of contextual reconstruction of hidden representations. We show that the
state snapshot comprising of the latest waiting time and service occupancy are
descriptive enough for high-accuracy predictions. The previous statement of this
minimum snapshot state information holds even for predicting multiple common
performance metrics, such as the tail probability of delay (TPoD), queue length
and abandonment probability. This discovery allows us to construct a training data
generation strategy that is straightforward and computationally parsimonious, re-
duces our neural network’s architecture size and complexity by removing the need
for internal memory, and simplifies the inference data inputs to only the most
recent state snapshot.

Simulate 
queueing 

system

Train Neural 
Networks

Sample 
problem space

Spatial: Βk={β1, β2, …, βk }
Temporal: Tm(Βk)

Queue size Abandonment

Wait timeArrival

DeepLiNQ 
Model

Fig. 2: Flow chart of NeuraliNQ.

The development of NeuraliNQ follows three steps: First, we sample from the
selected local space of the model parameters and conduct offline simulations to
generate data from the system’s stationary and transient samples. Through these
extracted features, we train two neural networks. The first neural network is used
to predict a sequence of t-indexed pointwise steady state (PSS) assuming that the
system is operated under stationary model parameters at each t (e.g., stationary
arrival rate, service-time and patience-time distributions). We subsequently use
the estimated PSS and the current state (at time t) to predict the next-step state
(at t+1) via our second neural network. The stepwise nature of the model enables
recursive predictions on arbitrarily long horizons. See Figure 2 for an illustration
of these steps. As an initial attempt, the focus of the present paper is to train
neural networks to capture the system’s temporal dynamics under nonstationary
arrival patterns, assuming a given and fixed interarrival and service distributions.

1.4 An example

We first give a quick illustration of the performance of NeuraliNQ. We consider
a non-Markovian multi-server Mt/H2/n + E2 model, having a nonhomogeneous
Poisson arrival process with n-scaled rate λn(t) = n(1 + 0.6 sin(t)) (top panel
of Figure 3), service times following a hyperexponential (H2) distribution with
mean 1/µ = 1, and abandonment times following an Erlang-2 (E2) distribution
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with mean 1/θ = 1. Specifically, the probability density functions (PDFs) for the
abandonment and service times are respectively:

fa(x) = 4θ2xe−2θx and g(x) = pµ1e
−µ1x + (1− p)µ2e

−µ2x,

where p = 0.5(1−
√
0.6), µ1 = 2p, and µ2 = 2(1− p).

Fig. 3: NeuraliNQ vs. fluid model: Expected waiting time and service occupancy
(mean number of busy servers divided by total servers) of an Mt/H2/n+ E2

queue at two different scales.

In Figure 3 we graph the transient trajectories of the expected mean waiting
time and service occupancy (in form of (1)) generated from (i) NeuraliNQ, (ii)
fluid approximation using [31], and (iii) crude Monte-Carlo (MC) simulation (the
“ground truth”), for low- and large-scale systems. We observe that both NeuraliNQ
and the fluid approximation work effectively when the system scale is large, while
NeuraliNQ provides a more accurate prediction than the fluid model when the
scale is small. We will conduct additional numerical experiments in Section 4 to
evaluate the performance of NeuraliNQ further. Also, we will provide in-depth
discussions on additional advantages of NeuraliNQ over fluid model and heavy-
traffic methods; See Section 5.

Remark 1 (The descriptive power of server occupancy) In large-scale systems (e.g.,
right-hand panel in Figure 3), the waiting time alone can be used to describe the
system’s congestion level during an overloaded interval, because the occupancy is
close to 100%, giving redundant information. However, in small-scale systems (e.g.,
left-hand panel in Figure 3), the system exhibits a larger stochastic variability, so
that there is no clear separation of underloaded and overloaded intervals. To see
this, note that throughout the entire interval, the waiting time is strictly positive
and the occupancy is strictly less than 100%. In this case, both the waiting time and
server occupancy are needed, which will jointly describe the system’s evolutionary
state.
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1.5 Contributions and Organization

We summarize the main contributions of this paper:

i) To the best of our knowledge, this is the first attempt at applying neural
networks to study the transient performance of non-Markovian nonstation-
ary queueing systems. As a supervised learning method, NeuraliNQ is able
to recursively predict the system’s transient performance functions (e.g., ex-
pected waiting time) in a step-wise lookahead manner, taking advantage of
the intrinsic characteristics of the system dynamics in the temporal domain.
Distinct from typical black-box neural network models, NeuraliNQ stands
out as a customized model with queueing-specific interpretability: First, Neu-
raliNQ introduces a novel approach of integrating transient and stationary
performance, two aspects often studied independently in queueing theory. It
achieves this by learning the system’s transient performance over time, treat-
ing the pointwise steady state as a “supervisor”. Next, the stepwise lookahead
RNN topology embedded in NeuraliNQ empowers it to predict transient per-
formance by leveraging previous system dynamics. This not only ensures its
high efficiency but also enhances its robustness.

ii) Our findings offer useful insights that can help improve the modeling and
management of queueing systems. NeuraliNQ helps identify the essential state
information needed for predicting and analyzing useful performance metrics
in both temporal and spatial dimensions: First, our proposed latest snap-
shot state representation ensures sufficiency for modeling non-Markovian sys-
tems, eliminating the necessity for retaining additional memory of past states.
Next, NeuraliNQ demonstrates its capability to predict queueing service-level
metrics using simple state information from both the queue side (e.g., mean
waiting time) and the server side (e.g., mean number of busy servers).

iii) We confirm the effectiveness of NeuraliNQ by conducting comprehensive nu-
merical experiments. Besides the mean waiting time (which is the primary
performance metric), NeuraliNQ is able to compute other service-level met-
rics predominantly used in service systems, such as the probability of aban-
donment, server occupancy, mean queue length, and tail probability of delay.
For service-level metrics that capture the average system values (e.g., mean
waiting time and queue length), our results show that NeuraliNQ yields high-
fidelity solutions that outperform the heavy-traffic fluid approximations, espe-
cially when the system scale is not too large. For service-level metrics derived
from waiting-time distributions beyond the means (e.g., probability of delay
and tail probability of delay) where the fluid approximation is no longer ap-
plicable, NeuraliNQ’s predictions continue to demonstrate effectiveness. We
also confirm that NeuraliNQ is robust to various model inputs such as scale,
arrival patterns, and distributions of the arrival and service times.

Organization of the paper. In Section 2 we review the relevant literature. In Sec-
tion 3 we describe the main steps of NeuraliNQ; we also discuss the intepretability
of NeuraliNQ. In Section 4 we evaluate the effectiveness of NeuraliNQ by conduct-
ing a comprehensive set of numerical experiments. In Section 5 we provide in-depth
discussions on how NeuraliNQ compares to the other two conventional approaches
for non-Markovian queues: heavy-traffic methods and computation simulations.
Finally, we give concluding remarks in Section 6. We provide supplementary ma-
terials in the appendix.
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2 Related Literature

Three bodies of literature are relevant to the present work.

Non-Markovian queueing systems: The transient performance analysis of
Markovian queueing networks has been developed by [35]. The analysis of non-
Markovian queueing systems is, in general, much more challenging. To obtain
tractable results for queues having nonexponential service times and abandonment
times, Whitt [46] introduced a new fluid G/G/n + G model which adapts two-
parameter performance functions to keep track of elapsed service and waiting
time of customers. Whitt’s pioneering work [46] opened a new line of research
on non-Markovian queues; this representation has subsequently been extended to
incorporate time-varying arrivals and staffing levels [31], infinite-server queues [2],
network structure [30, 32], and queues with transitory arrivals [20]. To further
refine these fluid models, stochastic FCLT limits have been developed, including
the time-varying OU process for the Gt/M/nt + GI system alternating between
underloaded and overloaded time intervals [33], the patience-time scaled diffusion
approximation [18], and the Gaussian approximations for the stationary G/GI/n+
GI overloaded queues [34, 1]. Distinct from the above literature that studies non-
Markovian models using heavy-traffic limits, the present paper proposes a neural
network approach.

Machine learning in queueing systems: There is a relatively small but
growing literature on modeling and analyzing queueing systems using machine
learning techniques. In recent studies, researchers proposed to apply online learning
and reinforcement learning methodologies to support real-time decision-making in
queueing systems, including pricing [21], capacity sizing [6, 7], and control policies
such as routing [26, 39] and scheduling [11, 25]. The present paper is more rele-
vant to recent studies that use neural networks to study queueing systems. Sherzer
et al. (2023) [40] use quasi-birth-death queues (with phase-type service times) to
train a neural network with the objective of estimating the steady-state proba-
bilities of the M/G/1 queue. Ata et al. (2023) [3] apply neural networks to solve
Hamilton-Jacobian-Bell equations of Markov decision processes in queueing con-
trol problems. Garbi et al. (2023) [13] apply neural networks to study deterministic
telecommunication queueing networks. Pender et al. (2021) [37] use machine learn-
ing for predicting the response times of G/G/1/SRPT queueing systems. Ojeda et
al. (2019) [36] develop an adversarial framework that enhances service time model-
ing by incorporating recurrent structures, leading to improved predictive accuracy
in dynamic service environments. Raeis et al. (2019) [38] utilize mixture density
networks to predict the distribution of waiting times in customer service systems.
Cheng et al. (2021) [8] use transformer models to classify scheduling policies in
queueing networks based on partial monitoring data. Neural networks have also
been adopted for parameter estimations in queueing systems including the latent
stochastic intensity of a doubly stochastic process [44] and infinite server queues
driven by Cox processes [45]. Distinct from the previous literature, the present pa-
per develops a neural network method for non-Markovian nonstationary queues;
we aim to characterize the transient performance in a stepwise lookahead fashion,
drawing from the idea of recurrent neural network.

Neural networks and RNNs: The research of RNN centers on their capac-
ity to model sequential data by maintaining hidden states that adeptly capture
temporal dependencies. Recent studies in this domain involve the exploration of
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sophisticated architectures, notably long short-term memory (LSTM) networks
and gated recurrent units (GRUs), designed to mitigate the vanishing gradient
problems where the impact of past observations diminishes with each recurrence,
thereby enhancing the network’s proficiency in learning long-term dependencies
[19, 9]. The versatile applicability of RNNs is underscored across diverse domains,
including but not limited to natural language processing, time series prediction,
and generative tasks, affirming their efficacy in encapsulating intricate sequential
patterns [23, 10]. Most recently, transformer [43] has provided a more modern
and robust neural network architecture that eliminates the need of maintaining
a hidden state, something that requires sequential processing of the past infor-
mation, allowing higher training parallelism and learning more complex spatial
relationships of the data beyond their temporal (sequential) order. Distinct from
the previous literature, the present paper develops an RNN applied to transient
queueing performance analysis using only snapshot state information of the sys-
tem.

3 Proposed methodology

We consider the Gt/GI/n + GI queueing system having a nonstationary ar-
rival process with rate λ(t), independent and identically distributed (I.I.D.) service
times following a general distribution G, n servers, and customer abandonment
according to I.I.D. random variables following a general distribution F . Our goal
is to compute the (transient) trajectory of queueing performance metrics such as
the expected waiting time and server occupancy in a finite time. At each time step
t, NeuraliNQ aims to predict the next-step queueing performance based on (i) the
system state St at time t (the information needed to represent the “internal mem-
ory” of the system, which we will elaborate later), and (ii) the time-dependent
external model input βt, such as the arrival rate.

NeuraliNQ computes the trajectory for St at discrete time steps t = 1, 2, 3, . . .
. . . , T , conditional on some initial S0 and future βt parameters. Our key idea is a
stepwise lookahead recursion that maps the present system state St and the model
parameters βt to the next-step system state St+1, specifically, we write

St+1 = F(St,βt), t = 0, 1, 2, . . . (2)

where the function F , is trained using neural networks, which will be introduced
later. The training of F will be conducted parametrically. Specifically, we require
the knowledge of the structure of the distributions (e.g., Poisson arrivals) for per-
forming training data simulation, but not the precise values of their parameters
(e.g., the exact arrival rate). Let B be the spatial space of all nonstationary pa-
rameters. We assume B is finite and large enough to contain all possible values of
these parameters. For the example of the arrival rate, B = [λ, λ] for some λ ≥ 0
and λ <∞.

The development of NeuraliNQ follows the steps below:

i) Parameter sampling.
We generate training data for the steady-state and transient queueing perfor-
mance, we draw sample values from the continuous spatial parameter space
B following two steps. First, to learn the steady-state queue performance,
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we form a discrete basis S ≡ {β̂1, . . . , β̂k}, β̂i ∈ B, i = 1, . . . , k. We call S
the stationary basis of B. Next, to learn the transient queue performance, we
consider a representative parametric structure and draw samples of its param-
eters. As we will show later, we experiment with sinusoidal parametric arrivals
and sample of the amplitude and the frequency parameters of this structure
within a selected problem domain of a maximum arrival volume limit and a
maximum spectral (frequency) limit of the arrival domain. In this way, we
form the basis of the parametric functions; We call T the space of transient
basis.

ii) Training data generation.

(a) Using each β̂i in S, we conduct simulations of a stationary queueing system

under the (stationary) input parameter β̂i to estimate the corresponding
steady-state state values S∞

i . This step provides training data for learning
the pointwise steady state (PSS) of the queueing system (as if the system
were a stationary model).

(b) Using each transient samples in S, we simulate nonstationary trajectories
of the system state process so we can generate training data for learning the
transient response function (TRF) (to be specified later), which describes
the transient behavior when the system’s inputs (e.g., arrival rate) evolve
over time.

iii) Building the neural networks.
We use the training data generated in parts (a) and (b) of step (ii) to train
the PSS and TRF neural networks, and then we integrate them to develop
the function F as defined in (2).

See Figure 2 for a schematic illustration of these steps. We next provide details
for these steps. In this section, we restrict our attention to the prediction of the
mean waiting time E[W (t)]. In Section 4, we give results on other metrics such as
the mean queue length, probability of abandonment, and tail probability of delay.

3.1 Representation of the system state

As explained in (2), NeuraliNQ aims to make stepwise predictions of the sys-
tem’s transient performance. In order to precisely characterize the system dynam-
ics in a complex model, it is crucial to identify a proper system state representation
which is informative enough to describe the present characteristics of the model. In
a non-Markovian queue, this necessitates tracking a significant amount of informa-
tion beyond the queue length (e.g., the elapsed wait times of all waiting customers
and elapsed service times of those in service; see [47]). Unfortunately, expanding
the dimensionality of the neural network’s input disproportionately increases the
overall scale of the network and the effort required to train it. This motivates us
to identify the proper system state descriptor, St, which strikes a balance between
informativeness and simplicity.

In this paper, we choose St ≡ (E[W (t)],E[B(t)]), which tracks the mean wait-
ing time and server occupancy (i.e., fraction of busy servers) at t.1 Such a state
representation captures information from both sides of the queue: When the sys-
tem is overloaded (underloaded), E[W (t)] (E[B(t)]) is the predominant feature

1An alternative state representation may be St ≡ (E[Q(t)],E[B(t)]), which tracks the mean
number of waiting customers and server occupancy at t.
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that describes the system’s congestion level. While a one-sided descriptor might
suffice in a large-scale model - where a positive waiting time implies occupancy
close to 100% and a positive fraction of idle servers indicates 0 waiting time (see
the right-hand panel of Figure 2) - small-scale systems require both descriptors to
jointly determine waiting time. As depicted in the left-hand panel of Figure 3, the
occupancy is not close to 100% even when the waiting time is strictly positive.

The simplicity of our state representation might seem to challenge the conven-
tional view that tracking a system’s dynamics requires more than just the mean,
such as the second moment or the full distribution. However, our result will show
that the mean waiting time and occupancy already capture the required informa-
tion, so our neural networks do not explicitly require additional inputs. In fact,
the strength of our approach lies in its “black box” nature, as the training focuses
on the “end results” — namely, the waiting time data —rather than intermediate
steps. This approach contrasts with traditional queueing solutions, such as heavy-
traffic methods, which aim to uncover the underlying principles or logic driving
system dynamics.

3.2 Input sampling and simulation

In real service systems such as call centers, the most volatile model component
is the demand process that often frequently evolves in time. Therefore, in order to
predict the transient performance metrics, one should accurately capture the im-
pact of the evolving arrival rate λ(t) on the transient system dynamics. Comparing
to the arrival rate λ(t), other model inputs such as the service and abandonment
distributions are relatively static and can be easily calibrated from historical cus-
tomer data. For this reason, in the present paper we treat λ(t) as the NeuraliNQ’s
external input βt, and assume that the service and abandonment distributions are
given and remain unchanged in time.

In order for NeuraliNQ make performance predictions for any λ(t), we need to
effectively train our model using training data under various arrival patterns. We
do so by sampling potential values of the arrival rate within a sufficiently large
space B = [λ, λ̄], where 0 ≤ λ < λ̄ < ∞. First, we sample from B to form a

discrete basis Bk ≡ {λ̂1, . . . , λ̂k}, λ̂i ∈ B, i = 1, . . . , k. We conduct long-run sim-

ulations under each λ̂i in order to estimate the steady-state system performance,
called PSS. Next, to learn the transient queue performance, we consider cases of
representative nonstationary arrival functions following parametric forms, such as
sinusoidal and polynomial functions (because combinations of these functions can
be used to approximate any arrival patterns). By properly sampling parameters
of these parametric functions, we form a space of the bases of these parametric
functions.

3.3 Pointwise steady state.

The PSS at a fixed t, dubbed S∞
t , is the steady state of a queueing system

under a constant model model parameter βt. Hence, at each time t, there is a
t-indexed PSS. One way to interpret PSS is to imagine two separate time scales:
in a nonstationary queueing system, the system’s parameter βt varies as t evolves
on a slower scale; while at each t, there is a hypothetically faster PSS time scale
on which the model instantaneously adapts the new βt and converges to its steady
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state. At a glance, the PSS does not seem too relevant because, the sequence of
t-indexed PSS S∞

t is often significantly distinct from the transient state St at
t, see Figure 5 for an illustration. Indeed, the analysis of a queueing system’s
steady state and transient state are usually conducted separately in the queueing
theory literature.2 Nevertheless, as we will show later, we will build our stepwise
prediction scheme by treating the PSS S∞

t as a supervisor.

To generate representative training data of the steady-state waiting times, we
conduct simulation experiments under the parameters sampled from space B. A
simple strategy is to sample each λ̂i uniformly within [λ, λ]. Alternatively, one can
more frequently sample from the neighborhood of the arrival rates that may be
more predominant in practice. We hereby use a uniform sampling on the loga-
rithmic scale of the arrival rate. Under these arrival rate samples {λ̂1, . . . , λ̂k}, we
conduct simulations to estimate the PSS values (e.g., steady-state waiting times),

denoted as {Ŝ
∞
1 , . . . , Ŝ

∞
k }, which is the set of i-indexed steady-state performance

functions of the corresponding queueing system with Ŝ
∞
i ≡ GP (β̂i), assuming

each of the model parameters remains a constant β̂i, i = 1, . . . , k. Here GP (·) is
denotes the PSS function.

Fig. 4: Simulating the PSS values of waiting times under four arrival rate
samples.

See Figure 4 for an example with 4 simulated trajectories of the mean waiting
time (the solid line in the bottom panel). Each simulation should be kept long
enough in order for the system to reach its near-stationary performance under
stationary β̂i (hereby arrival rate λ̂i). As illustrated in Figure 4, the mean waiting
time trajectory eventually plateaus, reaching the stationary level (marked with
intermittent lines). Next, we use the example in Section 1.4 to demonstrate the
PSS. In Figure 5, we compare the PSS curves of the waiting time and occupancy,
to their corresponding transient paths as a function of time t. The PSS curves
are significantly different from the associated transient values: PSS intends to
immediately cope with the nonstationary arrival pattern, while the transient paths

2Previous ideas of using stationary performance to study nonstationary queues arise from
the optimal staffing problems, where the nonstationary staffing level nt at time t may be
approximately determined by optimizing the stationary state of a t-indexed queue; see [16] for
original idea of pointwise stationary approximation, also see [28] for a review of the relevant
staffing literature.
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are less sensitive to the fluctuations in the system parameters; they react to the
changes in the arrival rate after some time lag. In addition, the magnitude of the
fluctuations of the actual waiting time trajectory is much less than that of its PSS.

Fig. 5: Time-indexed PSS vs. transient trajectories: waiting time and occupancy.

In Figure 5 we see how this specific system transitions between its underloaded
(occupancy below 100%) and its overloaded mode, where it is operating at its full
capacity (occupancy is at 100%). Both for mean occupancy and mean waiting time
we observe that the PSS lines have two main characteristics. They are agnostic
to the current queue length state that has accumulated over time in the system,
something that forces the system to gradually drain from overloading when the
arrival rate is close to zero. This creates a natural delay between PSS and the ac-
tual metrics. Secondly, we observe that both occupancy and waiting time PSS lines
follow (almost) monotonically the arrival rate; when the arrival rate starts increas-
ing, both PSS lines also increase. We show in Figure 9 an example of a large-scale
system where this monotone happens sequentially, first for occupancy and then for
waiting time. This monotonic property of the vector S∞

t ≡ (E[W (t)∞],E[B(t)∞])
uniquely characterizes every arrival rate into a future asymptotic state point where
the system will tend to reach. The transition to this point is learned by our TRF
point. We note here that for small scale systems, only one of these two features is
enough to achieve this monotonic mapping to the arrival rate, since these systems
typically have non-zero waiting times for very low arrival rates, and they achieve
100% occupancy at extremely high rates (these metrics never get saturated and
do not lose their monotonicity).

The heart of NeuraliNQ builds on a recursive stepwise prediction procedure,
where the prediction at t + 1 draws from that at t. Therefore, the bootstrapping
design of NeuraliNQ could potentially suffer from the accumulation of prediction
errors as time increases (as it intends to learn a “guess” from another “guess”).
Although PSS is mostly distinct from the true transient performance, it can be
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used as a benchmark at each time step, and it can help supervise the prediction
process by reducing the cumulative prediction errors. For example, as showed in
Figure 4, the waiting time trajectory approaches its steady state at a faster (slower)
speed if its present value is further from (closer to) the steady state. Drawing from
this, PSS can alleviate accumulated errors by either accelerating or decelerating
the waiting time trajectories using the distance between the transient value and
PSS value: If the distance is higher than expected due to past errors, the predicted
trajectories will move faster toward their PSS targets, correcting the past errors to
some extent. In this way, is able to remain robust in longer predictive time frames.

Using the sampled parameters and their corresponding simulated data, our
PSS neural network is effectively trained to provide accurate steady-state values
under all parameters in the parameter space. Under all arrival rates λ ∈ B, we plot
the PSS values of the mean waiting time (bottom panel) and server occupancy (top
panel) in Figure 6. Unsurprisingly, both curves are monotonically increasing in λ.
In a large scale queue (e.g., n = 50), the waiting time (occupancy) becomes a more
informative performance descriptor when the system is overloaded (underloaded),
while the occupancy is 100% (waiting time is 0). However, in a smaller scale
example (e.g., n = 1), they describe the system state jointly.

Fig. 6: The fitted PSS curves for server occupancy and waiting time at different
system scale.

Remark 2 (Fitting the non-smooth PSS curves) Although we train a neural net-
work to fit the PSS curves, more conventional methods such as more straightfor-
ward curve-fitting methods (e.g. B-spline interpolation or regression algorithms)
can apply. The choice of using a neural network is for studying the relative complex-
ity of different PSS curves and understanding which neural network architecture
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can best fit these data, while achieving smoothness and preserving the non-smooth
properties of these curves (e.g. the transition point to overfitting for large scale
systems). Our TRF network architecture was greatly based on the best perform-
ing PSS network architecture, an indication that the inherent complexity to learn
these two datasets is similar (similar degrees of noise and a combination of smooth
and non-smooth characteristics). Beyond this research opportunity, one can easily
utilize modern automated machine learning (AutoML) methods for automating
the model selection and performing the subsequent hyper-parameter optimization
for PSS.

3.4 Transient response function

PSS learns the projected target for the performance functions under the as-
sumption that the parameter βt+1 remains a constant after t + 1. However, in
practical (nonstationary) queueing systems, the system parameters (e.g., λt) often

change rapidly, so there is not enough time for St+1 to reach its PSS Ŝ
∞
t+1. In fact,

at time t+ 1, the queueing trajectory may be on its way to reach Ŝ
∞
t+1, but it is

not quite there yet. Hence, to predict St+1, we need to quantify how far St+1 is
from its targeting PSS. This is handled by our transient response function (TRF),
denoted by GT .

TRF is trained using the pair of data values at every two successive time steps
(t, t+ 1) on all simulated transient trajectories, such as the waiting time pairs at

times (1, 2), (2, 3), (3, 4), etc. Taking inputs including St and PSS Ŝt+1 (computed
by the PSS neural network), TRF outputs St+1.

(a) The trained TRF surface. (b) The trained prediction curve.

Fig. 7: Prediction of ∆St+1 as a function of the PSS (panel (a)) and the arrival
rate (panel (b)) at t. The dotted lines correspond to the zero z values.

Unlike PSS, TRF is a two-parameter function that maps the present state
St and the PSS Ŝ

∞
t+1 to the predicted St+1; see Figure 7 for an illustration of

a learned TRF curve of the waiting time. The philosophy of TRF is to predict
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the process “derivative” ∆St+1 ≡ St+1 − St, the increment of the state from t
to t + 1 (z axis in Figure 7), based on the present state St and PSS Ŝ

∞
t . When

the present state St is close to Ŝ
∞
t , the system state remains unchanged from t

to t + 1 (this corresponds to the dotted curve in panel (a) that has 0 z values).

When St < (>)Ŝ
∞
t , a positive (negative) ∆St+1 is prescribed, which gives the

predicted St+1 = St + ∆St+1. This explains why the dotted line corresponding
to the dotted line in Figure 7a is close to a 45-degree line.

Unlike PSS which responds to the changes in the arrival rate instantaneously,
TRF properly balances the new arrival rate (via its PSS) and the previous system
state, resulting a more gradual and smooth transition from t to t+1. As depicted
in Figure 5, the fluctuations in the nonstationary trajectories of the waiting time
and server occupancy are much less drastically than those in the PSS curves. With
the PSS providing directional guidance, TRF is able to quantify the increment of
the state process from t to t+ 1.

3.5 Neural networks

Using PSS and TRF, we obtain our predicted value of the next-step state as
below:

Ŝ
∞
t+1 ← GP

(
βt+1

)
, (3)

Ŝt+1 ← GT
(
St, Ŝ

∞
t+1

)
. (4)

From the training data, we learn the two functions (3) and (4) using two feedfor-
ward neural networks; see panel (a) in Figure 8 for the complete architecture of
our stepwise lookahead prediction model. These two neural networks have similar
architecture, consisting of alternating linear and non-linear layers.
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(b) The architecture of the two neural
networks.

Fig. 8: The neural network architecture.

The motivation behind using two separate networks for PSS GP and TRF GT is
twofold. On the one hand, separating these predictions offers better explainability
on how the system learns the transient and stationary behavior. On the other hand,
this helps to keep the cumulative prediction error under control in long prediction
horizons. Because NeuraliNQ predicts the next-step system value based on the
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present value (which itself is also a prediction using past values), this recursion
might potentially suffer from accumulated errors as time evolves. Nevertheless, the
next-step PSS is independent of the past prediction error (see Equation (3)), so
it can apply necessary corrective adjustments to the prediction process to prevent
the predicted system function from diverging from its true trajectory. See our later
examples (e.g., Figure 15) where we show that PSS plays a critical supervisor role.

4 Numerical Experiments

In this section, we evaluate the effectiveness and robustness of NeuraliNQ.
Given the data driven approach and its inherent black-box nature of our method,
it is difficult to provide a theoretical guarantees of its performance. For this reason,
we conduct a comprehensive set of numerical studies to evaluate the performance
of NeuraliNQ. In Section 4.1, we describe the detailed settings of our numerical ex-
periments. In Section 4.2, we apply NeuraliNQ to compute the mean waiting times
in an Mt/GI/n + GI base example; we test the robustness of NeuraliNQ under
various model settings, including different system scale, arrival-rate pattern, low
and high variability of service and abandonment times, and non-Poisson arrivals.
In all these examples, we use the fluid approximation as a performance benchmark.
In Section 4.3, we consider other predominant service-level metrics including the
mean queue length, probability of abandonment and tail probability of delay. In
Section 4.4 we evaluate the generalization capabilities and limits of NeuraliNQ
with various nonstationary arrival patterns, both synthetic such as square and
triangular waves, and one realistic arrival example taken from a contact center.

4.1 Experiment Settings

4.1.1 Simulation and input sampling

Our model’s training data are obtained via simulations and are split into two
main categories, one for the PSS neural network and the other for the TRF net-
work. In each category, we sample parameters of the arrival process within pre-
specified bounds of interest (i.e., arrival volume bounds).

For every presented queueing system below, we sample the arrival process
parameter λ̂1, . . . , λ̂k by drawing k = 200 samples in [λ, λ̄] =

[
0, e3

]
. We simulate

the steady-state waiting time and service occupancy under each arrival rate λ̂i. To
do so, we run the simulation until a large time Tp (here we set Tp = 50 time units).
We note here that because we run simulations in a high-compute system, we tune
Tp empirically, and we confirm the system reached a steady state by detecting an
unchanged moving average for k = 20 consecutive intervals.

In order to generate transient training data, we consider sinusoidal arrival func-
tions in form of λ(t) = (a + b · sin(ct)) where we sample the parameters a, b, c in
proper local spaces. We select this arrival-rate pattern due to its following proper-
ties: a) It provides an easy way to span the predefined arrival process bounds, in
this case [0, a+ b] for the volume bounds and (0, c/2π] for the frequency bounds.
These two bounds can be easily estimated for any local space by taking the max-
imum of all possible arrival volumes; also, any arrival space can be transformed
into its spectral space via a Fourier transformation by taking the maximum har-
monic. b) It provides a convenient way to generate arrivals that drives the system
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to transition between its underloaded and overloaded state. However, We note
here that this arrival generation basis is limited to continuous and smooth arrivals
only, without rapid changes between high and low volumes. We discuss the im-
pact of this limitation and how to overcome it in Section 4.4 where we explore
the generalization ability of our method. We hereby consider a ∈ (0, e3/2], and
b, c ∈ (0, e3], and uniformly draw 160 samples. Under each arrival rate sample, we
simulate trajectories of waiting time and occupancy in the time window [0, T ] (we
set T = 20 time units).

For each simulation scenario, we begin with an initially empty system and
obtain the Monte Carlo estimated mean waiting time trajectory by averaging Ns

independent simulation paths. We set Ns = 50, 000 for small and median scale
systems and Ns = 10, 000 for higher scale systems (in all cases we control the
standard error within 0.01 for every learned metric.). We operate in a finite time
interval [0, T ] and discretize time with step size ∆t ≡ 0.05 (see Appendix B for a
detailed analysis on this decision).

4.1.2 Structuring and training the PSS and TRF neural networks

We train the two networks separately: We first train PSS, and then we use
the trained PSS neural network as an upstream module during the TRF training.
Separating PSS and TRF as two individual neural networks can help improve
the overall model explainability; this allows us to easily examine and measure the
accuracy and limitation of each network, and to fine-tune their hyperparameters
for improved performance.

The PSS neural network. Our PSS neural network consists of 11 layers in
total and has a width of 500 neurons. We select convenient activation functions that
are suitable for the steady-state waiting times curves, which are are locally smooth
and likely contain non-smooth neighborhood around the point of critical loading
(where the system has low waiting time and high service occupancy); see Figure 6.
We conduct extensive experiments to identify the neural network architecture that
can successfully capture smooth and non-smooth sections of the PSS curve while
avoiding overfitting the noisy data. These idiomatic characteristics of the data
lead us to compose a combination of activation functions that strikes the right
balance in distinguishing this data noise and the non-smooth curve properties,
something that we discover is hard for a single type of activation function. For
this reason, we separate the network in two branches, each branch designed to
address each aspect by leveraging the properties of different activation functions.
As shown in panel (b) of Figure 8, PSS consists of several common activation
functions including linear, Tanh, sinusoidal and ReLU. The common Tanh layer
alone can capture smooth and nonlinear functions, but it fails to account for non-
smooth characteristics. Therefore, inspired by [42], we include a periodic activation
function (e.g., sinusoidal) on a parallel branch of the original Tanh sequential
network. The output of these two parallel sequential networks is concatenated
together and then passed through alternating affine and ReLU layers, with a final
ReLU to ensure non-negative results.

The TRF neural network. Our TRF network has 9 layers and a width of
2000 neurons. (We increase the scale here to account for the higher complexity
in TRF than PSS.) As shown in Figure 8b, we use alternating linear layers (with
bias) and layers with smooth non-linear activation functions, including Tanh and
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ReLU. See Figure 7 for an illustration of a learned TRF surface. Because the
TRF surface is more smooth than the PSS curve, we omit the periodic activation
function.

The training of the two networks can be performed sequentially for the ease
of implementation and parameter fine-tuning. We present the sequential training
settings below with the training hyperparameters tuned specifically for each net-
work. The sizes of the training samples are 200 for PSS and 63840 for TRF. We
use a training batch size of 50 samples, 5000 epochs, and a slow learning rate of
2× 10−7 for training the PSS model. We use a batch size of 500, 2000 epochs for
TRF and a learning rate of 10−7. For both networks, we use the Adam stochastic
optimization [24] and an L1 loss function (i.e., the mean absolute error). The total
epochs for PSS are 30000, and for TRF, are 3000.

The motivation behind the above training volume choices is primarily from
the domain knowledge of the data characteristics and their properties. Specifically
the PSS training data need to be dense to accurately characterize the transition
point between the underloaded and overloaded modes, a point that is not neces-
sarily known during the problem space parametric sampling. We follow the same
motivation when we sample the transient space using a similar order of magni-
tude of parametric samples. Finally, we use the empirical insights from [22] on the
minimum number of network parameters conditional on the size of the training
data for avoiding overfitting, while we use very large numbers of epochs (inversely
proportional to the training data volume) combined with very small learning rates
to avoid data regularization and early stopping (we consider a slower network
learning a simpler method to avoid overfitting in this type of data).

4.1.3 Running times

To generate the training data, we run Monte Carlo simulations on a compute
cluster of 72 CPU cores. The average run time for each simulated scenario is
around 15 minutes, resulting in approximately four days of simulation compute
time for generating the training data of a queueing system. Once the training is
completed, NeuraliNQ’s prediction time is approximately 350 milliseconds on a
single CPU (200 milliseconds on a GPU), reducing computational cost by several
orders of magnitude. The nearly negligible prediction time enables NeuraliNQ to be
used in real-time management and prediction of a queueing system. On the other
hand, the running time for simulating each path is approximately 15 minutes, and
NeuraliNQ’s offline training runtime for the experiments presented in this paper
is approximately 15 minutes.

4.2 Performance Evaluation

We evaluate the solution accuracy of NeuraliNQ by benchmarking with the
Monte-Carlo simulated results, which we refer to as the ground truths. In the
following experiments we report the end-to-end performance of our method while
we omit the accuracy of the intermediate PSS network. See Appendix A for a
complete report of the PSS performance.

We extend the Mt/H2/n + E2 example defined in Section 1.4 having non-
homogenous Poisson arrivals, I.I.D. H2 service times, and I.I.D. E2 abandon-
ment times. To quantify the solution fidelity, we compute the time-averaged mean
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squared error (TAMSE). Specifically, we define the TAMSEs of NeuraliNQ ED
and the fluid model EF as:

ED ≡ 1

T

T∑
t=1

(
eDt

)2
and EF ≡ 1

T

T∑
t=1

(
eFt

)2
, (5)

where eDt and eFt are the prediction errors (i.e., the simple sum of the absolute
difference of predicted value and the ground truth metrics) of NeuraliNQ and the
fluid model at time t.

Unlike the fluid model approximation, the performance of NeuraliNQ should be
robust to the system scale. To validate this point, we scale our base Mt/H2/n+E2

model introduced in Section 1.4 by multiplying the arrival rate and the staffing
level with a factor n (referred to as the system scale). Specifically, we consider the
arrival rate

λn(t) = n(1 + r · sin(ct)). (6)

Here, besides the scale n which controls the system’s size, the relative amplitude
r and the frequency parameter c account for how the arrival process fluctuates in
space and time. We also examine other arrival rate functions later.

4.2.1 On the system scale n

In Table 1, we report the recursive average TAMSEs for NeuraliNQ and fluid
model with the system scale n = 1, 10, 25, 50 in the interval [0, T ], T = 10, for all
different combinations of r = 0.05, 0.3, 0.5, 0.7, 0.9 and c = {0.144, 0.372, 0.961,
2.479}π. Unlike the fluid approximation, where the accuracy degrades as n de-
creases, the TAMSE of NeuraliNQ is robust to n. In particular, when the system
has a smaller scale, NeuraliNQ outperforms the fluid approximation by yielding a
smaller TAMSE (e.g., n = 1, 10). When the system scale is relatively larger (e.g.,
n = 50), both methods are effective showcasing similar TAMSE values. Also see
Figure 9 for the performance curves at two system scales.

System scale n 1 10 30 50

Fluid 2.73e+0 9.84e-3 3.47e-3 2.73e-3
NeuraliNQ 2.23e-3 2.93e-4 3.82e-4 1.09e-3

Table 1: Fluid model vs. NeuraliNQ: TAMSE under different system scale n

4.2.2 On the frequency c and relative amplitude r

We next test the robustness of NeuraliNQ to the frequency parameter c. In
Table 2, we report the TAMSEs for c = {0.144, 0.372, 0.961, 2.479}π (each time
we calculate the average for every different amplitude r = 0.05, 0.3, 0.5, 0.7, 0.9 at
scale n = 1). Table 2 shows that NeuraliNQ remains effective and robust in c. Also
see Figure 10 for the performance of NeuraliNQ under a frequently varying arrival
rate.
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Fig. 9: NeuraliNQ vs. fluid with a sinusoidal arrival with c = 0.022 for various
scales.

Fig. 10: NeuraliNQ vs. fluid: A sinusoidal arrival rate with c = 2.479π.

Frequency c/π 0.144 0.372 0.961 2.479

Fluid 2.73e+0 3.03e+0 3.17e+0 3.21e+0
NeuraliNQ 2.23e-3 3.49e-3 6.90e-3 3.05e-3

Table 2: Fluid model vs. NeuraliNQ: TAMSE under different frequencies

We also evaluate the performance NeuraliNQ under different relative ampli-
tude r of the arrival process (6). In Table 3, we report the TAMSEs for r =
0.05, 0.3, 0.5, 0.7, 0.9 (each time we calculate the average for every different fre-
quency c = {0.144, 0.372, 0.961, 2.479}π at scale n = 1). Table 3 shows that
NeuraliNQ remains effective and robust in r, consistently yielding more accurate
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results with TAMSEs three orders of magnitude smaller than those of the fluid
approximation.

Rel. amplitude r 0.05 0.3 0.5 0.7 0.9

Fluid 1.62e+0 1.86e+0 2.08e+0 2.30e+0 2.58e+0
NeuraliNQ 5.36e-3 6.65e-3 6.22e-3 4.96e-3 3.03e-3

Table 3: Fluid model vs. NeuraliNQ: TAMSEs under different relative amplitudes

4.2.3 Transitions between underloaded and overloaded intervals

Nonstationary queueing systems are already complex and difficult to treat, and
the analysis becomes even more involved when the system constantly alternates
between underloaded and overloaded intervals, where in the former scenario the
system has smaller waiting times and some idle servers, while in the latter case
the system exhibits longer waiting times and no idle server. In the extant queue-
ing theory literature, these two cases are often analyzed separately. For example,
when the system scale is large, an underloaded system is operating in the so-called
quality-driven (QD) regime and is asymptotically equivalent to the corresponding
infinite-server queue; an overloaded system is operating in the efficiency-driven
(ED) regime which can be reformulated as another age-truncated infinite-server
queue having “service” times corresponding to customers’ abandonment times [33].
A useful way to treat a queueing system that constantly switches between under-
loaded and overloaded intervals is via the following steps: (i) identify the successive
overloaded and underloaded intervals; (ii) characterize the model dynamics within
each interval; and (iii) piece these interval-specific results together alternately until
the entire time horizon is covered [31].

This strategy often is effective for the interior of an underloaded (overloaded)
interval, but the solution fidelity usually degrades around the transition time points
where the system is going through the critically loaded state to move from under-
loading (overloading) to overloading (underloading). The main issue is that, these
transition times, treated as deterministic times in the above method, are in fact
random variables, so that the system evolution is usually quite smooth between two
intervals, while the above-mentioned approximation often gives non-smooth per-
formance curves around these time points; see numerical results in [31]. NeuraliNQ,
on the other hand, is insensitive to the system’s workload, so it remains effective
regardless of the system’s congestion level (overloaded, underloaded, or critically
loaded). According to Figure 3, NeuraliNQ’s prediction is able to smoothly cope
with the performance functions even when the system constantly switches between
underloaded and overloaded intervals. Also see Table 4 for consistently good per-
formance of NeuraliNQ under both system scales (with NeuraliNQ yielding a lower
TAMSE).
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System scale n 1 50

Fluid 1.93e+0 1.30e-3
NeuraliNQ 7.08e-4 6.52e-4

Table 4: Fluid model vs. NeuraliNQ: During alternating overloaded and
underloaded intervals

4.2.4 Stochastic variabilities in service times

We investigate the impact of the service distribution on the effectiveness of
NeuraliNQ. To partially describe the service-time distribution beyond the mean,
we use the squared coefficient of variation SCV c2S ≡ Var(S)/(E[S]2) of the service
time S. We consider three Mt/GI/n + E2 queueing systems that are distinct in
only the service-time distribution (having the same mean service time 1/µ = 1).
Specifically, we consider (i) H2 service with c2s = 4, (ii) M service with c2s = 1, and
(iii) E2 service with c2s = 1/2. For each system, we follow our method as described
in Section 4.1.1 for generating the training data and we train the corresponding
RNNs using the same hyper-parameters of Section 4.1.2.

SCV c2S 0.5 1 4

Fluid 1.61e-1 3.36e-1 2.73e+0
NeuraliNQ 2.09e-4 2.39e-4 2.23e-3

Table 5: Fluid model vs. NeuraliNQ: TAMSEs under different service CSVs.

Table 5 confirms NeuraliNQ’s effectiveness; it exhibits TAMSEs that are three
orders of magnitude smaller than that of the fluid model. In this table, we report
the average TAMSAE for every combination of the parameters c = {0.144, 0.372,
0.961, 2.479}π, r = 0.05, 0.3, 0.5, 0.7, 0.9 and n = 1.

4.2.5 Non-Poisson arrivals

We next consider the fully non-Markovian setting featuring a non-Poisson ar-
rival processGt. We follow the combined inversion-and-thinning algorithm (CIATA)
[27] for modeling a nonstationary non-Poisson process (NNPP). Specifically, we
consider the Gt/H2/n + E2 model, which is our base example with its Mt ar-
rival replaced by a Gt arrival constructed using H2 distributed interarrival seeds.
CIATA follows three steps: First, we build a piecewise constant majorizing arrival
rates; second, we generate successive equilibrium renewal processes having the
majorizing rate and desired H2 variability parameter; and finally, we conduct an
acceptance-rejection process to determine the actually arrival count using the ac-
ceptance probability defined as the real arrival rate divided by its majorizing value.
See [27] for details. Distinct from an Mt arrival process where the dispersion ratio
(i.e., D(t) ≡ Var(N(t))/E[N(t)]) is 1, this Gt arrival process is overly dispersed,
exhibiting a nonstationary dispersion ratio exceeding 1 (Panel (b) in Figure 11).
See [27] and references therein for empirical evidence of over dispersion in arrival
data and other practical motivations of NNPP.
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Fig. 11: NeuraliNQ vs. fluid approximation: The Gt/H2/n+ E2 model having
NNPP arrivals.

According to Figure 11, NeuraliNQ maintains its effectiveness for Gt arrivals,
consistently outperforming the fluid approach. We note here that D(t) is by nature
more stochastic and even with 50.000 simulation Monte Carlo paths appears very
noisy. In contrast, the solution accuracy of the fluid approximation degrades in
the Gt case because it is unable to capture the distributional information beyond
the mean values (i.e., arrival rate) of the arrival process.

4.3 Other performance metrics

So far, our numerical experiments have been focusing on the computation of
the mean waiting times. However, several other service-level metrics are of prac-
tical relevance in modern service systems including: (i) the queue length, (ii) the
probability of abandonment, which is the probability a customer abandons from the
waiting queue (i.e., P(W (t) > A) with A being a generic customer abandonment
time), (iii) the probability of delay, which is the probability a customer experiences
a positive waiting time (i.e., P(W (t) > 0)), and (iv) the TPoD, which is the proba-
bility a customer’s waiting time exceeds some target τ > 0 (i.e., P(W (t) > τ)). See
[28] for a review of these service-level metrics and their applications in service sys-
tems. In the extant literature, heavy-traffic methods are developed to treat these
metrics. However, the methodologies for analyzing and controlling a queueing sys-
tem with the goal of achieving desired service-level targets differ in the choice of the
above-mentioned metrics, and because the mathematical properties of the asymp-
totic heavy-traffic limits are different. For example, achieving a desired probability
of delay target asymptotically puts the system in the quality-and-efficiency (QED)
regime, which controlling the TPoD sets the model in the efficiency-driven (ED)
regime.
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In contrast, NeuraliNQ treats these above-mentioned service-level metrics in
nearly identical ways. Our approach is to slightly modify the structure of Neu-
raliNQ by including the desired service-level metric in its state. For example, to
compute the TPoD P(Wt > τ) for a given delay target τ > 0, we augment the state
to St = (E[Wt],E[Bt],P(Wt > τ)). The remaining settings of the neural networks
remain the same as the base model.

Fig. 12: NeuraliNQ vs. simulations: Predictions of other performance metrics
including the mean queue length, probability of abandonment, and TPoD with

τ = 2 for the small-scale system and τ = 1 for the large-scale system.

We consider our base Mt/H2/n+ E2 example. In figure 12, besides the mean
waiting time and occupancy, we report NeuraliNQ’s predictions for the mean queue
length, probability of abandonment, and TPoD. Here the waiting time target is τ =
1 for a high-scale system (right-hand panels) and is τ = 2 for a low-scale system
(left-hand panels). Consistent with earlier results, we see high predictive accuracy
in both examples. These examples show that the effectiveness of NeuraliNQ is
robust to the choices of the service-level metrics. In addition, NeuraliNQ is able to
treat the more complex metric, such as TPoD, that draws from the distributional
information above the mean waiting time, metrics that the fluid approximation
cannot produce. Also, the treatment of TPoD is conceptional more straightforward
in NeuraliNQ, while the heavy-traffic analysis on TPoD is quite involved and
only available in certain cases (for example, TPoD is intractable in queues having
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G service times). We note here that the inclusion of additional metrics would
eventually require additional hyper-parameter tuning of the neural networks, as
they will need to learn more information (e.g., additional PSS and TRF). Although
our preliminary studies show promising results, we have not carefully investigated
how a more comprehensive neural network can be built to efficiently cover all
desired performance metrics under minimum training efforts. This will be one of
our future directions.

4.4 Other Arrival Patterns

In the previous subsections, most performance evaluations of NeuraliNQ were
conducted under sinusoidal arrivals, with the model trained using data generated
from sinusoidal arrival rates. This might raise the question of NeuraliNQ’s ability
to generalize to other arrival patterns. In this subsection, we apply the NeuraliNQ
model - trained on sinusoidal data - to predict waiting times for models with
non-sinusoidal (out-of-sample) arrival patterns. In Subsection 4.4.1 we consider
an arrival function arising from realistic call-center data. In Subsection 4.4.2 we
evaluate NeuraliNQ’s performance on various non-sinusoidal, non-smooth, and
discontinuous patterns, including trapezoidal, triangular, square, and sawtooth.
Finally, in Subsection 4.4.3, we discuss potential strategies for fine-tuning the
model to handle these new patterns, when needed.

4.4.1 More realistic arrival rate

Next, we evaluate the performance of NeuraliNQ under a more realistic ar-
rival pattern. Specifically, we consider our base example having the arrival rate
estimated from the arrival data in an Israeli call center [5]; see the top panel of
Figure 13. We resample the arrival rate for hourly time units while we assume scale
n = 50 to better emphasize the transition between overloaded and underloaded
periods. Finally, to achieve high degrees of resolution, we smoothen the original
piece-wise stationary arrival rates by performing a simple linear interpolation.

Fig. 13: Fluid model vs. NeuraliNQ: A realistic call-center arrival rate.
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As seen in Figure 13, NeuraliNQ maintains its effectiveness by achieving highly
accurate waiting-time predictions. The TAMSE of this example is 4.9×10−5. In
this example, we used the Mt/H2/n + E2 model with scale n = 10, trained as
described in Section 4.1, but didn’t rescale the plot to match the original arrival
rates per interval. The time axis of Figure 13 represents the hour of the day.

4.4.2 Other nonstationary arrival patterns

Fig. 14: NeuraliNQ vs. simulations for trapezoid and triangular arrival rates.

Fig. 15: NeuraliNQ vs. simulations for square and sawtooth arrival rates.
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In this subsection, we assess the generalization capabilities of our method for
different arrival patterns. Specifically, we apply our model - previously trained
on sinusoidal arrival rates as in (6) - to predict the transient queueing dynamics
with non-sinusoidal and non-smooth arrival rates, including (i) trapezoidal, (ii)
triangular, (iii) square, and (iv) sawtooth patterns.

Our numerical examples show good performance similar to that in Section 4.2
(with TAMSE of 2.73e-3 and 3.01e-3 for the trapezoid and triangular waveforms
respectively). In Figure 14, we present each wave form, the model predictions
for waiting time, queue length and TPoD P(Wt > τ) with τ = 2.0, and the
corresponding ground truth from simulation.

The strong performance in the trapezoidal and triangular cases is not surpris-
ing, as these are continuous functions that are relatively similar to sinusoidal pat-
terns. In contrast, the square and sawtooth arrival patterns, being discontinuous
and featuring abrupt jumps, present a greater challenge. We expect NeuraliNQ,
trained on sinusoidal data, to be less effective in these scenarios. This issue is most
pronounced in regions where Ŝ

∞
t+1 significantly deviates from St, particularly when

Ŝ
∞
t+1 is much larger or smaller than St. According to (3), this corresponds to high

βt+1 and low St, or vice versa. Indeed, Figure 15 shows that NeuraliNQ tends to
underestimate both waiting times and queue lengths when the arrival rate drops
sharply to a much lower value. This occurs because the sinusoidal training data
fails to adequately capture the queueing dynamics that arise under such drastic
changes in arrival rates. In the next subsection, we investigate how NeuraliNQ
can be further fine tuned in order to better represent these discontinuous arrival
patterns.

4.4.3 Fine-tuning the TRF network for discontinuous arrival patterns.

One of the benefits of NeuraliNQ compared to analytical methods is the conve-
nience of improving its accuracy using additional training data. In this section, we
demonstrate this by improving the accuracy of a model trained on sinusoidal ar-
rivals (as proposed in Section 4.2), for the square and sawtooth arrival trajectories
presented in the previous Section, where our method reaches its limits (see Figure
15). As already discussed, our method is less accurate for the under-represented
training data combination of low arrival rates in βt+1 and highly congested cur-
rent state St. To mitigate this data gap, we include additional training data for
training our TRF model (our PSS model is not affected by transient patterns since
its only function is to predict the asymptotic equilibrium state) that contain such
combinations of βt+1 and St.

These under-represented combinations can be simulated using piecewise con-
stant arrival patterns. For example, we keep a high arrival rate c1 for time t1
and switch to a low arrival rate c2 so we can capture the “draining” process of
the queue. We repeat our method by including 40 additional training trajectories
with randomly sampled parameters t1, c1 and c2. We note here that this under-
represented problem space is very narrow compared to the rest of the learned TRF
surface (the top side of panel (b) in Figure 7). For this reason, the additional data
needed are fairly limited compared to the 160 sinusoidal arrivals. Keeping the same
training hyperparameters as before, we retrain the TRF network and reevaluate
NeuraliNQ for the same square and sawtooth arrival patterns. This resulted in a
significant improvement in accuracy, reducing errors from 4.45e-2 in the initially
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Fig. 16: NeuraliNQ vs. simulations for square and sawtooth arrival rates using a
fine-tuned TRF network.

trained TRF to 3.65e-3 after retraining with the new data. Figure 16 illustrates
the performance of the improved NeuraliNQ, showing a marked reduction in errors
during sudden drops in arrival rates, where the original network had previously
performed suboptimally.

We summarize our findings: to enable NeuraliNQ to handle a wide range of
arrival patterns, the training process should incorporate data generated under
both continuous and discrete arrival rates. The discrete case may be particularly
important in practice, as demand forecasting in real-world service systems often
assumes a constant arrival rate over successive intervals, such as 30 minutes or
1 hour. In practice, NeuraliNQ performs at its best when guided by a user with
a deep understanding of the problem structure. In such cases, the improvement
process is conceptually straightforward, as these new steps are a natural extension
of the existing training pipeline. This further highlights the flexibility and ease of
use that NeuraliNQ offers.

5 Discussions

In this section, we give in-depth discussions to generate additional insights. We
first explain why the snapshot information appears to be sufficient in the stepwise
look-ahead prediction process. Next, we explore NeuraliNQ’s distinct advantages
when compared to the other two approaches prevalent in the existing literature:
simulation and heavy-traffic approximation.

5.1 Does earlier system information help better predict future state?

As illustrated in Section 4, it is evident that our NeuraliNQ framework is able
to effectively predict the future queueing performance (e.g., mean waiting time
at t + 1) based on the “snapshot” of the system (i.e., mean waiting time at t).
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Notably, it does so in a non-Markovian queue with non-Poisson arrivals, and non-
exponential service and abandonment times. This may seem counterintuitive, as
traditionally, only in a Markovian model is the system’s dynamics fully charac-
terized by the present state. The general perception of non-Markovian systems is
that the present state provides only partial descriptions for the system’s evolu-
tionary state. Hence, given the state at t, the prediction of the future can often
be improved by providing additional information of past states (before t), because
this can help add supplemental information about time t.

Upon initial inspection, the exceptional performance of NeuraliNQ appears to
defy common expectations for non-Markovian systems. However, this perception
can be misleading; we elaborate this below. A Markov model (e.g., Markov chain)
is often defined using the so-called Markov property in form of a conditional prob-
ability. Specifically, we require that P(Yt+1 = j|Yt, Yt−1, . . . , Y0) = P(Yt+1 = j|Yt),
in order for the process {Yt, t = 0, 1, 2, . . .} to be a Markov chain. On the other
hand, if the above equality is violated, Yt is no longer a Markov chain. A queueing
system featuring non-Poisson arrivals, and nonexponential service and abandon-
ment times is evidently not a Markov chain. In fact, NeuraliNQ is by no means
assuming so. Specifically, NeuraliNQ’s stepwise look-ahead procedure utilizes the
sample-averaged system state (e.g., mean waiting time) rather than the realized
system state (e.g., the observed waiting time) to predict future sample-averaged
system state. The distinction is that the former describes the system’s aggregated
state accounting for all possible scenarios while the latter is based on one partic-
ular scenario. Taking the queue length as an example: when abandonment times
are nonexponential, knowing that there are 10 customers waiting in the queue at
t is not sufficient to predict the next event, unless we know the precise ages of
these 10 customers; in case of deterministic abandonment times, if all ages are
small (large), then less (more) customers are likely to abandonment in the next
moment. In contrast, the information that the expected queue length is 10 has
already taken into account all possible scenarios (including cases of larger and
smaller ages).

Number of earlier states j 1 2 3 4 5

TAMSE 2.24e-3 2.22e-3 2.27e-3 2.18e-3 2.22e-3

Table 6: TAMSEs under additional earlier states

To give quantitative verification, we extend the snapshot state space in Neural-
iNQ by including additional earlier states. In particular, we extend the prediction
framework from (2) to

St+1 = F((St...St−j),βt), t = j, j + 1, j + 2, . . . (7)

where we predict St+1 using a sequence of previous states (St...St−j) of length j ≥
1. In Table 6 we report the TAMSEs of NeuraliNQ under j = 1, . . . , 5. Our results
reveal similar values of TAMSEs and confirm that the inclusion of additional
previous states does not improve the prediction accuracy. This experiment shows
that the snapshot information is sufficient for NeuraliNQ.
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5.2 NeuraliNQ vs. computer simulation

Simulation is frequently the preferred method when dealing with complex
queueing systems due to its ability to produce performance analysis results with
limited to zero analytical efforts. With full knowledge of the system parameters
and sufficient computational resource, simulation is guaranteed to yield very ac-
curate results. Nevertheless, some advantages are associated with our proposed
approach compared to simulation.

First, NeuraliNQ exhibits a significantly superior advantage in runtime when
compared to simulation. As the previous section shows, Monte-Carlo simulation for
the mean waiting time require 3-4 orders of magnitude more time than NeuraliNQ
to produce high-quality performance results. Although the training of NeuraliNQ
builds on simulated queueing data, NeuraliNQ is able to “remember” all training
data under different model settings (e.g., arrival patterns). On the other hand,
simulation is in general a “brute force” approach which does not recycle results
from other simulation runs. In this sense, NeuraliNQ is a more efficient approach.

Next, NeuraliNQ is conceptually simpler and exhibits greater ease of imple-
mentation when compared to simulation. To estimate the mean waiting times,
Monte-Carlo simulation necessitates the generation of many independent sample
paths, each requires the execution of discrete event simulation which operates at
the level of all detailed elements within a queueing system, such as exact moment
of the next arrival time, and the remaining abandonment and service times, etc. In
addition, to advance the simulation clock on each sample path, the system needs
to memorize all above information, necessitating stringent requirement on data
structure and storage. In contrast, NeuraliNQ operates directly on the abstraction
level of the end outcome (e.g., mean waiting time), something that allows us to
produce accurate predictions without this level of state details, but rather only one
time-frame’s history. This, combined with the low prediction latency, makes our
method applicable for near real-time predictions upon receiving the most recent
state observations.

5.3 NeuraliNQ vs. heavy-traffic methods

First, fluid model yields high fidelity results when the system scale is high,
but its approximation begins to degrade as the system scale decreases. This is
common to all heavy-traffic approximations because they arise from the limiting
results derived as the scale approaches infinity. On the contrary, NeuraliNQ, a scale
free method, is able to produce accurate predictions for systems in both small and
large scales.

Second, as an analytic approach, heavy-traffic methods operate on the com-
plete knowledge and closed-form representations of all system characteristics, such
as the service-time and patience-time distributions, and the analytical arrival pro-
cess model. On the contrary, NeuraliNQ operates directly on queueing data such
as the waiting times (instead of waiting time distributions). In this study, Neu-
raliNQ is trained using simulated data of which the generation indeed requires all
model characteristics of a queueing system. However, NeuraliNQ can potentially
be trained directly using the arrival patterns from empirical data collected from
real service systems. For example, when training NeuraliNQ for a specific service
system, instead of relying on synthetic arrival-rate patterns such as sinusoidal
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waves, one can use real arrival rates from historical data (if available). This ap-
proach allows the trained NeuraliNQ to become more attuned to the actual arrival
rate structure of that particular system.

Next, heavy-traffic methods rely on model inputs spanning the entire time hori-
zon (e.g., the global arrival-rate function over the entire [0, T ] interval), whereas
the stepwise lookahead nature of NeuraliNQ requires only local model informa-
tion at each prediction time (e.g., arrival rate at the next time step). The latter
exhibits two advantages: First, the stepwise structure can largely reduce the di-
mensionality of the input variables of the neural network, thus reducing the scale
of the network and lowering the training efforts (at each time t, NeuraliNQ relies
only on the local arrival rate at t). Second, as the future arrival forecast tends to
become less accurate as the future prediction horizon increases, it becomes unnec-
essary to immediately require an accurate arrival forecast at further future steps.
In real-time operations, more accurate demand forecast for time t usually becomes
available as we approach t, so that NeuraliNQ is able to take into account such
timely updates in order to produce more accurate results.

Last, analytic approaches (exact or heavy-traffic analysis) are developed under
specific model settings. For example, the investigations of Markovian models and
non-Markovian models draw from completely different methodologies, and con-
trolling different service-level metrics give rise to distinct asymptotic regimes (for
example, setting a nontrivial target for the probability of delay requires the system
to operate in the heavy-traffic QED regime, while a positive waiting time target
puts the system in the ED regime in presence of customer abandonment). Hence,
changing the model setting or performance target often require the development
of new analytic procedures and methodologies. In this sense, NeuraliNQ is a much
more robust approach. As illustrated earlier, NeuraliNQ is less sensitive to vari-
ous model settings and gives an unified treatment to several common service-level
metrics.

5.4 Limitations

The present version of NeuraliNQ treats the Gt/GI/n + GI queueing system
having a constant staffing level. This setting is reasonable for service systems hav-
ing inflexible staffing with fixed staffing intervals. For example, in hospitals, the
staffing level remains unchanged for several hours. In call centers, the staffing level
varies once every 30 minutes or 1 hour; this staffing interval may still be consid-
ered long comparing to the much shorter service times (in minutes). Nevertheless,
we are interested in developing a more general version of NeuraliNQ to capture
the nonstationary staffing function. Next, NeuraliNQ focuses on handling general
nonstationary arrival patterns while assuming fixed service and abandonment dis-
tributions. In future work, we aim to extend NeuraliNQ to accommodate more
flexible service and abandonment distributions. One approach is to incorporate
parametric phase-type distributions and effectively explore and sample from this
family of distributions [40].

We are also interested in exploring a more efficient training data generation
via computer simulation that can allow incorporating additional system input pa-
rameters while keeping the simulation computational effort low. We are motivated
by the good accuracy of our method and we are interested in researching how to
balance the amount of training data and the achieved accuracy.
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6 Conclusions

In this research, we propose NeuraliNQ, a neural network approach for study-
ing the transient performance of a non-Markovian nonstationary queueing system.
At the heart of NeuraliNQ is a stepwise lookahead recursion that determines the
system state at time t + 1 based on the model input at t and the previous state
at t. NeuraliNQ is comprised of two important modules, each implemented via a
neural network: (i) the pointwise steady state and (ii) the transient response func-
tion. The former serves as a supervisor, which points the prediction to the right
direction and helps reduce cumulative prediction errors, while the latter makes
quantitative adjustments on the transition from t to t+1. Numerical experiments
confirm the effectiveness of NeuraliNQ and exhibit its advantage over the com-
monly used heavy-traffic approximation; they also show that NeuraliNQ is robust
to several important factors, such as the system scale, arrival pattern, and service-
time variability.

There are several venues for future research. While the present iteration of Neu-
raliNQ focuses on predicting the transient trajectory of the mean waiting time, this
new paradigm can be used to study other practical and more complex service-level
metrics (e.g., the TPoD which draws from the distribution of the waiting times
beyond the mean). Preliminary studies in Section 4.3 reveal promising results in
this direction. We plan to develop a more comprehensive version of NeuraliNQ ca-
pable of effectively addressing all wait-time-based service-level metrics. Next, the
observed similarity between the stationary and transient characteristic dynam-
ics under different system primitives motivates us to investigate transfer learning
methods [48]. This involves adapting models trained for specific queueing systems
to other systems. The concept is to rapidly construct a neural network for a new
model (e.g., a non-Markovian model) using only a small set of its training data to
fine-tune an existing neural network of an old model (e.g., a Markovian model).
The former captures the unique features specific to the new model, while the latter
retains the common features shared between the two models. Another important
direction is to evolve NeuraliNQ from a performance prediction tool to a decision
support tool by developing learning-based real-time staffing adjustment rules in
order to achieve stable and satisfactory service-level targets. One possibility is to
integrate NeuraliNQ with generative adversarial networks (GANs) [15] to invert a
trained neural network model into an optimal staffing model.
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APPENDIX

A PSS Network performance analysis

We evaluate the performance of all trained PSS networks against a 10% test (held-out)
subset of the training data (20 samples). To properly evaluate the fitted curve at all different
areas (e.g. both underloaded and overloaded), we evenly spread out the test samples by keeping

the first in every 10 samples of our {λ̂1, . . . , λ̂k} basis sample (these test samples are shown in
Figure 6). The error function we use for this evaluation is mean absolute error (MAE)

EPSS =

∑n
i=1 |yi − xi|

n
=

∑n
i=1 |ei|
n

.

We note here that we report only the different queueing systems we trained, since all ex-
periments related to different transient arrivals share the same PSS network. The consistent
small residual is mainly due to the inherent noise with estimating the stationary points from
simulation. Increasing the number of simulated paths reduces this error even further.

Experiment in Section 4 Test MAE

Table 1, scale n = 1 5.5e-4
Table 1, scale n = 10 3.9e-4
Table 1, scale n = 30 6.7e-4
Table 1, scale n = 50 1.1e-4
Table 5, SCV c2S = 0.5 5.2e-4
Table 5, SCV c2S = 1 5.5e-4
Table 5, SCV c2S = 4 5.4e-4

Table 7: PSS accuracy of all reported experiments.

B On the time discretization for NeuraliNQ

Although we use t and t + 1 to denote the two time steps, they are not the actually
time points. The difference between to two steps is ∆t. In this section we investigate how
the value of ∆t impacts NeuraliNQ’s performance. The time discretization step ∆t should
be chosen based on a trade-off between the solution accuracy and computation needed to
simulate, train and use our neural networks. First, the choice of ∆t affects the sample size of
the Monte-Carlo simulation: We divide a simulation horizon of [0, T ] by ∆t leads to T/∆t pairs
of t and t + 1 state samples, and as ∆t increases, the total training data decrease, requiring
additional Monte-Carlo simulations to generate the an equivalent training data volume. Next,
bigger ∆t values can lead to loss of information in the arrival patterns, especially when the
arrival-rate function is fast-varying. In Figures 17 and 18, we show the performance of four
different NeuraliNQ’s each under a specific ∆t. We can see that when the true arrival rate is
fast-varying and the discretization step ∆t is big (e.g., ∆t = 0.5), the sampled arrival rate
can be quite rough (see top panels in Figure 18). As a result, the prediction quality degrades
(see bottom panels in Figure 18). On the other hand, such an effect is less evident if the true
arrival rate is slowly-varying (as illustrated in Figure 17).

Besides the loss of information from this under-sampling, an additional reason for the
reduction of the accuracy is due to the inaccurate representation of the input latest state St,
as it is calculated by the average of longer intervals and can deviate from the true latest state
more. On the other hand, an extremely short ∆t can lead to compute limitations, as higher
memory and computations are required in simulation and the model training. We experiment
with various ∆t values and we find that a sampling rate of approximately three to four times
the maximum frequency (∆t = 0.05 time units) strikes a good balance between accuracy and
computation complexity in the presented results and the selected problem space (the selected
maximum domain frequency is c = e3 ≈ 20).
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Fig. 17: NeuraliNQ performance for the Mt/H2/n+ E2 system with c = 0.45,
under different time discretization values ∆t = 0.05, 0.1, 0.2, 0.5.

Fig. 18: NeuraliNQ performance for the Mt/H2/n+ E2 system with c = 10.68,
under different time discretization values ∆t = 0.05, 0.1, 0.2, 0.5


