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We investigate an optimization problem in a queueing system where the service provider selects the optimal

service fee p and service capacity µ to maximize the cumulative expected profit (the service revenue minus

the capacity cost and delay penalty). The conventional predict-then-optimize (PTO) approach takes two

steps: first, it estimates the model parameters (e.g., arrival rate and service-time distribution) from data;

second, it optimizes a model taking these parameters as input. A major drawback of PTO is that its solution

accuracy can often be highly sensitive to the parameter estimation errors because PTO is unable to effectively

account for how these errors (step 1) will impact the solution quality of the downstream optimization (step

2). To remedy this issue, we develop an online learning framework that automatically incorporates the

aforementioned parameter estimation errors in the optimization process; it is an end-to-end approach that

can learn the optimal solution without needing to set up the parameter estimation as a separate step as

in PTO. Effectiveness of our online learning approach is substantiated by (i) theoretical results including

the algorithm convergence and analysis of the regret (“cost” to pay over time for the algorithm to learn the

optimal policy), and (ii) engineering confirmation via simulation experiments of a variety of representative

examples. We also provide careful comparisons between PTO and our online learning method.

Key words : online learning in queues; service systems; capacity planning; staffing; pricing in service

systems
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1. Introduction

The conventional performance analysis and optimization in queueing systems require the precise

knowledge of certain distributional information of the arrival process and service times. For exam-

ple, consider the M/GI/1 queue having Poisson arrivals and general service times, the expected

steady-state workload W (λ,µ, c2s) is a function of the arrival rate λ, service rate µ and second

moment or squared coefficient of variation (SCV) c2s ≡ Var(S)/E[S]2 of the service time S. In

particular, according to the famous Pollaczek–Khinchine (PK) formula (Pollaczek 1930), we have

E[W (λ,µ, c2s)] =
ρ

1− ρ

1+ c2s
2

, with ρ≡ λ

µ
. (1)

One can never overstate the power of the PK formula because it has such a nice structure that

insightfully ties the system performance to all model primitives λ, µ and c2s. Indeed, the PK formula

has been predominantly used in practice and largely extended to several more general settings such

as the GI/GI/1 queue with non-Poisson arrivals (Abate et al. 1993) and M/GI/n queue with

multiple servers (Cosmetatos 1976).

To optimize desired queueing performance, it is natural to follow the predict-then-optimize (PTO)

approach, where “predict” means the estimation of required model parameters (e.g., λ, µ and c2s)

from data (e.g., arrival times and service times) and “optimize” means the optimization of certain

queueing decisions using formulas such as (1) with the predicted parameters treated as the true

parameters. See panel (a) in Figure 1 for a flow chart of PTO. A potential issue of PTO is that the

required queueing formulas can be highly sensitive to the estimation errors of the input parameters

(e.g., λ and µ), especially when the system’s congestion is critical. For example, when cs = µ= 1

and λ= 0.99, the PK formula (1) yields that E[W (λ,µ, c2s)] = 99. But a 0.5% increase of the demand

rate λ will yield E[W (λ,µ, c2s)] = 197, resulting in a 99% relative error in the predicted workload.

Consequently, the practical effectiveness of PTO heavily relies on the accuracy of the prediction

step to provide near-perfect estimates of the input parameters. Without such precision, solution

methods based on these convenient formulas may prove counterproductive or even fail to deliver

the desired outcomes.

The performance shortcomings of PTO, particularly in heavy-traffic conditions, stem from its

inability to adequately account for parameter estimation errors and the substantial impact these

errors have on the quality of the resulting “optimized” decision variables. To help remedy this

issue, we propose an online learning framework that automatically incorporates the aforementioned

parameter estimation errors in the solution prescription process; it is an end-to-end approach that

can learn the optimal solution more directly from data, so that we no longer need to set up the

parameter estimation as a separate stage as in PTO. In this paper, we solve a pricing and capacity
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Figure 1 Schematic presentations for (a) the two-step conventional predict-then-optimize scheme and (b) the

end-to-end online learning scheme.

sizing problem in an M/GI/1 queue, where the service provider seeks the optimal service fee p and

service rate µ so as to maximize the long-term profit, which is the revenue minus the staffing cost

and the queueing penalty, namely,

max
µ,p
P(µ,p)≡ λ(p)p−h0E[W ]− c(µ), (2)

where W is the system’s steady-state workload, c(µ) is the cost for providing service capacity µ and

h0 is a holding cost per job per unit of time. Problems in this framework have a long history, see for

example Kumar and Randhawa (2010), Lee and Ward (2014), Lee and Ward (2019), Maglaras and

Zeevi (2003), Nair et al. (2016), Kim and Randhawa (2018), Chen et al. (2024) and the references

therein. The major distinction is that in the present paper, we assume that neither the arrival

rate λ(p) (as a function of p) or the service-time distribution is explicitly available to the service

provider. (As showed In Section 6.1.1, we will see that the PTO approach for solving Problem (2)

indeed suffer from unaccountable estimation errors in the model parameters.)

Our online learning approach operates in successive cycles in which the service provider’s oper-

ational decisions are being continuously evolved using newly generated data. Data here include

customers’ arrival and service times under the policy presently in use. See panel (b) in Figure 1 for

an illustration of the online learning approach. In each iteration k, the service provider evaluates

the current decision (µk, pk) based on the newly generated data. Then, the decision is updated to
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(µk+1, pk+1) according to the evaluation result (the exploitation step). In the next iteration, the

service provider continues to operate the system under (µk+1, pk+1) to generate more data (the

exploration step). We call this algorithm Learning in Queue with Unknown Arrival Rate (LiQUAR).

1.1. Advantages and challenges.

First, the conventional queueing control problem builds heavily on formulas such as (1) and requires

the precise knowledge of certain distributional information which may not always be readily avail-

able. For example, the acquisition of an accurate estimate of the function λ(p) across the entire

spectrum of the price p is not straightforward and can be both time consuming and costly. In

contrast, the online learning approach eliminates the need for such prior information, excelling at

“learning from scratch”. Second, unlike the two-step PTO procedure, the online learning approach

is an integrated method that inherently accounts for estimation errors in observed data during

the decision-making process. This allows it to utilize data more effectively, leading to improved

decisions that are more robust and effective. In contrast to PTO’s “static” learning, where predic-

tion and optimization are distinctly separate steps, LiQUAR employs a reactive learning approach,

characterized by its continuous and dynamic interaction with data.

On the other hand, the development of online learning methodologies in queue systems is far from

a straightforward extension of their use in other fields, as it must address the unique characteristics

of queueing dynamics. First, when the control policy is updated at the beginning of a cycle, the

previously established near steady-state dynamics are disrupted, and the system enters a transient

phase. The dynamics during this period are endogenously influenced by the updated control policy,

giving rise to the so-called regret of nonstationarity. Second, the convergence of decision iterations

depends heavily on the statistical efficiency of the evaluation step and the specific properties

of the queueing data. This introduces new challenges due to the distinctive nature of queueing

dynamics. Unlike standard online learning settings (e.g. stochastic bandits), queueing data such

as waiting times and queue lengths are often biased, unbounded, and temporally correlated. These

unique features of queueing models present significant obstacles to the design and analysis of

online learning methodologies, necessitating novel approaches that account for these complexities.

Finally, our algorithm operates without requiring knowledge of the arrival rate function or the

service-time distribution. This makes our research problem more challenging because we cannot

take advantage of the detailed structure of the underlying model. Therefore, we are motivated

to develop a conceptually simple, model-free learning framework in order to address the above-

mentioned challenges.
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1.2. Contributions and organization

Our paper makes the following contributions.

• We are the first to develop an online learning scheme for the M/GI/1 queue with unknown

demand function and service-time distribution. The effectiveness of our algorithm stems from

its well-integrated queueing features, encompassing both the overall algorithm design and the

optimization of hyperparameters. For our online learning algorithm, we establish a regret

bound of O(
√
T log(T )). In comparison with the standard O(

√
T ) regret for model-free stochas-

tic gradient descent (SGD) methods assuming unbiased and independent reward samples, our

regret analysis exhibits an extra log(T ) term which rises from the nonstationary queueing

dynamics due to the policy updates. For the M/M/1 model, we derived a more detailed regret

bound expressed explicitly as a function of the traffic intensity.

• At the heart of our regret analysis is to properly link the estimation errors from queueing

data to the algorithm’s hyperparameters and regret bound. For this purpose, we develop new

results that establish useful statistical properties of data samples generated by a M/G/1

queue. Besides serving as building blocks for our regret analysis in the present paper, these

results are of independent research interest and may be used to analyze the estimation errors

of data in sequential decision making in ergodic queues. Hence, the theoretic analysis and

construction of the gradient estimator may be extended to other queueing models which share

similar ergodicity properties.

• Supplementing the theoretical results, we evaluate the practical effectiveness of our method

by conducting comprehensive numerical experiments. In particular, our numerical results con-

firm that the online learning algorithm is efficient and robust to several model and algorithm

parameters such as service distributions and updating step sizes; we also generalize our algo-

rithm to the GI/GI/1 model. Next, we conduct a systematic analysis and experiments to

compare LiQUAR to (i) PTO and (ii) gradient-based reinforcement learning methods.

Organization of the paper. In Section 2, we review the related literature. In Section 3, we

introduce the model and its assumptions. In Section 4, we present LiQUAR and describe how

the queueing data is processed in our algorithm. In Section 5, we conduct the convergence and

regret analysis for LiQUAR. The key steps of our analysis form a quantitative explanation of how

estimation errors in queueing data propagate through our algorithm flow and how they influence the

quality of the LiQUAR solutions. We analyze the total regret by separately treating regret of non-

stationarity - the part of regret stemming from transient system dynamics, regret of suboptimality

- the part aroused by the errors due to suboptimal decsions, and regret of finite difference - the

part originating from the need of estimation of gradient. In Section 5.3, we report a regret bound
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explicitly expressed as a function of the traffic intensity for M/M/1. In Section 6, we conduct

numerical experiments to confirm the effectiveness and robustness of LiQUAR. In Sections 7 and

8, We compare LiQUAR to PTO and gradient-based reinforcement learning methods. We provide

concluding remarks in Section 9. Technical proofs and supplementary results are given in the

e-Companion.

2. Related Literature

The present paper is related to the following four streams of literature.

Pricing and capacity sizing in queues. There is rich literature on pricing and capacity sizing for

service systems under various settings. Maglaras and Zeevi (2003) studies pricing and capacity siz-

ing problem in a processor sharing queue motivated by internet applications; Kumar and Randhawa

(2010) considers a single-server system with nonlinear delay cost; Nair et al. (2016) studies M/M/1

and M/M/k systems with network effect among customers; Kim and Randhawa (2018) considers

a dynamic pricing problem in a single-server system. The specific problem that we consider here

is related to Lee and Ward (2014), which considers joint pricing and capacity sizing for GI/GI/1

queues with known demand. Later, they further extend their results to the GI/GI/1 +G model

with customer abandonment in Lee and Ward (2019). Although the present work is motivated

by the pricing and capacity sizing problem for service systems, unlike the above-cited works, we

assume no knowledge of the demand rate and service distribution.

Demand Learning. Broder and Rusmevichientong (2012) considers a dynamic pricing problem

for a single product with an unknown parametric demand curve and establishes an optimal minimax

regret in the order of O(
√
T ). Keskin and Zeevi (2014) investigates a pricing problem for a set of

products with an unknown parameter of the underlying demand curve. Besbes and Zeevi (2015)

studies demand learning using a linear curve as a local approximation of the demand curve and

establishes a minimax regret in the order of O(
√
T ). Later, Cheung et al. (2017) solves a dynamic

pricing and demand learning problem with limited price experiments. We draw distinctions from

these papers by studying a pricing and capacity sizing problem with demand learning in a queueing

setting where our algorithm design and analysis need to take into account unique features of the

queueing systems.

Machine learning in queueing systems Our paper is related to a small but booming literature on

machine earning in queueing systems. Dai and Gluzman (2021) studies an actor-critic algorithm

for queueing networks. Liu et al. (2019) and Shah et al. (2020) develop reinforcement learning

techniques to treat the unboundedness of the state space of queueing systems. Krishnasamy et al.

(2021) develops bandit methods for scheduling problems in a multi-server queue with unknown
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service rates. Zhong et al. (2024) proposes an online learning method to study a scheduling prob-

lem for a multiclass Mt/M/N +M system with unknown service rates and abandonment rates.

Chen et al. (2024) studies the joint pricing and capacity sizing problem for GI/GI/1 with known

demand. See Walton and Xu (2021) for a review of the role of information and learning in queue-

ing systems. Recent research has explored the application of deep learning methods to predict

queueing performance: Baron et al. (2023) proposes a deep-learning-based steady-state predictor

for the GI/GI/1 queue; Garyfallos et al. (2024a,b) develop recurrent neural network models to

predict transient performance in nonstationary queues. Our paper is most closely related to Jia

et al. (2024) which studies a price-based revenue management problem in an M/M/c queue with

unknown demand and discrete price space, under a multi-armed bandit framework. Later, Jia et al.

(2022) extends the results in Jia et al. (2024) to the problem setting with a continuous price space

and considers linear demand functions. Similar to Jia et al. (2024, 2022), we also study a queueing

control problem with unknown demand and continuous decision variables. The major distinction

is that in addition to maximizing the service profit as by Jia et al. (2024), the present paper also

includes a queueing penalty in our optimization problem as a measurement of the quality of service

(Kumar and Randhawa 2010, Lee and Ward 2014, 2019). However, this introduces new technical

challenges in algorithm design and regret analysis, such as addressing the bias and autocorrelation

inherent in queueing data. Besides, the present paper considers more general service distributions

and demand functions.

Online learning with continuous decision-making has also been explored in inventory systems. For

instance, Huh et al. (2009) proposed an SGD-based algorithm to optimize base-stock policies for

inventory systems with positive lead times. Later, Zhang et al. (2020) developed a simulation-based

algorithm for the same problem, achieving an optimal regret bound of O(T 1/2). More recently, Yuan

et al. (2021) integrated stochastic gradient descent with bandit algorithms to address convexity

challenges and optimize (s,S) policies. While our approach also employs gradient-based methods,

the fundamental differences between queueing system dynamics and inventory models lead to

distinct algorithm designs, particularly in the construction of gradient estimators, as well as in the

theoretical analysis.

3. Model and Assumptions

We study anM/GI/1 queueing system having customer arrivals according to a Poisson process (the

M), independent and identically distributed (I.I.D.) service times following a general distribution

(the GI), and a single server that provides service following the first-in-first-out (FIFO) discipline.

Each customer upon joining the queue is charged by the service provider a fee p > 0. The demand
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arrival rate (per time unit) depends on the service fee p and is denoted as λ(p). To maintain a

service rate µ, the service provider continuously incurs a staffing cost at a rate c(µ) per time unit.

For µ∈ [µ, µ̄] and p∈ [p, p̄], we have λ(p)∈ [λ, λ̄]≡ [λ(p̄), λ(p)], and the service provider’s goal is

to determine the optimal service fee p∗ and service capacity µ∗ with the objective of maximizing the

steady-state expected profit, or equivalently minimizing the objective function f(µ,p) as follows

min
(µ,p)∈B

f(µ,p)≡ h0E[W∞(µ,p)]+ c(µ)− pλ(p), B ≡ [µ, µ̄]× [p, p̄]. (3)

HereW∞(µ,p) is the stationary workload process observed in continuous time under control param-

eter (µ,p). In detail, under control parameter (µ,p), customers arrive according to a Poisson process

with rate λ(p). Let Vn be an I.I.D. sequence corresponding to customers’ workloads under unit

service rate (under service rate µ, customer n has service time Vn/µ). We have E[Vn] = 1 so that

the mean service time is 1/µ under service rate µ. Denote by N(t) the number of arrivals by time

t. The total amount of workload brought by customers at time t is denoted by J(t) =
∑N(t)

k=1 Vk.

Then the workload process W (t) follows the stochastic differential equation (SDE)

dW (t) = dJ(t)−µ1 (W (t)> 0)dt.

In particular, given the initial value of W (0), we have

W (t) =R(t)− 0∧ min
0≤s≤t

R(s), R(t)≡W (0)+J(t)−µt.

The difference (W (t)−R(t))/µ is the total idle time of the server by time t. It is known in the

literature (Asmussen 2003, Corollary 3.3, Chapter X) that under the stability condition λ(p)<µ,

the workload process W (t) has a unique stationary distribution and we denote by W∞(µ,p) the

stationary workload under parameter (µ,p).

We impose the following assumptions on the M/GI/1 system throughout the paper.

Assumption 1. (Demand rate, staffing cost, and uniform stability)

(a) The arrival rate λ(p) is continuously differentiable in the third order and non-increasing in p.

Besides,

C1 <λ′(p)<C2,

where

C1 ≡ 2max

(
g(µ̄)

λ′′(p)

λ′(p)
, g(µ)

λ′′(p)

λ′(p)

)
λ(p)−

4λ(p)(µ−λ(p))

h0C
, C2 ≡−max

(√
0∨ (−λ′′(p)(µ̄−λ(p)))

2
,
pλ′′(p)

2

)
,

g(µ) = µ
µ−λ(p)

− p(µ−λ(p))

h0C
and C = (1+ c2s)/2.

(b) The staffing cost c(µ) is continuously differentiable in the third order, non-decreasing and

convex in µ.
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(c) The lower bounds p and µ satisfy that λ(p)<µ so that the system is uniformly stable for all

feasible choices of (µ,p).

Although Condition (a) looks complicated, it essentially requires that the derivative of λ(p) be

not too large or too small. Condition (a) will be used to ensure that the objective function f(µ,p)

is convex in the convergence analysis of our gradient-based online learning algorithm in Sec-

tion 5.1. The two inequalities hold for a variety of commonly used demand functions, including

both convex functions and concave functions. Examples include (1) linear demand λ(p) = a− bp

with 0 < b < 4λ(µ− λ̄)/h0C; (2) quadratic demand λ(p) = c− ap2 with a, c > 0, and µ̄−c
3p2

< a <(
3(µ−λ̄)p

h0C
− µ

µ−λ̄

)
λ

p̄2
; (3) exponential demand λ(p) = exp(a− bp) with 0< b< 2/p̄; (4) logit demand

λ(p) =M0 exp(a− bp)/(1 + exp(a− bp)) with a− bp̄ < log(1/2) and 0< b < 2/p̄. See Section EC.4

for detailed discussions.

Condition (c) of Assumption 1 is commonly used in the literature of SGD methods for queueing

models to ensure that the steady-state mean waiting time E[W∞(µ,p)] is differentiable with respect

to model parameters. See Chong and Ramadge (1993), Fu (1990), L’Ecuyer et al. (1994), L’Ecuyer

and Glynn (1994), and also Theorem 3.2 of Glasserman (1992). In Section EC.5.2, we present an

initial attempt to relax Assumption 1(c).

We do not require full knowledge of service and inter-arrival time distributions. But in order

to bound the estimation error of the queueing data, we require the individual workload to be

light-tailed. Specifically, we make the following assumptions on Vn.

Assumption 2. (Light-tailed individual workload) There exists a sufficiently small constant

η > 0 such that

E[exp(ηVn)]<∞.

In addition, there exist constants 0< θ < η/2µ̄ and γ0 > 0 such that

ϕV (θ)< log
(
1+µθ/λ̄

)
− γ0, (4)

where ϕV (θ)≡ logE[exp(θVn)] is the cumulant generating functions of Vn.

Note that ϕ′
V (0) = 1 as E[Vn] = 1. Suppose ϕV is smooth around 0, then we have ϕV (θ) = θ+o(θ)

by Taylor’s expansion. On the other hand, as µ > λ̄ under Assumption 1, there exists a > 0 such

that log
(
1+µθ/λ̄

)
= (1 + a)θ+ o(θ). This implies that, we can choose θ small enough such that

log
(
1+µθ/λ̄

)
−ϕV (θ)>

aθ
2
and then we set γ0 =

aθ
2
. Hence, a sufficient condition that warrants (4)

is to require that ϕV be smooth around 0, which is true for many distributions of V considered in

common queueing models. Assumption 2 will be used in our proofs to establish ergodicity result.
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4. Our Online Learning Algorithm

We first explain the main ideas in the design of LiQUAR and provide the algorithm outline in

Section 4.1. The key step in our algorithm design is to construct a data-based gradient estimator,

which is explained with details in Section 4.2. As a unique feature of service systems, there is a delay

in data observation of individual workloads, i.e., they are revealed only after service completion.

We also explain how to deal with this issue in Section 4.2. The design of algorithm hyperparameters

in LiQUAR will be specified later in Section 5 based on the regret analysis results. In the rest of

the paper, we use bold symbols for vectors and matrices.

4.1. Algorithm outline

The basic structure of LiQUAR follows the online learning scheme as illustrated in Figure 1. It

interacts with the queueing system in continuous time and improves pricing and staffing policies

iteratively. In each iteration k ∈ {1,2, ...}, LiQUAR operates the queueing system according to

control parameters x̄k ≡ (µ̄k, p̄k) for a certain time period, and collects data generated by the

queueing system during the period. At the end of an iteration, LiQUAR estimates the gradient

of the objective function ∇f(x̄k) based on the collected data and accordingly updates the control

parameters. The updated control parameters will be used in the next iteration.

We use the finite difference (FD) method (Broadie et al. 2011) to construct our gradient esti-

mator. Our main purpose is to make LiQUAR model-free and applicable to the settings where the

demand function λ(p) is unknown. To obtain the FD estimator of ∇f(x̄k), LiQUAR splits total

time of iteration k into two equally divided intervals (i.e., cycles) each with Tk time units. We

index the two cycles by 2k− 1 and 2k, in which the system is respectively operated under control

parameters

x2k−1 ≡ x̄k− δk ·Zk/2≡ (µ2k−1, p2k−1) and x2k ≡ x̄k + δk ·Zk/2≡ (µ2k, p2k), (5)

where δk is a positive and small number and Zk ∈ R2 is a random vector independent of system

dynamics such that E[Zk] = (1,1)⊤. Using data collected in the two cycles, LiQUAR obtains esti-

mates of the system performance f̂(x2k) and f̂(x2k−1), which in turn yield the FD approximation

for the gradient ∇f(x̄k):

Hk ≡
f̂(x2k)− f̂(x2k−1)

δk
.

Then, LiQUAR updates the control parameter according to a SGD recursion as x̄k+1 =ΠB(x̄k −

ηkHk), where ΠB is the operator that projects x̄k − ηkHk to B. We give the outline of LiQUAR

below.
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Outline of LiQUAR:

0. Input: hyper-parameters {Tk, ηk, δk} for k= 1,2, ..., initial policy x̄1 = (µ̄1, p̄1).

For k= 1,2, ...,L,

1. Obtain xl according to (5) for l= 2k−1 and 2k. In cycle l, operate the system with policy xl

for Tk units of time.

2. Compute f̂(x2k−1) and f̂(x2k) from the queueing data to build an estimatorHk for∇f(µk, pk).

3. Update x̄k+1 =ΠB(x̄k− ηkHk).

Next, we explain in details how the gradient estimator Hk, along with f̂(x2k−1) and f̂(x2k), are

computed from the queueing data in Step 2.

4.2. Computing Gradient Estimator from Queueing Data

We first introduce some notation to describe the system dynamics under LiQUAR and the queueing

data generated by LiQUAR. For l ∈ {2k−1,2k}, letWl(t) be the present workload at time t∈ [0, Tk]

in cycle l. By definition, we have Wl+1(0) =Wl(Tk) for all l≥ 1. We assume that the system starts

empty, i.e., W1(0) = 0. At the beginning of each cycle l, the control parameter is updated to (µl, pl).

The customers arrive in cycle l according to a Poisson process Nl(t) with rate λ(pl), 0 ≤ t ≤ Tk.

Let {V l
i : i= 1,2, ...,Nl} be a sequence of I.I.D. random variables denoting customers’ individual

workloads, where Nl =Nl(Tk) is the total number of customer arrival in cycle l. Then, the dynamics

of the workload process Wl(t) is described by the SDE:

Wl(t) =Wl(0)+

Nl(t)∑
i=1

V l
i −µl

∫ t

0

1(Wl(s)> 0)ds. (6)

If the system dynamics is available continuously in time (i.e. Wl(t) was known for all t∈ [0, Tk] and

l= 2k− 1,2k), then a natural estimator for f(µl, pl) would be

f̂(µl, pl) =
−pNl

Tk

+
h0

Tk

∫ Tk

0

Wl(t)dt+ c(µl).

4.2.1. Retrieving workload data from service and arrival times. We assume that

LiQUAR can observe each customer’s arrivals in real time, but can only recover the individual

workload at the service completion time. This assumption is consistent with real practice in many

service systems. For example, in call center, hospital, etc., customer’s individual workload is real-

ized only after the service is completed. Hence, the workload process Wl(t) is not immediately

observable at t.

In LiQUAR, we approximate Wl(t) by Ŵl(t) which we elaborate below. For given l ≥ 1 and

t ∈ [0, Tk], if all customers arriving by time t can finish service by the end of cycle l, then all of

their service times are realized, so we can recover Wl(t) from the arrival times and service times of
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Figure 2 The system dynamics under LiQUAR.

these customers using (6). Since customers are served under FIFO, it is straightforward to see that

this happens if and only if Wl(t)≤ µl(Tk − t), i.e., the workload at time t is completely processed

by Tk. Hence, we define the approximate workload as

Ŵl(t) =

{
Wl(t), if Wl(t)≤ µl(Tk− t)

0, otherwise.
(7)

As illustrated in Figure 2, to reduce approximation error incurred by delayed observations of service

times, we discard the Ŵl(t) data for t ∈ ((1 − α)Tk, Tk]; we call the subinterval ((1 − α)Tk, Tk]

the overtime period in cycle l. The following Proposition 1 ensures that the approximation error

|Ŵl(t)−Wl(t)| incurred by delayed observation vanishes exponentially fast as length of the overtime

period increases. This result will be used in Section 5 to bound the estimation errors of the FD

gradient estimator Hk.

Proposition 1 (Bound on Error of Delayed Observation). Under Assumptions 1 and 2,

there exist some constants M and θ0 > 0 such that, for all l≥ 1 and 0≤ t≤ Tk,

E[|Ŵl(t)−Wl(t)|]≤ exp(−θ0µ/2 · (Tk− t))M.

Roughly speaking, M is the moment bound under the busiest traffic intensity, and θ0 is a small

number depending on θ in Assumption 2. The existence of them are shown in the Lemma EC.9 in

Section EC.2.2.
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4.2.2. Computing the gradient estimator. As illustrated in Figure 2, we also discard the

data at the beginning of each cycle (i.e., Ŵl(t) for t∈ [0, αTk] in cycle l) in order to reduce the bias

due to transient queueing dynamics incurred by the changes of the control parameters. We call

[0, αTk] the warm-up period of cycle l. Thus, we give the following system performance estimator

under control xl, l ∈ {2k− 1,2k}:

f̂G(µl, pl) =
−pNl

Tk

+
h0

(1− 2α)Tk

∫ (1−α)Tk

αTk

Ŵl(t)dt+ c(µl), (8)

and the corresponding FD gradient estimator

Hk =
Zk · (f̂G(µ2k, p2k)− f̂G(µ2k−1, p2k−1))

δk
. (9)

Unlike standard zero-order methods used in offline optimization problems, our data is generated

through online interactions with the real system. Consequently, we must carefully tune our algo-

rithm parameters to control the variance of Hk, as techniques like common random numbers can

not be used to achieve variance reduction for f̂G(µ2k, p2k)− f̂G(µ2k−1, p2k−1).

The psuedo code of LiQUAR is given in Algorithm 1. To complete the design of LiQUAR

algorithm, we still need to specify the hyperparameters Tk, ηk, δk for k ≥ 1. We seek to optimize

these hyperparameters in Section 5 to achieve minimized regret bound.

Remark 1 (Integrating queueing features into LiQUAR). For LiQUAR to effectively

address our queueing control problem, its design should be well informed by the features and struc-

tures inherent to the underlying queueing system. First, we utilize workload data to construct the

gradient estimator, moving beyond traditional reliance on arrival and service time data. This shift

is particularly advantageous in heavy-traffic scenarios where queueing formulas are highly sensitive

to input estimates such as demand and service distributions. To calculate the gradient estimator

which involves integrating the workload process with delayed observations, we leverage the fact

that the workload process is almost surely piecewise linear. This helps simplify the computation

of the gradient estimator. Second, to mitigate transient biases and errors caused by delayed obser-

vations in the queueing data, we exclude data from a designated warm-up interval at the start of

each cycle and an over-time interval at its end. The lengths of these intervals are determined by the

exponential ergodic rate of the M/GI/1 queue. Third, the efficiency of learning algorithms, par-

ticularly gradient-based methods, critically depends on the choice of hyperparameters. Leveraging

the regret analysis in Section 5, which extensively utilizes queueing properties such as transient

bias and autocorrelation in the data, we carefully determine optimal hyperparameters to minimize

regret.
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Algorithm 1: LiQUAR

Input: number of iterations L;

parameters 0<α< 1, and Tk, ηk, δk for k= 1,2, ..,L;

initial value x̄1 = (µ̄1, p̄1), W1(0) = 0;

1 for k= 1,2, ...,L do

2 Randomly draw Zk ∈ {(0,2), (2,0)};

3 Run Cycle 2k− 1: Run the system for Tk units of time under control parameter

x2k−1 = x̄k− δkZk/2 = (µ̄k, p̄k)− δkZk/2,

4 Run Cycle 2k: Run the system for Tk units of time under control parameter

x2k = x̄k + δkZk/2 = (µ̄k, p̄k)+ δkZk/2,

5 Compute FD gradient estimator:

Hk =
Zk

δk

[
h0

(1− 2α)Tk

∫ (1−α)Tk

αTk

(
Ŵ2k(t)− Ŵ2k−1(t)

)
dt− p2kN2k− p2k−1N2k−1

Tk

+ c(µ2k)− c(µ2k−1)

]

where Ŵl(·) is an approximate of Wl(·) as specified in (7).

6 Update x̄k+1 =ΠB(x̄k− ηkHk).

7 end

5. Convergence Rate and Regret Analysis

In Section 5.1, we establish the rate of convergence for our decision variables (µk, pk) under LiQUAR

(Theorem 1). Besides, our analysis illustrate how the estimation errors in the queueing data will

propagate to the iteration of (µk, pk) and thus affect the quality of decision making. We follow

three steps: First, we quantify the bias and mean square error of the estimated system performance

f̂G(µl, pl) computed from the queueing data via (8) (Proposition 2). To bound the estimation

errors, we need to deal with the transient bias and stochastic variability in the queueing data.

Next, using these estimation error bounds, we can determine the accuracy of the FD gradient

estimator Hk in terms of the algorithm hyperparameters (Proposition 3). Finally, following the

convergence analysis framework of SGD algorithms, we obtain the convergence rate of LiQUAR

in terms of the algorithm hyperparameters (Theorem 1). The above three steps together form a

quantitative explanation of how the errors are passed on from the queueing data to the learned

decisions (whereas there is no such steps in PTO so its performance is much more sensitive to the

errors in the data). In addition, the convergence result enables us to obtain the optimal choice of
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hyperparameters if the goal is to approximate x∗ = (µ∗, p∗) accurately with minimum number of

iterations, which is often preferred in simulation-based offline learning settings.

In Section 5.2, we investigate the cost performance of dynamic pricing and capacity sizing deci-

sions made by LiQUAR, via analyzing the total regret, which is the gap between the amount of

cost produced by LiQUAR and that by the optimal control x∗. Utilizing the convergence rate

established by Theorem 1 and a separate analysis on the transient behavior of the system dynamics

under LiQUAR (Proposition 4), we obtain a theoretic bound for the total regret of LiQUAR in

terms of the algorithm hyperparameters. By simple optimization, we obtain an optimal choice of

hyperparameters which leads to a total regret bound of order O(
√
T log(T )) (Theorem 2), where

T is the total amount of time in which the system is operated by LiQUAR .

5.1. Convergence Rate of Decision Variables

As x̄k evolves according to an SGD iteration in Algorithm 1, its convergence depends largely on

how accurate the gradient is approximated by the FD estimator Hk. In the theoretical analysis,

the accuracy of Hk is measured by the following two quantities:

Bk ≡E
[
∥E[Hk−∇f(x̄k)|Fk]∥2

]1/2
and Vk ≡E[∥Hk∥2],

where Fk is the σ-algebra including all events in the first 2(k − 2) cycles and ∥ · ∥ is Euclidean

norm in R2. Intuitively, Bk measures the bias of the gradient estimator Hk and Vk measures its

variability.

According to (9), the gradient estimatorHk is computed using the estimated system performance

f̂G(µ2k, p2k) and f̂G(µ2k−1, p2k−1). So, the accuracy of Hk essentially depends on the estimation

errors of the system performance, i.e., how close is f̂G(µl, pl) to f(µl, pl). Note that the control

parameters (µl, pl) for l ∈ {2k−1,2k} are random and dependent on the events in the first 2(k−2)

cycles. Accordingly, we need to analyze the estimation error of f̂G(µl, pl) conditional on the past

events, which is also consistent with our definition of Bk. For this purpose, we denote by Gl the σ-

algebra including all events in the first l−1 cycles and write El[·]≡E[·|Gl]. The following Proposition

2 establishes bounds on the conditional bias and mean square error of f̂G(µl, pl), in terms of the

initial workload Wl(0) and the hyperparameter Tk.

Proposition 2 (Estimation Errors of System Performance). Under Assumptions 1 and 2,

for any Tk > 0, the bias and mean square error of f̂G(µl, pl), conditional on Gl, have the following

bounds:

1. Bias ∣∣∣El

[
f̂G(µl, pl)− f(µl, pl)

]∣∣∣≤ 2exp(−θ1αTk)

(1− 2α)θ1Tk

·M(M +Wl(0))(exp(θ0Wl(0))+M).
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2. Mean square error

El[(f̂
G(µl, pl)− f(µl, pl))

2]≤KMT−1
k (W 2

l (0)+ 1) exp(θ0Wl(0)),

where θ1 ≡ min(γ, θ0µ/2) , and γ and KM are two positive constants that are independent of

l, Tk,Wl(0), µl and pl.

The proof of Proposition 2 is given in Section EC.1, where the specification of the two constants

γ and KM are given in (EC.9) and (EC.5) respectively. The key step in the proof is to bound the

transient bias (from the steady-state distribution) and auto-correlation of the workload process

{Wl(t) : 0≤ t≤ Tk}, utilizing an ergodicity analysis. This approach can be applied to other queueing

models which share similar ergodicity properties, e.g., GI/GI/1 queue and stochastic networks

(Blanchet and Chen 2020).

Based on Proposition 2, we establish the following bounds on Bk and Vk in terms of the algorithm

hyperparameters Tk and δk.

Proposition 3 (Bounds for Bk and Vk). Under Assumptions 1 and 2, the bias and variance

of the gradient estimator satisfy

Bk =O
(
δ2k + δ−1

k exp(−θ1αTk)
)
, Vk =O

(
δ−2
k T−1

k ∨ 1
)
. (10)

Assumption 1 guarantees that the objective function f(µ,p) in (3) has desired convex structure

(see Lemma EC.5 in Section EC.1 for details). Hence, the SGD iteration is guaranteed to converge

to its optimal solution x∗ as long as the gradient bias Bk and variance Vk are properly bounded.

Utilizing the bounds on Bk and Vk as given in Proposition 3, we are able to prove the conver-

gence of LiQUAR and obtain an explicit expression of the convergence rate in terms of algorithm

hyperparameters.

Theorem 1 (Convergence rate of decision variables) Suppose Assumption 1 holds. If there

exists a constant β ∈ (0,1] such that the following inequalities hold for all k large enough:(
1+

1

k

)β

≤ 1+
K0

2
ηk, Bk ≤

K0

8
k−β, ηkVk =O(k−β). (11)

Then, we have

E
[
∥x̄k−x∗∥2

]
=O(k−β). (12)

If, in further, Assumption 2 holds and the algorithm hyperparameters are set as ηk = O(k−a),

Tk =O(kb), and δk =O(k−c) for some constants a, b, c∈ (0,1]. We have

E
[
∥x̄k−x∗∥2

]
=O

(
kmax(−a,−a−b+2c,−2c)

)
. (13)



Chen, Hong, and Liu: Online Queue Learning Unknown Demand
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 17

Remark 2 (optimal convergence rate). According to the bound (13), by minimizing the

term max(−a,a − b + 2c,−2c), one can obtain an optimal choice of hyperparameters ηk =

O(k−1), Tk =O(k) and δk =O(k−1/2) under which the decision parameter xk converges to x∗ at a

fastest rate of O(L−1), in terms of the total number of iterations L. Of course, the above conver-

gence rate analysis does not focus on reducing the total system cost generated through the learning

process, which is what we will do in Section 5.2.

5.2. Regret Analysis

Having established the convergence of control parameters under Assumption 1, we next investigate

the efficacy of LiQUAR as measured by the cumulative regret which measures the gap between

the cost under LiQUAR and that under the optimal control. According to the system dynamics

described in Section 4.2, under LiQUAR, the expected cost incurred in cycle l is

ρl ≡E
[
h0

∫ Tk

0

Wl(t)dt+ c(µl)Tk− plNl

]
, (14)

where k= ⌈l/2⌉. The total regret in the first L iterations (each iteration contains two cycles) is

R(L) =
L∑

k=1

2k∑
l=2k−1

Rl =
2L∑
l=1

Rl, with Rl ≡ ρl−Tkf(µ
∗, ρ∗).

Our main idea is to separate the total regret R(L) into three parts as

R(L) =
L∑

k=1

E [2Tk(f(x̄k)− f(x∗))]︸ ︷︷ ︸
≡R1k: regret of suboptimality

+
L∑

k=1

E [(ρ2k−1−Tkf(x2k−1))+ (ρ2k−Tkf(x2k))]︸ ︷︷ ︸
≡R2k: regret of nonstationarity

(15)

+
L∑

k=1

E [Tk(f(x2k−1)+ f(x2k)− 2f(x̄k))]︸ ︷︷ ︸
≡R3k: regret of finite difference

,

which arise from the errors due to the suboptimal decisions (R1k), the transient system dynamics

(R2k), and the estimation of gradient (R3k), respectively. Then we aim to minimize the orders of all

three regret terms by selecting the “optimal” algorithm hyperparameters Tk, ηk and δk for k≥ 1.

Treating R1k,R2k,R3k separately. Suppose the hyperparameters of LiQUAR are set in the

form of ηk =O(k−a), Tk =O(kb), and δk =O(k−c) for some constants a, b, c∈ (0,1]. The first regret

term R1k is determined by the convergence rate of control parameter x̄k. By Taylor’s expansion,

f(x̄k)− f(x∗) =O(∥x̄k−x∗∥22), and hence, R1k =O(Tk∥x̄k−x∗∥22). Following Theorem 1, we have

R1k = O(kmax(b−a,b−2c,−a+2c)). By the smoothness condition in Assumption 1, we can check that

R3k =O(Tkδ
2
k) =O(kb−2c) (Lemma EC.8 in Section EC.1).
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The remaining regret analysis will focus on the regret of nonstationarity R2k. Intuitively, it

depends on the rate at which the (transient) queueing dynamics converges to its steady state.

Applying the same ergodicity analysis as used in the analysis of estimation errors of system perfor-

mance, we can find a proper bound on the transient bias after the warm-up period, i.e., for Wl(t)

with t ≥ αTk. Derivation of a desirable bound on the transient bias in the warm-up period, i.e.,

for Wl(t) with t∈ [0, αTk], is less straightforward. The main idea is based on the two facts that (1)

Wl(t), when t is small, is close to the steady-state workload corresponding to (µl−1, pl−1) and that

(2) the steady-state workload corresponding to (µl−1, pl−1) is close to that of (µl, pl). We formalize

the bound on R2k in Proposition 4 below. The complete proof is given in Section EC.1.6.

Proposition 4 (Regret of Nonstationarity). Suppose Assumptions 1 and 2 hold. If Tk >

log(k)/γ and there exists some constant ξ ∈ (0,1] such that max(ηk
√
Vk, δk) =O(k−ξ). Then,

R2k =O
(
k−ξ log(k)

)
. (16)

If, in further, the algorithm hyperparameters are set as ηk =O(k−a), Tk =O(kb), and δk =O(k−c)

for some constants a, b, c∈ (0,1], we have

R2k =O
(
kmax(−a−b/2+c,−a,−c) log(k)

)
.

By summing up the three regret terms, we can conclude that

R(L)≤
L∑

k=1

C
(
kmax(−a−b/2+c,−a,−c) log(k)+ kmax(b−a,b−2c,−a+2c) + kb−2c

)
,

for some positive constant C that is large enough. The order of the upper bound on the right

hand side reaches its minimum at (a, b, c) = (1,1/3,1/3). The corresponding total regret and time

elapsed in the first L iterations are, respectively,

R(L) =O(L2/3 log(L)) and T (L) =O(L4/3).

As a consequence, we have R(T ) =O(
√
T log(T )).

Theorem 2 (Regret Upper Bound) Suppose Assumptions 1 and 2 hold. If we choose ηk =

cηk
−1 for some cη > 2/K0, Tk = cTk

1/3 for some cT > 0 and δk = cδk
1/3 for some 0< cδ <

√
K0/32c,

where c is a smoothness constant given in Lemma EC.4, then the total regret accumulated in the

first L rounds by LiQUAR

R(L) =O(L2/3 log(L)) =O(
√

T (L) log(T (L))).

Here T (L) is the total units of time elapsed in L cycles.
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Remark 3 (On the O(
√
T log(T )) Regret Bound). Consider a hypothetical setting in which

we are no longer concerned with the transient behavior of the queueing system, i.e., somehow we

can directly observe an unbiased and independent sample of the objective function with uniform

bounded variance in each iteration. In this case, we know that the Kiefer-Wolfowitz algorithm

and its variate provide an effective approach for model-free stochastic optimization (Broadie et al.

2011). According to Broadie et al. (2011), the convergence rate of Kiefer-Wolfowitz algorithm is

∥x̄k −x∗∥2 =O(ηk/δ
2
k). In addition, the regret of finite difference is f(x2k−1) + f(x2k)− 2f(x̄k) =

O(δ2k). Since ηk/δ
2
k+ δ2k ≥ 2

√
ηk ≥ k−1/2, we can conclude that the optimal convergence rate in such

a hypothetical setting is O(k−1/2). This accounts for the
√
T part of our regret in Theorem 2.

Unfortunately, unlike the hypothetical setting, our queueing samples are biased and correlated.

Such a complication is due to the nonstationary error at the beginning of cycles which gives rise to

the extra log(T ) term in the regret bound; see Proposition 4 for additional discussion of the log(T )

term in our regret.

5.3. LIQUAR in Heavy Traffic

We now evaluate LiQUAR’s performance under heavy traffic conditions. To do this, we construct a

series of queueing models with traffic intensities that approach the critical threshold of 1, and define

the associated profit optimization problems. Our goal is to derive an explicit regret expression as

a function of traffic intensity. To achieve this, we will need to consider a simplified model in order

for reduced technicalities in our regret analysis. We consider two simplifications: first, we focus on

the case of exponential service times; second, we focus on a pricing problem, treating the service

rate µ as a constant. We stress that the simplified model still preserve the challenge of dealing with

unknown demand (the core aspect of the learning problem).

Consider a sequence of M/M/1 systems indexed by the parameter h> 0, which is the queueing

congestion cost per time unit. They share a common demand curve λ(p) and service rate µ= 1.

For the hth model, we aim to minimize the objective function below

min
p∈Bh

fh(p)≡−pλ(p)+
hλ(p)

1−λ(p)
, (17)

where Bh will be specified later. When the holding cost h in (17) decreases, the service provider is

incentivized to increase service utilization to maximize profit which places the system under the

heavy-traffic regime. Below we will formally show that the traffic intensity under the optimal price

ρ∗h converges to 1 as h→ 0, specifically, below we will show 1− ρ∗h =O(
√
h).

We denote by p∗h as the optimal solution to (17). To explicitly show the relationship between ρ∗h

and h, we impose the following assumptions on the demand curve.
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Assumption 3 (Demand Curve). We assume that the arrival rate function λ(p) satisfies the

following conditions:

1. The demand function is non-increasing and twice-differentiable.

2. The function r(p) = pλ(p) is strictly concave.

3. The demand function is elastic in the feasible regions: −λ′(p)
λ(p)
· p > 1 for p∈Bh.

The third technical condition is commonly used in the literature of revenue management in queues;

see for example, Assumption 1 in Maglaras and Zeevi (2003). Essentially, this condition assumes

that customers are price sensitive in the feasible region.

Denote p0 as the price that makes the system critically loaded, i.e., λ(p0) = 1. Before giving our

regret bound, we first characterize the optimal pricing decision p∗h as a function of h and relate the

traffic intensity ρ∗h to h.

Proposition 5. Under Assumption 3, we have the optimal price

p∗h ≡ argminfh(p) = p0 +
√
h ·

√
1

(1+ p0λ′(p0))λ′(p0)
+ o(
√
h),

and the corresponding optimal service excess

1− ρ∗h =
√
h ·

√
−λ′(p0)

1+ p0λ′(p0)
+ o(
√
h) =O(

√
h).

To investigate LiQUAR’s performance in heavy traffic, we consider Bh which asymptotically

operates the system in heavy traffic as h→ 0. Following Proposition 5, we let

p∗h ∈
[
p0 + c1

√
h,p0 + c2

√
h
]
≡Bh,

where the constants c1 and c2 satisfy 0 < c1 < c0 ≡ 1/
√

λ′(p0)(1+ p0λ′(p0)) < c2. Note that as

ρ∗h→ 1 (or equivalently, h→ 0), the queueing system takes a longer time to converge to its steady-

state. Therefore, as h→ 0, we need to increase the length of the learning cycle. We operate the

hth model under LiQUAR with a total time duration of T h ≡ T0/h units where T0 is a positive

constant independent of h. We evaluate our performance using the regret

Rh(T0)≡R(T h).

In what follows, we report the theoretical regret bound as a function of the traffic intensity.

Theorem 3 (Regret Bound in Heavy Traffic) For the hth system operated under LiQUAR to

minimize (17), when the hyper-parameters are chosen as

T h
k = cTh

−1k1/3, δhk = cδ
√
hk−1/3, ηh

k = cη
√
hk−1, (18)
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where the constants cT , cδ and cη are independent of h, then the regret is given by

Rh(T0)≤C
√
h−1T0 logT0 =O(

√
T0 logT0/(1− ρ∗h)), (19)

where C is a positive constant independent of h.

The result in Theorem 3 refines that in Theorem 2 by emphasizing how the regret depends on the

system’s traffic intensity. In Section 7, we also conduct heavy-traffic analysis for a nonparametric

PTO framework; and we compare the performance under both methods in our heavy-traffic regime

both theoretically and numerically.

6. Numerical Experiments

We provide engineering confirmations of the effectiveness of LiQUAR by conducting a series of

numerical experiments. We will use simulated data to visualize the convergence of LiQUAR, esti-

mate the regret curves and benchmark them with our theoretical bounds. In Section 6.1, we eval-

uate the performance of LiQUAR using an M/M/1 base example with logit demand functions. In

Section 6.2, we discuss how to fine-tune the algorithm’s hyperparameters including Tk and ηk. In

Section 6.3, we generalize LiQUAR to GI/GI/1 queues with non-Poisson arrivals and evaluate its

performance.

6.1. An M/M/1 base example

Our base model is an M/M/1 queues having Poisson arrivals with rate λ(p) and exponential service

times with rate µ. We consider a logistic demand function (Besbes and Zeevi 2015)

λ(p) =M0 ·
exp(a− bp)

1+ exp(a− bp)
, (20)

with M0 = 10, a= 4.1, b= 1 and a linear staffing cost function

c(µ) = c0µ. (21)

The demand function is shown in the top left panel in Figure 4. Then, the service provider’s profit

optimization problem (2) reduces to

max
µ,p

{
pλ(p)−h0

λ(p)/µ

1−λ(p)/µ
− c0µ

}
. (22)
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Figure 3 Relative profit loss (left) and workload error (right) for the M/M/1 example with M0 = 10, a= 4.1, and

b= 1 and linear staffing cost c(µ) = µ.

6.1.1. Performance sensitivity to parameter errors without learning We first illus-

trate how the parameter estimation error impacts the performance. Here we assume the service

provider does not know the true value of λ(p) but rather make decisions based on an estimated

arrival rate λ̂ϵ(p)≡ (1− ϵ%)λ(p), where ϵ is the percentage estimator error. Let (µ̂ϵ, p̂ϵ) and (µ∗, p∗)

be the solutions under the estimated λ̂ϵ and the true value of λ. We next compute the relative profit

loss due to the misspecification of the demand function (P(µ∗, p∗)−P(µ̂ϵ, p̂ϵ))/P(µ∗, p∗), which is

the relative difference between profit under the miscalculated solutions using the believed λ̂ϵ and

the true optimal profit under λ.

Let ρ∗ ≡ λ(p∗)/µ∗ be the traffic intensity under the true optimal solution. We are able to impact

the value of ρ∗ by varying the queueing penalty coefficient h0. We provide an illustration in Figure

3 with ϵ= 5. From the left panel of Figure 3, we can see that as ρ∗ increases, the model fidelity

becomes more sensitive to the misspecification error in the demand rate and the relative loss of profit

grows dramatically as ρ∗ goes closer to 1. This effect arises from the fact that the error predicted

workload is extremely sensitive to that in the arrival rate and is disproportionally amplified by

the PK formula when the system is in heavy traffic (see panel (b) for the relative error of the

workload). Later in Section 7, we will conduct a careful comparison to the PTO method where we

will compute the PTO regret including profit losses in both the prediction and optimization steps.

6.1.2. Performance of LiQUAR Using the explicit forms of (22), we first numerically

obtain the exact optimal solution (µ∗, p∗) and the maximum profit P(µ∗, p∗) which will serve as
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benchmarks for LiQUAR. Taking h0 = 1 and c0 = 1 yields (µ∗, p∗) = (8.18,3.79), and the corre-

sponding profit plot is shown in the top right panel of Figure 4. To test the criticality of condition

(b) in Assumption 1, we implement LiQUAR when condition (b) does not hold. For this purpose,

we set B= [6.5,10]× [3.5,7], in which the objective (3) is not always convex, let alone the condition

(b) of Assumption 1 (top right and middle right panel of Figure 4).

Then we implement LiQUAR without exploiting the specific knowledge of the exponential ser-

vice distribution or the form of λ(p). In light of Theorem 2, we set the hyperparameters ηk =

4k−1, δk =min(0.1,0.5k−1/3), Tk = 200k1/3 and α = 0.1. From Figure 4, we observe that the pair

(µk, pk), despite some stochastic fluctuations, converges to the optimal decision rapidly. The regret

is estimated by averaging 100 sample paths and showed in the bottom left panel of Figure 4. To

better relate the regret curve to its theoretical bounds as established in Theorem 2, we also draw

the logarithm of regret as a function of the logarithm of the total time; we fit the log-log curve to a

straight line (bottom right panel of Figure 4) so that the slope of the line may be used to quantify

the theoretic order of regret: the fitted slope (0.38) is less than its theoretical upper bound (0.5).

Such “overperformance” is not too surprising because the theoretic regret bound is established

based on a worst-case analysis. In summary, our numerical experiment shows that the technical

condition (b) in Assumption 1 does not seem to be too restrictive.

6.2. Tuning the hyperparameters for LiQUAR

Next, we test the performance of LiQUAR on the base M/M/1 example under different hyperpa-

rameters. We also provide some general guidelines on the choices of hyperparameters when applying

LiQUAR in practice.

6.2.1. Step lengths ηk and δk. In the first experiment, we tune the step length ηk and δk

jointly within the following form:

ηk = c · 4k−1, and δk =min(0.1, c · 0.5k−1/3). (23)

To understand the rationale of this form, note that these parameters give critical control to the

variance of the gradient estimator. We aim to keep the variance of the term ηkHk at the same level

in the gradient descent update

xk+1 =ΠB(xk− ηkHk), with ηkHk = ηk
f̂(xk + δk/2 ·Zk)− f̂(xk− δk/2 ·Zk)

δk
.

In this experiment, we let c ∈ {0.6,1.0,1.2} and fix Tk = 200k1/3 and α = 0.1. For each case, the

regret curve is estimated by 100 independent runs for L= 1000 iterations. The regret and its linear

fit are reported in Figure 5. As shown in the right panel of Figure 5, the regret of LiQUAR has
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Figure 4 Joint pricing and staffing in the M/M/1 logistic demand base example with ηk = 4k−1, δk =

min(0.1,0.5k−1/3), Tk = 200k1/3, p0 = 5, µ0 = 10 and α= 0.1: (i) Demand function λ(p) (top left panel);

(ii) net profit function (top right panel); (iii) sample trajectories of decision parameters (middle left);

(iv) One dimensional net profit function when µ= 10; (v) average regret curve estimated by 100 inde-

pendent runs (bottom left); (vi) a linear fit to the regret curve in logarithm scale.

slopes of the linear regret fit close to 0.5 in all three cases. Comparing the two curves with c= 0.6

and c= 1.2 (left panel of Figure 5), we find that the larger value of c immediately accumulates a

large regret in the early stages but performs better in the later iterations. This observation may

be explained by the trade-off between the level of exploration and learning rate of LiQUAR. In

particular, a larger value of c leads to larger values of ηk and δk, which allows more aggressive

exploration and higher learning rate.

Although the tuning of c will not affect the convergence of asymptotic regret of the algorithm,

it may be critical to decision making in a finite-time period. For example, a myopic decision maker
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Figure 5 Regret under different c ∈ {0.6,1.0,1.2}: (i) average regret from 100 independent runs (left panel); (ii)

regret curve in logarithm scale, with Tk = 200k1/3, ηk = c · 4k−1, δk =min(0.1, c · 0.5k−1/3) and α= 0.1.

who prefers good system performance in a short term should consider small values of c, while a

far-sighted decision maker who values more the long-term performance should adopt a larger c.

6.2.2. Cycle length Tk. In this experiment, we test the impact of Tk on the performance of

LiQUAR. We again use the M/M/1 base example. The step-length hyperparameters are set to

ηk = 4k−1 and δk =min(0.1,0.5k−1/3). We choose different values of Tk in the form of

Tk = T · k1/3, T ∈ {40,200,360}.

For different values of T , iteration numbers LT are chosen to maintain equal total running times

for LiQUAR. In particular, we choose LT =
⌈
1000 · (200/T )3/4

⌉
. Results of all above-mentioned

cases are reported in Figure 6.

The right panel of Figure 6 shows that the slope of the linear fits all below 0.5. According to the

three regret curves in the left panel, we can see how different values of T impact the exploration-

exploitation trade-off: a larger value of T , e.g., T = 360, yields a higher regret in the early iterations

but ensures a flatter curve in the later iterations. This is essentially due to the trade-off between

the learning cost and the quality of the gradient estimator. A larger cycle length Tk guarantees a

high-quality gradient estimators as more data are generated and used in each iteration which help

reduce the gradient estimator’s transient bias and variance. On the other hand, it demands that

the system be operated for a longer time under suboptimal control policies, especially in the early

iterations. The above analysis provides the following guidance for choosing T in practice: A smaller

T is preferred if the service provider’s goal is to make the most efficient use of the data in order

to make timely adjustment on the control policy. This guarantees good performance in short term

(the philosophy here is similar to that of the temporal-difference method with a small updating
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Figure 6 Regret under different T ∈ {40,200,360}: (i) average regret from 100 independent runs (left panel); (ii)

regret curve in logarithm scale, with Tk = T · k1/3, ηk = 4k−1, δk =min(0.1,0.5k−1/3) and α= 0.1.

cycle). But if the decision maker is more patient and aims for good long-term performance, he/she

should select a larger T which ensures that the decision update is indeed meaningful with sufficient

data (this idea is similar to the Monte-Carlo method with batch updates).

6.3. Queues with non-Poisson arrivals

In this section, we consider the more general GI/GI/1 model having arrivals according to a renewal

process. Similar to the service times, we model the interarrival times using scaled random variables

U1/λ(p),U2/λ(p), . . . for a given p, with U1,U2, . . . being a sequence of I.I.D. random variables with

E[Un] = 1.

The PTO framework is not applicable here because E[W∞] does not have a closed-form solution

in the GI/GI/1 setting. This provides additional motivations for our online learning approach. On

the other hand, generalizing the theoretical regret analysis rigorously from M/GI/1 to GI/GI/1

is by no means a straightforward extension. A key step in our analysis is to give a proper bound for

the bias of the gradient estimator. When the arrival process is Poisson, the memoryless property

ensures that Nl/Tk in (8) is an unbiased estimator for the arrival rate. For renewal arrivals, the

arrival rate bias has an order O(1/Tk) =O(k−1/3) (see for example Lorden’s inequality (Asmussen

2003, Section V, Proposition 6.2)), which contributes to the bias of the FD with an order of

O(1/Tkδk) = O(1). This contradicts Theorem 1 which requires Bk = O(k−1). This part of the

analysis requires additional investigations (in order to establish a more delicate bias bound). We

leave the careful regret analysis of GI/GI/1 to future research.

Nevertheless, from the engineering perspective, the increased bias due to the GI arrival process

may not be too significant (note that the theoretical bias bound is obtained from a worst-case analy-

sis). We next conduct some preliminary numerical experiments to test the performance of LiQUAR
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under GI arrivals. We consider an E2/M/1 queue example having Erlang-2 interarrival times with

mean 1/λ(p) and exponential service times with rate µ to illustrate the performance of LiQUAR in

GI/GI/1’s case. We continue to consider the logit demand function (20) with M = 10, a= 4.1, b= 1

and linear staffing cost function (21). Unlike the M/GI/1 case where the PK formula provides a

closed-form formula for the steady-state waiting time, here we numerically compute the optimal

solution (µ∗, p∗) by using matrix geometric method (note that the state process of E2/M/1 is quasi-

birth-and-death process). Letting h0 = c0 = 1 yields the optimal decision (µ∗, p∗) = (7.78,3.75).

We implement LiQUAR with hyperparameters ηk = 4k−1, δk = min(0.1,0.5k−1/3) , Tk = 200k1/3,

Figure 7 Joint pricing and staffing in the E2/M/1 queue with ηk = 4k−1, δk =min(0.1,0.5k−1/3), Tk = 200k1/3,

α= 0.1, p0 = 5 and µ0 = 10.

and α= 0.1. Figure 7, as an analog to Figure 4, shows that the refined LiQUAR continues to be

effective, exhibiting a rapid converge to the optimal decision and a slowly growing regret curve

(bottom left panel of Figure 7). Despite of the good performance of the above E2/M/1 example,

we acknowledge that this is only a preliminary step, and the full investigation of the GI/GI/1 case

requires careful theoretical analysis and comprehensive numerical studies.
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7. LiQUAR vs. PTO

In this section, we contrast the performance of LiQUAR to that of the conventional PTO method.

In principle, a PTO algorithm undergoes two phases: (i) “prediction” of the model (e.g., estimation

of the demand function and service distribution) and (ii) “optimization” of the decision variables

(e.g., setting the optimal service price and capacity). Taking the demand function λ(·) as an

example, PTO relies on the “prediction” phase to provide a good estimate λ̂(p), which will next be

fed to the “optimization” phase for generating desired control policies. In case no historical data

is available so that the “prediction” completely relies on the newly generated data, one needs to

learn the unknown demand curve λ(p) by significantly experimenting the decision parameters in

real time in order to generate sufficient demand data that can be used to obtain an accurate λ̂(p).

We begin by establishing theoretical results to compare the performance of LiQUAR and PTO

within a heavy-traffic framework. These findings are then supplemented by numerical experiments

to give engineering confirmations.

7.1. LiQUAR vs. PTO in heavy traffic

In this section, we compare the regret bounds of LiQUAR and PTO when the system is in heavy

traffic. Consider the sequence of h-indexed systems described in Section 5.3, we now intend to use

PTO to find the optimal value of (17) within Bh and measure its performance by computing the

regret Rh(T0) at time T h = T0/h. We consider the following PTO algorithm (Besbes and Zeevi

2009):

• Input: Total running time T h, number of testing points κh, time of prediction th0

• Step 1. Prediction:

a. Organize Bh into κh evenly spaced grids and distribute the testing points in all grids.

b. For each i= 1, · · · , κh, operate the system at ith under the testing point pi for t
h
0/κ

h units

of time, and approximate the demand curve λ̂(pi) by the time-averaged arrival rate.

• Step 2. Optimization:

a. Calculate f̂(pi) using λ̂(pi) in the PK formula.

b. Operate the system under p̂∗ = argmaxi f̂(pi) for the rest of time horizon.

We next give a regret bound for the above PTO method under the heavy-traffic learning scheme.

Proposition 6 (PTO in heavy traffic). Under Assumption 3, in the hth system, PTO with

hyperparameters κh, th0 yields the regret bound:

Rh(T0)≤C
√
hth0 +CT0 ·

√
κh logT0/h

h
√

th0
+C

√
hT0

(κh)2
. (24)
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In addition, if we select th0 =O

(
T
5/7
0 (logTh)2/7

h

)
and κ=O

(
T
1/7
0

logTh

)
, then the PTO regret bound can

be minimized as below:

Rh(T0)≤C · T
5/7
0 log(T0/h)

2/7

√
h

= Õ

(
T

5/7
0

1− ρ∗h

)
,

with C being some constant independent with h and 1− ρ∗h.

Remark 4 (LiQUAR vs. PTO in heavy traffic). Compared to the original regret bounds

presented in Besbes and Zeevi (2009), we have re-optimized the hyperparameters and derived

reduced regret bounds under Assumption 1, enabling a fair comparison between LiQUAR and

PTO. According to Theorem 3 and Proposition 6, the regret bounds for both LiQUAR and PTO

share a dependence on the traffic intensity in the order of 1/(1−ρ∗h). However, LiQUAR exhibits a

slower growth rate with respect to the time horizon, scaling as
√
T0. This implies that over the long

run, LiQUAR achieves a smaller regret bound than PTO. Furthermore, as the two terms involving

T0 and ρ∗ interact multiplicatively in the regret bound, the factor 1/(1− ρ∗) amplifies LiQUAR’s

advantage over PTO in heavy-traffic conditions, i.e., as ρ∗→ 1. This trend is further validated by

the numerical results illustrated in Figure 8.

Next, we numerically investigate the performance of LiQUAR and PTO for a one-dimensional

pricing problem under heavy traffic. We consider an M/M/1 system having exponential demand

function

λ(p) = exp(a− bp),

with a = 1 + log 2, b = 1 and exponential service time distributions. Following the settings in

Theorem 3, we consider a sequence of objective functions in (22) indexed by h. We keep µ= 1 held

fixed and allow h ∈ {0.1,0.01,0.005,0.001} to account for different values of the traffic intensity.

As h→ 0, the feasible region Bh takes the form

Bh =
[
p0 + c1

√
h,p0 + c2

√
h
]
,

with c1 = 0.6 · c0, c2 = 5c0 and c0 = 1/
√
λ′(p0)(1+ p∗λ′(p0)) = 1.20.

Then, we apply LiQUAR and PTO in all the instances with different h. For LiQUAR, following

Theorem 3, we choose ηh
k = 4

√
hk−1, δhk = 2

√
hk−1/3 with T h

k = h−1k1/3 for 500 iterations. To make a

fair comparison, we pick an equal runtime for LiQUAR and PTO with T h
0 =

∑500

k=1 T
h
k and T0 = h ·T h

0

for all h. PTO’s hyperparameters are chosen as th0 = t · T
5/7
0 log(T0/h)

2/7

√
h

and κh = h · (t0/ logT h)1/5

with t∈ {0.1,0.2,0.5}.
In Figure 8, we report the scaled regret curves of both methods under different holding costs h

where each regret curve is estimated by the average of 100 independent replications. To understand

how the regret is influenced by the heavy-traffic scaling factor h, we scale time by h ·T h = T0 and

scale the regret by
√
h ·Rh(T0) (as in Theorem 3 and Proposition 6). From Figure 8, we confirm

that LiQUAR significantly outperforms PTO in all heavy-traffic scenarios.
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Figure 8 PTO vs. LiQUAR; ηh
k = 4

√
hk−1, δhk = 2

√
hk−1/3 with Th

k = h−1k1/3; th0 = t · T
5/7
0 log(T0/h)

2/7

√
h

and κ=

t
1/5
0 ·h1/5 with t∈ {0.1,0.2,0.5}

7.2. LiQUAR vs. objective-informed PTO

In this section, we compare LiQUAR to an advanced parametric PTO framework, where the

prediction step incorporates information from the downstream objective function. We refer to this

approach as objective-informed PTO (oiPTO). In oiPTO, it is assumed that the decision-maker

knows the parametric form of the demand function, λ(·;β), with parameters β that are initially

unknown. During the prediction phase, oiPTO estimates β by leveraging the structure of the

downstream objective function (see (25)). In the optimization phase, oiPTO uses the demand

function with the estimated parameters, denoted as βoi, to compute the optimal decisions.

Specifically, let θ ∈ (0,1) represent the exploration ratio and T denote the total time (or learning

budget). The oiPTO approach divides the total time horizon T into two phases. In the first phase,
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corresponding to the interval [0, θT ], the focus is on learning the parameters of the demand function.

In the second phase, covering the interval [θT,T ], the system operates using decisions optimized

based on the estimated parameters. The details of these two steps are provided below:

• Prediction: Suppose m parameters of the demand function are to estimated, and we uni-

formly select (p1, µ1), · · · , (pm, µm)∈ B as experimentation decisions. We sequentially operate

the system under each of the experimentation decision for θT/m units of time. Then, based

on the arrival and workload data, the estimated parameter is given by

βoi = argmin
β

m∑
k=1

(f(pk, µk;β)− f̂(pk, µk))
2, (25)

where f(p,µ;β) =−pλ(p;β)+h · λ(p;β)

µ−λ(p;β)
+c(µ) and f̂(p,µ) is the time average cost estimation

of f(p,µ).

• Optimization: Next, we obtain the oiPTO-optimal policy x̂∗ by maximizing our objective

function with λ(·;β) replaced by λ(·;βoi). Then we implement this policy for the rest of time

horizon.

Experiment settings and results. We consider our base logit example in Section 6.1 having

demand function (20) with M0 = 10, a= 4.1, b= 1 and exponential service times. Throughout this

experiment, we fix the staffing cost c(µ) = µ. To understand the impact of the system’s congestion

level on performance of oiPTO and LiQUAR, we consider two scenarios specified by the optimal

traffic intensity ρ∗: (i) A light-traffic case with ρ∗ = 0.709 (h0 = 1) and (ii) A heavy-traffic case

with ρ∗ = 0.987 (h= 0.001).

For LiQUAR, we consistently select the hyperparameters ηk = 4k−1, δk =min(0.1,0.5k−1/3), ini-

tial values (µ0, p0) = (10,7) and Tk = 200k1/3 for L = 1000 iterations with a total running time

T = 2
∑L

k=1 200k
1/3. For oiPTO, we use the same total time T and consider several values of

the exploration ratio θ ∈ {0.3%,0.9%,1.5%,6%,15%} to account for different levels of exploration

efforts.

In Figure 9, we present the regret results for LiQUAR and oiPTO, showcasing the three oiPTO

curves with the lowest regrets. The left-hand panels illustrate that the exploration ratio θ has

a significant impact on oiPTO’s performance. The regret for oiPTO exhibits a piecewise linear

pattern: during the prediction phase, regret grows rapidly due to periodic exploration across all

experimentation variables; in the optimization phase, regret continues to increase linearly, albeit

at a slower rate, as the system operates based on the oiPTO-optimized solution, which remains

suboptimal. A larger (smaller) θ leads to higher (lower) regret during the prediction phase but

results in a more (less) accurate model. This improved accuracy generates decisions that are closer

to optimal, resulting in a slower (faster) regret growth during the optimization phase.
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Furthermore, comparing case (a) to case (b), we observe that while oiPTO incorporates down-

stream objective information, LiQUAR consistently outperforms oiPTO by achieving a lower

regret. This advantage is especially pronounced in heavy-traffic scenarios. The primary reason is

that LiQUAR employs an integrated learning approach, continuously refining its decision-making

through direct interaction with the environment. In contrast, oiPTO follows a static learning strat-

egy, investing fixed efforts into parameter prediction and relying entirely on these predictions in

the optimization phase. The limitations of oiPTO become more apparent in heavy traffic, where

the nonlinear structure of workload amplifies the cost of suboptimal decisions.

8. LiQUAR vs. Reinforcement Learning

In this section, we compare LiQUAR with reinforcement learning (RL) methods. While the machine

learning literature offers a wide range of RL approaches, we focus on the policy gradient (PG)

method for comparison due to the following reasons: (i) both LiQUAR and PG rely on gradient-

based optimization, making them conceptually aligned; and (ii) our problem involves an infinite

state space (e.g., queue length or workload) and a continuous action space, where the PG method

demonstrates particular advantages over other RL techniques.

Problem Settings and Algorithms. Because an RL method is underpinned by its corresponding

Markov decision process (MDP), and setting up an MDP requires the model to be Markovian, we

now restrict our attention to theM/M/1 queue. Specifically, we consider the following discrete-time

MDP with the objective of maximizing its long-run average reward. Our MDP has

• Time steps: t= 1,2, . . . .

• States: Queue length at beginning of period t, denoted by St.

• Actions: Choices of price and service rate at each time step At = (p,µ).

• Rewards: The net profit gained in time slot t, denoted by Rt.

Under the above setting, we write the Bellman equation as below:

qπ(s, a)+hπ =Es′∼P (s,a),a′∼π[R(s, a)+ q(s′, a′)],

with qπ(s, a) is the q-function of policy π and hπ is the long-run average revenue under π.

Following (Sutton and Barto 2018, Section 13.6), we apply the Gaussian parameterization for our

actions. Specifically, we draw p ∼N(p̄, σ2
p) and µ ∼N(µ̄, σ2

µ) independently. Let θ ≡ (p̄, µ̄, σ2
p, σ

2
µ)

and we denote πθ as the Gaussian density with parameter θ. According to the policy gradient

theorem (Sutton and Barto 2018, p.339), the gradient on the policy function can be represented

as ∇θhπθ
=E[∇ logπθ(At|St) · q(St,At)].

We next quickly explain how the PG algorithm works. We organize the time into successive cycles

each of which contains several episodes. In each episode, the PG algorithm operates the system
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(b) Heavy traffic case with ρ∗ = 0.987

Figure 9 oiPTO vs. LiQUAR: (i) low traffic scenario ρ∗ = 0.705; (ii) high traffic scenario ρ∗ = 0.987. Hyperpa-

rameters for LiQUAR are ηk = 4k−1, δk =min(0.1,0.5k−1/3), Tk = 200k1/3 in both scenarios. All regret

curves are estimated by averaging 1,000 independent simulation runs.

under policy πθ and generates a sample of gradient estimator. The averaged value of these samples

from different episode gives the PG estimator in each cycle. See Algorithm 3 in the appendix for

the detailed description of the PG algorithm.

Experiment settings and results. We now compare PG with LiQUAR using our base example as

described in Section 6.1. Specifically, we consider an M/M/1 queue having logit demand function

(20) with M0 = 10, a = 4.1, b = 1 and exponential service times with holding cost c(µ) = µ. For

LiQUAR, the hyperparameter are ηk = 4k−1, Tk = 200k1/3, and δk =min(0.1,0.5k−1/3). For PG, we
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Figure 10 Comparison of the regret of LiQUAR with PG and PG-FD in our base example. The hyperpa-

rameter choices are: (i) LiQUAR : ηk = 4k−1, Tk = 200k1/3, δk = min(0.5k1/3,0.1); (ii) PG: η ∈

{0.1,0.01,0.001},L∈ {1,10,100,300}, Episode length T = 3000/L. All regret curves are estimated from

1,000 independent simulation replications.

consider pick the step size η ∈ {0.1,0.01,0.001,0.0001} and the cycle length T ∈ {10,100,300}. In

addition, we keep the total running time of LiQUAR and PG equal in order for a fair comparison.

We report the regret curves in Figure 10. For the clarity of the figure, we report the curves with

the lowest regret for each step length choice η. From Figure 10, we find that LiQUAR is more

effective than PG in a wide range of hyper-parameter choices.

Remark 5 (LiQUAR vs. PG). In the PG algorithm, the gradient estimator relies on accu-

rately learning the qπ(s, a) function (as outlined in the policy gradient theorem), which is a two-

dimensional function. Inaccuracies in this estimation can result in significant variance in the gra-

dient calculations. In contrast, LiQUAR only requires learning the values of individual actions,

substantially reducing the complexity and effort required for learning. Furthermore, by the design of

LiQUAR, the tuning of its hyperparameters can leverage domain-specific knowledge of the queue-

ing system, e.g., the transient bias and auto-correlation between queueing data; also see Remark

1. In comparison, tuning hyperparameters in the PG algorithm is considerably more challenging,

as RL methods are generally considered black-box approaches.
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9. Conclusions

In this paper we develop an online learning framework, dubbed LiQUAR, designed for dynamic

pricing and staffing in an M/GI/1 queue with unknown arrival rate function and service distri-

bution. LiQUAR’s main appeal is its “model-free” attribute. Unlike the conventional “predict-

then-optimize” approach where precise estimations of the demand function and service distribution

must be conducted (as a separate step) before the decisions may be optimized, LiQUAR is an

integrated method that recursively evolves the control policy to optimality by effectively using the

newly generated queueing data (e.g., arrival times and service times). LiQUAR’s main advantage

is its solution robustness; its algorithm design is able to automatically relate the parameter esti-

mation errors to the fidelity of the optimized solutions. Comparing to the conventional method,

this advantage becomes more significant when the system is in heavy traffic.

Effectiveness of LiQUAR is substantiated by (i) theoretical results including the algorithm con-

vergence and regret analysis, and (ii) engineering confirmation via simulation experiments of a

variety of representative queueing models. Theoretical analysis of the regret bound in the present

paper may shed lights on the design of efficient online learning algorithms (e.g., bounding gradient

estimation error and controlling proper learning rate) for more general queueing systems. In addi-

tion, the analysis on the statistical properties for our gradient estimator has independent interests

and may contribute to the general literature of stochastic gradient decent. We also extend LiQUAR

to the more general GI/GI/1 model and confirm its good performance by conducting numerical

studies.

There are several venues for future research. One dimension is to extend the method to queueing

models under more general settings such as non-Poisson arrivals, customer abandonment and mul-

tiple servers, which will make the framework more practical for service systems such as call centers

and healthcare. Another interesting direction is to theoretically relax the assumption of uniform

stability by developing a “smarter” algorithm that automatically explore and then stick to control

policies that guarantee a stable system performance.
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E-Companion

This e-companion provides supplementary materials to the main paper. In Section EC.1, we

provide the proofs for our main results in the main paper. In Section EC.2, we supplement Section

EC.1 to give additional proofs. In Section EC.3, we give a regret lower bound for the M/M/1

queue. In Section EC.4, we verify that the Condition (a) of Assumption 1 holds for some commonly

used demand functions. In Section EC.5, we conduct additional numerical studies. In Section EC.6,

we provide the detailed description for the PG algorithm in Section 8. To facilitate readability, all

notations are summarized in Table EC.1 including all model parameters and functions, algorithmic

parameters and variables, and constants in the regret analysis.

EC.1. Proofs of Main Results

In this section, we provide the proofs of the main theorems and propositions. Proofs of technical

lemmas are given in the Section EC.2.

EC.1.1. Proof of Proposition 1

First, we introduce a technical lemma to uniformly bound the moments of workload under arbitrary

control policies.

Lemma EC.1 (Uniform Moment Bounds). Under Assumptions 1 and 2, there exist some con-

stants θ0 > 0 and M > 1 such that, for any sequence of control parameters {(µl, pl) : l≥ 1},

E[Wl(t)
m]≤M, E[Wl(t)

m exp(2θ0Wl(t))]≤M,

for all m∈ {0,1,2}, l≥ 1 and 0≤ t≤ Tk with k= ⌈l/2⌉.

Then, following (7),

E
[
|Ŵl(t)−Wl(t)|

]
=E [Wl(t) ·1 (Wl(t)>µl(Tk− t))]≤E

[
Wl(t)

2
]1/2 P (Wl(t)>µl(Tk− t))

1/2

≤E
[
Wl(t)

2
]1/2 · exp(−1

2
θ0µl(Tk− t)

)
E [exp(θ0Wl(t))]

1/2 ≤ exp

(
−1

2
θ0µ(Tk− t)

)
M,

where the last inequality follows from Lemma EC.1. □

EC.1.2. Proof of Proposition 2

For each cycle l, the difference between the estimated system performance f̂G(µl, pl) and its true

value is

f̂G(µl, pl)− f(µl, pl) =
−pl(Nl−λ(pl)Tk)

Tk

+
1

(1− 2α)Tk

∫ (1−α)Tk

αTk

[ Ŵl(t)−Wl(t)︸ ︷︷ ︸
delayed observation

+Wl(t)−wl︸ ︷︷ ︸
transient error

] dt,



ec2 e-companion to Chen, Hong, and Liu: Online Queue Learning Unknown Demand

where wl = E[W∞(µl, pl)] is the steady-state mean workload. To bound the moments of this dif-

ference, which correspond to the bias and MSE of f̂G(µl, pl), we construct a stationary workload

process W̄l(t) for 0 ≤ t ≤ Tk. At t = 0, the initial value W̄ l(0) is independently drawn from the

stationary distribution W∞(µl, pl) and W̄l(t) is synchronously coupled with Wl(t) in the sense that

they share the same sequence of arrivals and individual workload on [0, Tk].

Bound on the Bias. The bias of f̂G(µl, pl) can be decomposed as

El

[
f̂G(µl, pl)− f(µl, pl)

]
=

1

(1− 2α)Tk

∫ (1−α)Tk

αTk

(
El

[
Ŵl(t)

]
−El[W̄l(t)]

)
dt≤ 1

(1− 2α)Tk

∫ (1−α)Tk

αTk

El

[
|Ŵl(t)− W̄l(t)|

]
dt.

≤ 1

(1− 2α)Tk

(∫ (1−α)Tk

αTk

El[|Ŵl(t)−Wl(t)|]dt+
∫ (1−α)Tk

αTk

El[|Wl(t)− W̄l(t)|]dt

)
. (EC.1)

The first term in (EC.1) is the error caused by delayed observation. Following the same analysis

as in Section EC.1.1,

El

[
|Ŵl(t)−Wl(t)|

]
≤El[Wl(t)

2]1/2 · exp(−aµl(Tk− t))El[exp(2aWl(t))]
1/2,

for a= θ0/2. It is easy to check that Wl(t)≤Wl(0) + W̄l(t). Conditional on Gl, for all 0≤ t≤ Tk,

W̄l(t) is the stationary workload with parameter (µl, pl). Following the proof of Lemma EC.1, W̄l(t)

is stochastic bounded by the stationary workload with parameter (µ,p). Therefore,

El

[
|Ŵl(t)−Wl(t)|

]
≤El[Wl(t)

2]1/2 · exp(−θ0µl(Tk− t)/2)El[exp(θ0Wl(t))]
1/2

≤ exp(−θ0µl(Tk− t)/2)(Wl(0)
2 +2Wl(0)El[W̄l(t)]+El[W̄l(t)

2])1/2 exp(θ0Wl(0))El[exp(θ0W̄l(t))]
1/2

≤ exp(−θ0µl(Tk− t)/2)(Wl(0)
2 +2MWl(0)+M 2)1/2 exp(θ0Wl(0))M

1/2

≤ exp(−θ0µl(Tk− t)/2)M(M +Wl(0)) exp(θ0Wl(0)). (EC.2)

The last inequality holds as M ≥ 1. The second term in (EC.1) will be bounded using the following

lemma on convergence rate of two synchronously coupled workload processes.

Lemma EC.2 (Ergodicity Convergence). Suppose Assumptions 1 and 2 hold. Two workload

processes W (t) and W̄ (t) with equal control parameters (µ,p) ∈ B are synchronously coupled with

initial states (W (0), W̄ (0)). Then, there exists γ > 0 independent of (µ,p), such that

E
[
|W (t)− W̄ (t)|m | W (0), W̄ (0)

]
≤ e−γt(eθ0W (0) + eθ0W̄ (0))|W (0)− W̄ (0)|m.

Using this lemma, we can compute

El[|Wl(t)− W̄l(t)|]≤ exp(−γt)El

[
|Wl(0)− W̄l(0)|(exp(θ0Wl(0))+ exp(θ0W̄l(0)))

]
≤ exp(−γt) (Wl(0) exp(θ0Wl(0))+MWl(0)+M exp(θ0Wl(0))+M)

≤ exp(−γt)(M +Wl(0))(exp(θ0Wl(0))+M). (EC.3)
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Let θ1 =min(γ, θ0µ/2). Plugging inequalities (EC.2) and (EC.3) into (EC.1), we obtain the follow-

ing bound for the bias∣∣∣El

[
f̂G(µl, pl)− f(µl, pl)

]∣∣∣≤ 1

(1− 2α)Tk

· 2exp(−θ1αTk)

θ1
·M(M +Wl(0))(exp(θ0Wl(0))+M).

Bound on the Mean Square Error. The mean square error (MSE) of f̂G(µl, pl)

El[(f̂
G(µl, pl)− f(µl, pl))

2]≤ 2El[E
2
1 ] + 2El[E

2
2 ],

with

f̂G(µl, pl)− f(µl, pl) =
−pl(Nl−λ(pl)Tk)

Tk︸ ︷︷ ︸
E1

+
1

(1− 2α)Tk

∫ (1−α)Tk

αTk

(Ŵl(t)−wl)dt︸ ︷︷ ︸
E2

.

Conditional on Gl, the observed number of arrivals Nl is a Poisson r.v. with mean λ(pl)Tk. So,

El[E
2
1 ] = p2l λ(pl)T

−1
k ≤ p̄2λ̄T−1

k .

For E2, we have

El[E
2
2 ] =

1

(1− 2α)2T 2
k

∫ (1−α)Tk

αTk

∫ (1−α)Tk

αTk

El

[
(Ŵl(t)−wl)(Ŵl(s)−wl)

]
dtds.

According to (7), Ŵl(·)≤Wl(·) and therefore, for any 0≤ s≤ t≤ Tk,

El[(Ŵl(t)−wl)(Ŵl(s)−wl)] =El[Ŵl(t)Ŵl(s)−wl(Ŵl(s)+ Ŵl(t))+w2
l ]

≤ El[Wl(t)Wl(s)−wl(Ŵl(s)+ Ŵl(t))+w2
l ]

≤ El[(Wl(t)−wl)(Wl(s)−wl)]+
(
El[wl|Wl(s)− Ŵl(s)|] +El[wl|Wl(t)− Ŵl(t)|]

)
≤ El[(Wl(t)−wl)(Wl(s)−wl)]︸ ︷︷ ︸

auto-covariance

+M
(
El[|Wl(s)− Ŵl(s)|] +El[|Wl(t)− Ŵl(t)|]

)
︸ ︷︷ ︸

error caused by delayed observations

To bound the auto-covariance term, we introduce the following lemma.

Lemma EC.3 (Auto-covariance of Wl(t)). There exists a constant KV > 0 independent of

Tk, l, pl, µl such that, for any l≥ 1 and 0≤ s≤ t≤ Tk,

El[(Wl(t)−wl)(Wl(s)−wl)]≤KV (exp(−γ(t− s))+ exp(−γs)) (Wl(0)
2 +1)exp(θ0Wl(0)). (EC.4)

Following (EC.4), we write

1

(1− 2α)2T 2
k

∫ (1−α)Tk

αTk

∫ (1−α)Tk

αTk

El[(Wl(t)−wl)(Wl(s)−wl)]dtds

≤ 2KV (Wl(0)
2 +1)exp(θ0Wl(0))

(1− 2α)2T 2
k

∫ (1−α)Tk

αTk

∫ t

αTk

(exp(−γ(t− s))+ exp(−γs))dsdt

=
2KV (Wl(0)

2 +1)exp(θ0Wl(0))

(1− 2α)2T 2
k

∫ (1−α)Tk

αTk

γ−1(1− exp(−γ(t−αTk))+ exp(−γαTk)− exp(−γt))dt

≤ 2KV (Wl(0)
2 +1)exp(θ0Wl(0))

(1− 2α)2T 2
k

∫ (1−α)Tk

αTk

2γ−1dt≤ 4KV (Wl(0)
2 +1)exp(θ0Wl(0))

γ(1− 2α)Tk

.
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For the error of delayed observation, by Proposition 1, we have

1

(1− 2α)2T 2
k

∫ (1−α)Tk

αTk

∫ (1−α)Tk

αTk

(
El[|Wl(s)− Ŵl(s)|] +El[|Wl(t)− Ŵl(t)|]

)
dsdt

≤ M(M +Wl(0)) exp(θ0Wl(0))

(1− 2α)2T 2
k

∫ (1−α)Tk

αTk

∫ (1−α)Tk

αTk

(
exp(−θ0µl

2
(Tk− t))+ exp(−θ0µl

2
(Tk− s))

)
dsdt

=
4M(M +Wl(0)) exp(θ0Wl(0))

θ0µl(1− 2α)Tk

(
exp(−θ0µl

2
αTk)− exp(−θ0µl

2
(1−α)Tk)

)
≤ 4M(M +Wl(0)) exp(θ0Wl(0))

θ0µl(1− 2α)Tk

.

As Wl(0) ≤ (Wl(0)
2 + 1)/2 and M ≥ 1, we have M +Wl(0) ≤ (M + 1)(1 +Wl(0)

2). Then, if we

choose

KM =
8(KV +M 3 +M 2)

(1− 2α)min(γ, θ0µ)
+ 2p̄2λ̄ (EC.5)

then, we have

El[(f̂
G(µl, pl)− f(µl, pl))

2]≤ 2El[E
2
1 ] + 2El[E

2
2 ]≤KMT−1

k (Wl(0)
2 +1)exp(θ0Wl(0)).

□

EC.1.3. Proof of Proposition 3

According to the following lemma, the FD approximation error is of order O(δ2k).

Lemma EC.4. Under Assumption 1, there exists a smoothness constant c > 0 such that for any

µ1, µ2, µ∈ [µ, µ̄] and p1, p2, p∈ [p, p̄],∣∣∣∣f(µ1, p)− f(µ2, p)

µ1−µ2

− ∂µf

(
µ1 +µ2

2
, p

)∣∣∣∣≤ c(µ1−µ2)
2∣∣∣∣f(µ,p1)− f(µ,p2)

p1− p2
− ∂pf

(
µ,

p1 + p2
2

)∣∣∣∣≤ c(p1− p2)
2.

So, to bound Bk, it remains to show that

E[E[f̂G(µl, pl)− f(µl, pl)|Fk]
2]1/2 =O(exp(−θ1αTk)).

Recall that Fk is the σ-algebra including all events in the first 2(k − 2) cycles, so Fk ⊆ Gl for

l= 2k− 1,2k. By Jensen’s inequality,

E
[
f̂G(µl, pl)− f(µl, pl)|Fk

]2
=E

[
El

[
f̂G(µl, pl)− f(µl, pl)

] ∣∣∣Fk

]2
≤E

[
El

[
f̂G(µl, pl)− f(µl, pl)

]2 ∣∣∣Fk

]
.

Therefore,

E
[
E
[
f̂G(µl, pl)− f(µl, pl)|Fk

]2]
≤E

[
El

[
f̂G(µl, pl)− f(µl, pl)

]2]
.
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By Proposition 2, the bias of estimated system performance∣∣∣El

[
f̂G(µl, pl)− f(µl, pl)

]∣∣∣≤ 2exp(−θ1αTk)

(1− 2α)θ1Tk

·M(M +Wl(0))(exp(θ0Wl(0))+M).

As (x+ y)2 ≤ 2x2 +2y2, we have, by Lemma EC.1,

E[El[f̂
G(µl, pl)− f(µl, pl)]

2]

≤4exp(−2θ1αTk)

(1− 2α)2θ21T
2
k

(
4M 4E[exp(2θ0Wl(0))+Wl(0)

2] + 4M 2E[Wl(0)
2 exp(2θ0Wl(0))]+ 4M 6

)
≤4exp(−2θ1αTk)

(1− 2α)2θ21T
2
k

· (8M 5 +4M 3 +4M 6) =O(exp(−2θ1αTk)).

Therefore, Bk =O
(
δ2k + δ−1

k exp(−θ1αTk)
)
. The variance

E[∥Hk∥2]≤ 3δ−2
k

2k∑
l=2k−1

E[(f̂G(µl, pl)− f(µl, pl))
2] + 3δ−2

k E[(f(µ2k, p2k)− f(µ2k−1, p2k−1))
2].

By the smoothness condition of the objective function f(x) as given in Assumption 1,

3δ−2
k E[(f(µ2k, p2k)− f(µ2k−1, p2k−1))

2]≤ max
(µ,p)∈B

∥∇f(µ,p)∥2 =O(1).

Following Proposition 2, for l= 2k− 1,2k,

E[(f̂G(µl, pl)− f(µl, pl))
2]≤KMT−1

k E[(Wl(0)
2 +1)exp(θ0Wl(0))] =O(T−1

k ).

Therefore, E[∥Hk∥2] =O(δ−2
k T−1

k ∨ 1). □

EC.1.4. Proof of Theorem 1

To obtain convergence of the SGD iteration, we first need to establish a desirable convex structure

of the objective function (3).

Lemma EC.5 (Convexity and Smoothness of f(µ,p)). Suppose Assumption 1 holds. Then,

there exist finite positive constants 0<K0 ≤ 1 and K1 >K0 such that for all x= (µ,p)∈B,

(a) (x−x∗)T∇f(x)≥K0∥x−x∗∥2,

(b) |∂3
µf(x)|, |∂3

pf(x)| ≤K1.

We only sketch the key ideas in the proof of the convergence result (12) under the convexity

structure here; the full proof is given in Appendix EC.2.1. Let bk =E[∥x̄k−x∗∥2]. Then, following

the SGD recursion and some algebra, we get the following recursion on bk:

bk+1 ≤ (1− 2K0ηk + ηkBk)bk + ηkBk + η2
kVk.



ec6 e-companion to Chen, Hong, and Liu: Online Queue Learning Unknown Demand

Under condition (11), we can show that the recursion coefficient 1 − 2K0ηk + ηkBk < 1, so bk

eventually converges to 0. With more careful calculation as given in Appendix EC.2.1, we can

obtain the convergence rate (12) by induction using the above recursion.

Applying the convergence result (12) to LiQUAR relies on knowing the bounds on Bk and Vk.

Given Proposition 3, one can check that, if ηk =O(k−a), Tk =O(kb) and δk =O(k−c), the bounds

for Bk and Vk as specified in condition (11) holds with β =max(−a,−a− b+2c,−2c). Then, (13)

follows immediately from (12).

EC.1.5. Proof of Proposition 4

The regret of nonstationarity

R2k =
2k∑

l=2k−1

E[ρl−Tkf(xl)] =
2k∑

l=2k−1

E
[
h0

∫ Tk

0

(Wl(t)−wl)dt− pl(Nl−Tkλ(pl))

]
,

where wl = El[W∞(µl, pl)]. Conditional on pl, Nl is a Poisson random variable with mean Tkλ(pl)

and therefore,

R2k = h0

2k∑
l=2k−1

E
[∫ Tk

0

(Wl(t)−wl)dt

]
.

Roughly speaking, R2k depends on how fast Wl(t) converges to its steady state for given (µl, pl).

Given the ergodicity convergence result in Lemma EC.2, we can show that Wl(t) becomes close to

the steady-state distribution after a warm-up period of length tk =O(log(k)).

Lemma EC.6 (Nonstationary Error after Warm-up). Suppose Tk > tk ≡ log(k)/γ, then

E
[∫ Tk

tk

(Wl(t)−wl)dt

]
=O(k−1).

To obtain a finer bound for small values of t, i.e., in the warm-up period, we follow a similar idea

as in Chen et al. (2024) and decompose E[Wl(t)−wl] =E[Wl(t)−wl−1] +E[wl−1−wl].

Lemma EC.7 (Nonstationary Error in Warm-up Period). Suppose Tk > tk ≡ log(k)/γ for

all k≥ 1. Then, there exists a constant C0 such that for all l= 2k− 1,2k,

(a) E[|wl−wl−1|]≤C0E[∥xl−xl−1∥];

(b) E
[∫ tk

0
Wl(t)−wl−1dt

]
≤C0E[∥xl−xl−1∥2]1/2tk.

As a consequence,

E
[∫ tk

0

(Wl(t)−wl)dt

]
=O

(
max(ηk

√
Vk, δk) log(k)

)
.
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Following Lemma EC.6 and Lemma EC.7, we have

R2k = h0

2k∑
l=2k−1

E
[∫ tk

0

Wl(t)−wldt+

∫ Tk

tk

Wl(t)−wldt

]
=O(k−1)+O(max(ηk

√
Vk, δk) log(k))

=O(k−1)+O(k−ξ log(k)) =O(k−ξ log(k)).

Furthermore, if ηk = O(k−a), Tk = O(kb) and δk = O(k−c), then by Proposition 3, ηk
√
Vk =

O(kmax(−a−b/2+c,−a)). As a result, max(ηk
√
Vk, δk) =O(kmax(−a−b/2+c,−a,−c)). Therefore, setting ξ =

max(−a− b/2+ c,−a,−c) finishes the proof. □

EC.1.6. Proof of Theorem 2

As discussed in Section 5.2, the bound for regret of suboptimality R1k follows immediately from

Theorem 1. The bound for R2k follows from Proposition 4. The bound for R3k follows from the

smooth condition in Assumption 1.

Lemma EC.8 (Exploration Cost). Under Assumption 1, there exists a constant K4 > 0 such

that

R3k ≤K4Tkδ
2
k. (EC.6)

Now, given that ηk = cηk
−1 with cη > 2/K0, Tk = cTk

1/2 with cT > 0 and δk = cδk
1/3 with 0 <

cδ <
√

K0/32c, by Proposition 3,

Bk ≤ 2cδ2k +O(δ−1
k exp(−θ1αTk)) =

K0

16
k−2/3 + o(k−2/3)≤ K0

8
k−2/3,

for k large enough, and Vk =O(k1/3). So condition (11) is satisfied with β = 2/3 and hence R1k =

O(k−1/3). On the other hand, conditions in Proposition 4 hold with ξ = 1/3 and hence R2k =

O(k−1/3 log(k)). Finally, R3k =O(Tkδ
2
k) =O(k−1/3). So we can conclude that

R(L) =
L∑

k=1

(R1k +R2k +R3k) =
L∑

k=1

O(k−1/3 log(k)) =O(L2/3 log(L)).

As Tk =O(k1/3), we have T (L) =O(L4/3), and therefore R(L) =O(
√

T (L) log(T (L)). □

EC.2. Additional Proofs

EC.2.1. Full Proof of Theorem 1

By the SGD recursion, x̄k+1 = ΠB(x̄k − ηkHk). Let Fk be the filtration up to iteration k, i.e. it

includes all events in the first 2(k− 1) cycles. By Lemma EC.5, we have

E
[
∥x̄k+1−x∗∥2]≤E[∥x̄k−x∗− ηkHk∥2

]
= E

[
∥x̄k−x∗∥2− 2ηkHk · (x̄k−x∗)+ η2

k∥Hk∥2
]

= E
[
∥x̄k−x∗∥2− 2ηk∇f(x̄k) · (x̄k−x∗)

]
−E[2ηk(Hk−∇f(x̄k)) · (x̄k−x∗)]+E[η2

k∥Hk∥2]

≤ (1− 2ηkK0)E
[
∥x̄k−x∗∥2

]
+E[2ηk(Hk−∇f(x̄k)) · (x∗− x̄k)]+ η2

kE[∥Hk∥2].
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Note that

E[2ηk(Hk−∇f(x̄k)) · (x∗− x̄k)] = E[E[2ηk(Hk−∇f(x̄k)) · (x∗− x̄k)|Fk]]

= 2ηkE[E[Hk−∇f(x̄k)|Fk] · (x∗− x̄k)]≤ 2ηkE[∥E[Hk−∇f(x̄k)|Fk]∥2]1/2E[∥x∗− x̄k∥2]1/2

≤ ηkE[∥E[Hk−∇f(x̄k)|Fk]∥2]1/2(1+E[∥x̄k−x∗∥2]).

The second last inequality follows from Hölder’s Inequality, and the last inequality follows from

2a≤ 1+ a2. Let bk =E[∥x̄k−x∗∥2] and recall that we have defined

Bk =E[∥E[Hk−∇f(x̄k)|Fk]∥2]1/2, Vk =E[∥Hk∥2].

Then, we obtain the recursion

bk+1 ≤ (1− 2K0ηk + ηkBk)bk + ηkBk + η2
kVk. (EC.7)

Next, we prove by mathematical induction that there exists a large constant K2 > 0 such that

bk ≤K2k
−β for all k≥ 1 using recursion (EC.7). Given that ηkVk =O(k−β), we can find a constant

K3 > 0 large enough such that ηkVk ≤K3k
−β for all k≥ 1. Then, by the induction assumption that

bk ≤K2k
−β, we have

bk+1 ≤ (1− 2K0ηk + ηkBk)bk + ηkBk + η2
kVk ≤

(
1− 2K0ηk +

K0

8
ηkk

−β

)
bk +

K0

8
ηkk

−β +K3ηkk
−β.

Note that k−β/(k+1)−β = (1+ 1
k
)β ≤ 1+ 1

k
≤ 1+ K0

2
ηk. So we have

bk+1 ≤
(
1− 2K0ηk +

K0

8
ηkk

−β

)(
1+

K0ηk
2

)
K2(k+1)−β +

K0

8
ηkk

−β +K3ηkk
−β

≤K2(k+1)−β − ηkk
−β

(
3K0K2

2
− K0K2

8
k−β − K2

0K2

16
ηkk

−β − K0

8
−K3

)
.

Then, we have bk+1 ≤K2(k+1)−β as long as

3K0K2

2
− K0K2

8
k−β − K2

0K2

16
ηkk

−β − K0

8
−K3 ≥ 0.

As the step size ηk → 0, ηkK0 ≤ 1 for k large enough. Let k0 = max{k ≥ 1 : ηkK0 > 1}. Then, if
K2 ≥ 8K3/K0, for all k≥ k0,

3K0K2

2
−K0K2

8
∆k−

K2
0K2

16
ηk∆k−

K0

8
−K3 ≥

3K0K2

2
−K0K2

8
−K0K2

16
−K0K2

8
−K0K2

8
=

17K0K2

16
> 0.

Let

K2 =max
(
kβ
0 (|µ̄−µ|2 + |p̄− p|2),8K3/K0

)
.

Then we have ∥x̄k −x∗∥2 ≤K2k
−β for all 1≤ k ≤ k0, and we can conclude by induction that, for

all k≥ k0,

E[∥x̄k−x∗∥2]≤K2k
−β.

□
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EC.2.2. Proofs of Technical Lemmas

In addition to the uniform moment bounds for Wl(t) as stated in Lemma EC.1, we also need to

establish similar bounds for the so-called observed busy period Xl(t), which will be used in the

proof of Lemma EC.7. In detail, Xl(t) is the units of time that has elapsed at time point t in cycle

l since the last time when the server is idle (probably in a previous cycle). So the value of Xl(t)

is uniquely determined by {Wl(t)}, i.e., Xl(t) = 0 whenever Wl(t) = 0 and dXl(t) = dt whenever

Wl(t)> 0.

Lemma EC.9 (Complete Version of Lemma EC.1). Under Assumptions 1 and 2, there exist

some constants θ0 > 0 and M > 1 such that, for any sequence of control parameters {(µl, pl) : l≥ 1},

E[Xm
l (t)]≤M, E[Wl(t)

m]≤M, E[Wl(t)
m exp(2θ0Wl(t))]≤M,

for all m∈ {0,1,2}, l≥ 1 and 0≤ t≤ Tk with k= ⌈l/2⌉.

Proof of Lemma EC.9 We consider a M/GI/1 system under a stationary policy such that µl ≡
µ and pl ≡ p for all l ≥ 1. We call this system the dominating system and denote its workload

process by WD
l (t). In addition, we set WD

1 (0)
d
=W∞(µ,p) so that WD

l (t)
d
=W∞(µ,p) for all l ≥ 1

and t ∈ [0, Tk]. Then, the arrival process in the dominating system is an upper envelop process

(UEP) for all possible arrival processes corresponding to any control sequence (µl, pl) and the

service process in the dominating system is a lower envelope process (LEP) for all possible service

processes corresponding to any control sequence. In addition, W1(0) = 0≤WD
l (t). So we have

Wl(t)≤st W
D
l (t)

d
=W∞(µ,p), for all l≥ 1 and t∈ [0, Tk].

By Theorem 5.2 in the Chapter X of Asmussen (2003), the stationary workload process

W∞(µ,p)
d
= Y1 + ...+YN .

Here N is geometric random variable of mean 1/(1− ρ̄) and ρ̄= λ(p)/µ, and Yn are I.I.D. random

variables independent of N . In addition, the density of Yn is

fY (t) =
P(Vn > t)

E[Vn]
, t∈ [0,∞).

Under Assumption 2, we have

P(Yn > t) =

∫ ∞

t

fY (s)ds=

∫ ∞

t

P(Vn > s)

E[Vn]
ds≤

∫ ∞

t

exp(−ηs)E[exp(ηVn)]

E[Vn]
ds=

E[exp(ηVn)]

ηE[Vn]
·exp(−ηt).

As a consequence, Yn has finite moment generating function around the origin. As W∞(µ,p) is a

geometric compound of Yn, it also has finite moment generating function around the origin. So we

can conclude that, there exists some constants θ0 ∈ (0, θ/2) and C ≥ 1 such that

E[Wl(t)
m]≤E[W∞(µ,p)m]≤C, E[Wl(t)

m exp(2θ0Wl(t))]≤E[W∞(µ,p)m exp(2θ0W∞(µ,p))]≤C,
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for m= 1,2.

To deal with the observed busy period, we need to do a time-change. In detail, for each cycle

l and control parameter (µl, pl), we “slow down” the clock by λ(pl) times so that the arrival rate

is normalized to 1 and mean service time to λ(pl)/µl. We denote the time-changed workload and

observed busy period by W̃l(t) and X̃l(t) for t∈ [0, λ(pl)Tk]. Then, for all t∈ [0, Tk],

Wl(t)≤
1

λ(p̄)
W̃l (λ(pl)t) , Xl(t)≤

1

λ(p̄)
X̃l (λ(pl)t) .

We denote by X̃D
l (t) the time-changed observed busy period corresponding to the dominating

system. Then, since λ(pl)/µl/ ≤ λ(p)/µ for all possible values of (µl, pl), we can conclude that

X̃l(t) ≤st X̃
D
l (t). Following Nakayama et al. (2004), E[X̃D

l (t)] ≤ E[X∞(1, µ/λ(p))] <∞. Let M =

C ∨
(
E[X∞(1, µ/λ(p))]/λ(p̄)

)
and we can conclude that E[Xl(t)]≤M . □

Proof of Lemma EC.2 Let N(t) be the arrival process under control parameter (µ,p), which is

a Poisson process with rate λ(p). Define an auxiliary Lévy process as R(t) =
∑N(t)

i=1 Vi−µt. For the

workload processes W (t) and W̄ (t), define two hitting times τ and τ̄ as

τ ≡min
t≥0
{t :W (0)+R(t) = 0}, and τ̄ ≡min

t≥0
{t : W̄ (0)+R(t) = 0}.

Following Lemma 2 of Chen et al. (2024), we have

|W (t)− W̄ (t)| ≤ |W (0)− W̄ (0)|1 (t < τ ∨ τ̄) . (EC.8)

Next, we give a bound for the probability P(τ > t) by constructing an exponential supermartingale.

Define

M(t) = exp(θ0(W (0)+R(t))+ γt) ,

where θ0 is defined in Lemma EC.9 and the value of γ will be specified in (EC.9). Let {Ft}t≥0 be

the natural filtration associated to R(t). For any t, s > 0,

E[M(t+ s)|Ft] =E[M(t) exp(θ0(R(t+ s)−R(t))+ γs)|Ft] =M(t)E[exp(θ0R(s)+ γs)]

=M(t)E

[
exp

(
θ0

N(s)∑
i=1

Vi− θ0µs+ γs

)]
=M(t)E

[
E[exp(θ0Vi)]

N(s)
]
e−θ0µs+γs

=M(t) exp (s (λE[exp(θ0Vi)]−λ−µθ0 + γ)) .

According to Assumption 2, ϕ(θ) < log(1 + µθ/λ̄)− γ0 for some θ, γ0 > 0. Besides, the function

h(x)≡ ϕ(x)− log(1+µx/λ̄) is convex on [0, θ]. As 0< θ0 < θ, we have

h(θ0)≤ (1− θ0/θ)h(0)+
θ0
θ
h(θ)<−θ0

θ
γ0.
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We choose

γ = λ
(
1− e−

θ0γ0
θ

)(
1+µθ0/λ̄

)
. (EC.9)

Then, it satisfies that

λE[exp(θ0Vi)]−λ−µθ0 + γ = λ

(
eϕ(θ0)− (1+

µθ0
λ

)+
γ

λ

)
<λ

(
e−

θ0
θ γ0(1+µθ0/λ̄)− (1+µθ0/λ)+

γ

λ

)
<λ

(
−
(
1− e

θ0γ0
θ

)
(1+µθ0/λ̄)+

γ

λ

)
= 0.

Now, we can conclude that M(t) is an non-negative supermartingale with γ as given by (EC.9).

By Fatou’s lemma,

P(τ > t|W (0))≤ e−γtE[exp(γτ)|W (0)] = e−γtE[lim inf
n→∞

M(τ ∧n)|W (0)]

≤ e−γt lim inf
n→∞

E[M(τ ∧n)|W (0)]≤ e−γtE[M(0)|W (0)] = e−γt exp(θ0W (0)).

Similarly, P(τ̄ > t|W̄ (0)) ≤ e−γt exp(θ0W̄ (0)). Combining these bounds with (EC.8), we can con-

clude that

E
[
|W (t)− W̄ (t)|m|W (0), W̄ (0)

]
≤ |W (0)− W̄ (0)|mP(τ ∨ τ̄ > t|W (0), W̄ (0))

≤ |W (0)− W̄ (0)|m
(
P(τ > t|W (0))+P(τ̄ > t|W̄ (0))

)
≤ |W (0)− W̄ (0)|m

(
eθ0W (0)+θ0W̄ (0)

)
e−γt.

□

Proof of Lemma EC.3 We first analyze the conditional expectation El[(Wl(t)−wl)(Wl(s)−wl)]

for each given pair of (s, t) such that 0 ≤ s ≤ t ≤ Tk. To do this, we synchronously couple with

{Wl(r) : s ≤ r ≤ Tk} a stationary workload process {W̄ s
l (r) : s ≤ r ≤ Tk}. In particular, W̄ s

l (s) is

independently drawn from the stationary distributionW∞(µl, pl). As a result, W̄ s
l (r) is independent

of Wl(s) for all s≤ r≤ Tk, and hence

El[Wl(s)(W̄
s
l (t)−wl)] =El[Wl(s)]

(
El[W̄

s
l (t)]−wl

)
= 0.

Then, we have

El[(Wl(t)−wl)(Wl(s)−wl)] =El[(Wl(t)− W̄ s
l (t))Wl(s)]−wlEl[Wl(s)−wl].

By Lemma EC.2,

El[(Wl(t)− W̄ s
l (t))Wl(s)|Wl(s), W̄

s
l (s)]≤ exp(−γ(t− s))(eθ0Wl(s) + eθ0W̄

s
l (s))(Wl(s)+ W̄ s

l (s))Wl(s).
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As W̄ s
l (s) is independent of Wl(s),

El[(Wl(t)− W̄ s
l (t))Wl(s)|Wl(s)]

≤ exp(−γ(t− s))El

[
(eθ0Wl(s) + eθ0W̄

s
l (s))(Wl(s)+ W̄ s

l (s))Wl(s)|Wl(s)
]

= exp(−γ(t− s))(eθ0Wl(s)Wl(s)
2 + eθ0Wl(s)Wl(s)E[W̄ s

l (s)]+Wl(s)
2E[eθ0W̄

s
l (s)] +Wl(s)E[eθ0W̄

s
l (s)W̄ s

l (s)])

≤ exp(−γ(t− s))(eθ0Wl(s)Wl(s)
2 +Meθ0Wl(s)Wl(s)+MWl(s)

2 +MWl(s)).

One can check that Wl(s) ≤Wl(0) + W̄l(s), where W̄l(s) is a stationary workload process syn-

chronously coupled with Wl(t) having an independent drawn initial W̄l(0). Therefore,

El

[
eθ0Wl(s)Wl(s)

2
]
≤ eθ0Wl(0)El

[
(Wl(0)+ W̄l(s))

2eθ0W̄l(s)
]

= eθ0Wl(0)
(
Wl(0)

2El[e
θ0W̄l(s)] + 2Wl(0)El

[
W̄l(s)e

θ0W̄l(s)
]
+El

[
Wl(s)

2eθ0W̄l(s)
])

≤ 2Meθ0Wl(0)(1+Wl(0)
2),

El

[
eθ0Wl(s)Wl(s)

]
≤ eθ0Wl(0)El

[
Wl(0)e

θ0W̄l(s) + W̄l(s)e
θ0W̄l(s)

]
≤ eθ0Wl(0)M(1+Wl(0))

≤ 3M

2
eθ0Wl(0)(1+Wl(0)

2),

where the last inequality holds because the constant M ≥ 1 and Wl(0)≤ (1+Wl(0)
2)/2. Note that

Wl(s)
2 ≤ eθ0Wl(s)Wl(s)

2 and Wl(s)≤Wl(s)e
θ0Wl(s), we have

El[(Wl(t)− W̄ s
l (t))Wl(s)]≤ e−γ(t−s)eθ0Wl(0)(1+Wl(0)

2)(2M +5M 2).

On the other hand, by Lemma EC.2,

|El[Wl(s)−wl]| ≤ exp(−γs)MWl(0)(M +Wl(0)) exp(θ0Wl(0))

≤ e−γseθ0Wl(0)M 2(1+Wl(0))
2 ≤ 2M 2e−γseθ0Wl(0)(1+Wl(0)

2).

As a consequence,

El[(Wl(t)−wl)(Wl(s)−wl)] =El[(Wl(t)− W̄ s
l (t))Wl(s)]−wlEl[Wl(s)−wl]

≤ (e−γ(t−s) + e−γs)eθ0Wl(0)(1+Wl(0)
2)(2M +5M 2 +2M 3).

and we can conclude (EC.4) with KV = 2M +5M 2 +2M 3. □

Proof of Lemma EC.4 By the mean value theorem,

f(µ1, p) = f

(
µ1 +µ2

2
, p

)
+

µ1−µ2

2
∂µf

(
µ1 +µ2

2
, p

)
+

(µ1−µ2)
2

8
∂2
µf

(
µ1 +µ2

2
, p

)
+

(µ1−µ2)
3

48
∂3
µf (ξ1, p)

f(µ2, p) = f

(
µ1 +µ2

2
, p

)
+

µ2−µ1

2
∂µf

(
µ1 +µ2

2
, p

)
+

(µ1−µ2)
2

8
∂2
µf

(
µ1 +µ2

2
, p

)
+

(µ2−µ1)
3

48
∂3
µf (ξ2, p) ,
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where ξ1 and ξ2 take values between µ1 and µ2. As a consequence, we have∣∣∣∣f(µ1, p)− f(µ2, p)

µ1−µ2

− ∂µf

(
µ1 +µ2

2
, p

)∣∣∣∣≤ c(µ1−µ2)
2,

with c= (max(µ,p)∈B |∂3
µf(µ,p)| ∨ |∂3

pf(µ,p)|)/24. Following the same argument, we have∣∣∣∣f(µ,p1)− f(µ,p2)

p1− p2
− ∂µf

(
µ,

p1 + p2
2

)∣∣∣∣≤ c(p1− p2)
2.

□

Proof of Lemma EC.5 By Pollaczek-Khinchin formula and PASTA,

f(µ,p) =
h0(1+ c2V )

2
· λ(p)

µ−λ(p)
+ c(µ)− pλ(p).

We intend to show that f(µ,p) is strongly convex in B. For ease of notation, denote C =
1+c2V

2
and

g(µ,λ) =
λ

µ−λ
.

Write λ(p),λ′(p) and λ′′(p) as λ, λ′ and λ′′ respectively. By direct calculation, we have

∂λg=
µ

(µ−λ)2
, ∂µg=

λ

(µ−λ)2
, ∂2

λλg=
2µ

(µ−λ)3
, ∂2

λµg=−
µ+λ

(µ−λ)3
, ∂2

µµg=
2λ

(µ−λ)3
.

The second-order derivatives are

∂ppf =
h0Cµ

(µ−λ)3
(
2(λ′)2 +(µ−λ)λ′′)− pλ′′− 2λ′

∂pµf =−h0C(µ+λ)

(µ−λ)3
, ∂µµf =

2h0Cλ

(µ−λ)3
+ c′′(µ).

By Condition (a) of Assumption 1, we have

−pλ′′− 2λ′ > 0 and 2(λ′)2 +(µ−λ)λ′′ > 0 ⇒ ∂ppf > 0.

It is easy to check that ∂µµf > 0 as c(µ) is convex. So, to verify the convexity of f , we only need

to show that the determinant of Hessian metric Hf is positive in B. By direct calculation,

|Hf |=
h2
0C

2

(µ−λ)5
(
2µλλ′′− (µ−λ)(λ′)2

)
+(−pλ′′− 2λ′)

2h0Cλ

(µ−λ)3
+ c′′(µ)∂ppf

≥ h2
0C

2

(µ−λ)5
(
2µλλ′′− (µ−λ)(λ′)2

)
+(−pλ′′− 2λ′)

2h0Cλ

(µ−λ)3

=
h0C

(µ−λ)5
[
h0C(2µλλ′′− (µ−λ)(λ′)2)+ 2λ(µ−λ)2(−pλ′′− 2λ′)

]
=− h0Cλ′

(µ−λ)4

[
h0Cλ′ +4λ(µ−λ)− 2

h0Cµ− p(µ−λ)2

µ−λ

λ′′λ

λ′

]
.
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As −λ′ > 0, we need to prove the term in bracket is positive. Note that the term

h0Cµ− p(µ−λ)2

µ−λ
= h0C +

h0Cλ

µ−λ
− p(µ−λ)

is monotonically decreasing in µ. By Assumption 1, we have, for all µ∈ [µ, µ̄] and λ∈ [λ, λ̄],

h0Cλ′ +4λ(µ−λ)− 2
h0Cµ− p(µ−λ)2

µ−λ

λ′′λ

λ′

≥h0Cλ′ +4λ(µ−λ)− 2

(
h0C +

h0Cλ

µ−λ
− p(µ−λ)

)
λ′′λ

λ′

≥h0Cλ′ +4λ(µ−λ)− 2h0C
λ′′λ

λ′ − 2max

{(
h0Cλ

µ−λ
− p(µ−λ)

)
λ′′λ

λ′ ,

(
h0Cλ

µ̄−λ
− p(µ̄−λ)

)
λ′′λ

λ′

}
>0.

As B is compact, we can conclude that f(µ,p) is strongly convex on B. Then by Taylor’s expansion,

Statement (a) holds for some 1≥K0 > 0. Statement (b) follows immediately after Assumption 1.

□

Proof of Lemma EC.6 By Lemma EC.2, conditional on µl, pl and Wl(0), we have

El[|Wl(t)− W̄l(t)|]≤ exp(−γt)El

[
|Wl(0)− W̄l(0)|(exp(θ0Wl(0))+ exp(θ0W̄l(0)))

]
≤ exp(−γt) (Wl(0) exp(θ0Wl(0))+MWl(0)+M exp(θ0Wl(0))+M)

≤ exp(−γt)M(M +Wl(0)) exp(θ0Wl(0)).

As a consequence, for t≥ tk,

E[|Wl(t)− W̄l(t)|]≤E[exp(−γt)M(M +Wl(0)) exp(θ0Wl(0))]

= exp(−γt)
(
M 2E[exp(θ0Wl(0))]+ME[Wl(0) exp(θ0Wl(0))]

)
≤ exp(−γt) · (M 2 +M 3)

Therefore,

E
[∫ Tk

tk

(Wl(t)−wl)dt

]
=

∫ Tk

tk

E[Wl(t)−wl]dt ≤
∫ Tk

tk

E[|Wl(t)− W̄l(t)|]dt

≤
∫ Tk

tk

exp(−γt) · (M 2 +M 3)dt ≤ exp(−γtk) ·
M 2 +M 3

γ

≤ k−1 ·M
2 +M 3

γ
=O(k−1).

□

Proof of Lemma EC.7 Statement (1) is a direct corollary of Pollaczek–Khinchine formula. The

proof of Statement (2) involves coupling workload processes with different parameters. Let us first

explain the coupling in detail. Suppose W 1(t) and W 2(t) are two workload processes on [0, T ] with
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parameters (µ1, λ1) and (µ2, λ2) respectively. Let W 1(0) and W 2(0) be the given initial states.

We construct two workload processes W̃ 1(t) and W̃ 2(t) on [0,∞) with parameters (µ1/λ1,1) and

(µ2/λ2,1) such that W̃ i(0) =W i(0) for i= 1,2. The two processes W̃ 1(t) and W̃ 2(t) are coupled

such that they share the same Poisson arrival process N(t) with rate 1 and the same sequence of

individual workload Vn.

Then, we can couple W i(t) with W̃ (t) via a change of time, i.e. W i(t) = W̃ i(λit) and obtain∫ T

0

W i(t)dt=
1

λi

∫ λiT

0

W̃ i(t)dt, for i= 1,2.

Without loss of generality, assuming λ1 ≥ λ2 and we have∣∣∣∣∫ T

0

W 1(t)dt−
∫ T

0

W 2(t)dt

∣∣∣∣
≤ 1

λ1

∣∣∣∣∫ λ2T

0

(W̃ 1(t)− W̃ 2(t))dt

∣∣∣∣+ ∣∣∣∣ 1λ2

− 1

λ1

∣∣∣∣ ∫ λ2T

0

W̃ 2(t)dt+
1

λ1

∫ λ1T

λ2T

W̃ 1(t)dt. (EC.10)

Following a similar argument as in the proof of Lemma 3 in Chen et al. (2024), we have that

|W̃ 1(t)− W̃ 2(t)| ≤
∣∣∣∣µ1

λ1

− µ2

λ2

∣∣∣∣max(X̃1(t), X̃2(t))+ |W 1(0)−W 2(0)|,

where X̃ i(t) is the observed busy period at time t, i.e.

X̃ i(t) = t− sup{s : 0≤ s≤ t, W̃ i(s) = 0}.

To apply (EC.10) to bound E[Wl(t)−wl−1], we construct a stationary workload process W̄l−1(t)

with control parameter (µl−1, pl−1) synchronously coupled with Wl−1(t) since the beginning of

cycle l − 1. In particular, W̄l−1(0) is independently drawn from the stationary distribution of

W∞(µl−1, pl−1). We extend the sample path W̄l−1(t) to cycle l, i.e. for t≥ Tk(l−1) with k(l− 1) =

⌈(l− 1)/2⌉, and couple it with Wl(t) following the procedure described above. Then we have

E
[∫ tk

0

(Wl(t)−wl−1)dt

]
≤E

[∣∣∣∣∫ tk

0

Wl(t)dt−
∫ tk

0

W̄l−1(Tk(l−1) + t)dt

∣∣∣∣] .
Without loss of generality, assume λl ≥ λl−1. Then following (EC.10), we have∣∣∣∣∫ tk

0

Wl(t)dt−
∫ tk

0

W̄l−1(Tk(l−1) + t)dt

∣∣∣∣
≤ 1

λl

∣∣∣∣∫ λl−1tk

0

(W̃l(t)− W̃l−1(Tk(l−1) + t))dt

∣∣∣∣+ ∣∣∣∣ 1λl

− 1

λl−1

∣∣∣∣ ∫ λl−1tk

0

W̃l−1(t)dt+
1

λl

∫ λltk

λl−1tk

W̃l(t)dt

≤ 1

λl

∫ λl−1tk

0

∣∣∣W̃l(t)− W̃l−1(Tk(l−1) + t)
∣∣∣dt+ ∣∣∣∣ 1λl

− 1

λl−1

∣∣∣∣ ∫ λl−1tk

0

W̃l−1(t)dt+
1

λl

∫ λltk

λl−1tk

W̃l(t)dt,
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where W̃l(·) and W̃l−1(·) are the time-change version of Wl(·) and W̄l−1(·), respectively, such that

their Poisson arrival processes are both of rate 1. For the first term, we have

E
[∣∣∣W̃l(t)− W̃l−1(Tk(l−1) + t)

∣∣∣]
≤ E

[∣∣∣∣µl

λl

− µl−1

λl−1

∣∣∣∣max(X̃l(t), X̃l−1(Tk(l−1) + t))+ |Wl(0)− W̄l−1(Tk(l−1))|
]

(a)

≤ E
[∣∣∣∣µl

λl

− µl−1

λl−1

∣∣∣∣ X̃D
l (t)

]
+E

[
|Wl−1(Tk(l−1))− W̄l−1(Tk(l−1))|

]
(b)

≤ E
[∣∣∣∣µl

λl

− µl−1

λl−1

∣∣∣∣ X̃D
l (t)

]
+O(k−1)

≤ E

[∣∣∣∣µl

λl

− µl−1

λl−1

∣∣∣∣2
]1/2

E
[
X̃D

l (t)2
]1/2

+O(k−1)

(c)
= O(max(ηk

√
Vk, δk))+O(k−1) =O(max(ηk

√
Vk, δk)),

where X̃D
l (·) is the dominant observed busy period defined in the proof of Lemma EC.9. Here

inequality (a) follows from the definition of X̃D
l (·), inequality (b) from Lemma EC.6 and equality

(c) from Lemma EC.9 and the fact that

∥xl−xl−1∥=

{
δk for l= 2k

ηk∥Hk−1∥ for l= 2k− 1.

For the second term,

E
[∣∣∣∣ 1λl

− 1

λl−1

∣∣∣∣ ∫ λl−1tk

0

W̃l−1(t)dt

]
=E

[∣∣∣∣1− λl−1

λl

∣∣∣∣ ∫ tk

0

Wl−1(t)dt

]
≤ 1

λ
E
[
(λl−λl−1)

2
]1/2E[(∫ tk

0

Wl−1(t)dt

)2
]1/2

=O(max(ηk
√
Vk, δk)tk).

Following a similar argument, we have that

E

[
1

λl

∫ λltk

λl−1tk

W̃l(t)dt

]
=E

[∫ tk

λl−1
λl

tk

Wl(t)dt

]
=O(max(ηk

√
Vk, δk)tk).

In summary, we can conclude that there exists a constant C0 > 0 such that

E
[∫ tk

0

(Wl(t)−wl)dt

]
≤ tkE [|wl−wl−1|]+E

[∣∣∣∣∫ tk

0

(Wl(t)− W̄l−1(Tk(l−1) + t))dt

∣∣∣∣]≤C0max(ηk
√
Vk, δk)tk.

As a consequence,

E
[∫ tk

0

(Wl(t)−wl)dt

]
≤C0max(ηk

√
Vk, δk)tk =O

(
max(ηk

√
Vk, δk) log(k)

)
.

□

Proof of Lemma EC.8 By Taylor’s expansion and the mean value theorem,

R3k =E[Tk (f(x2k−1)+ f(x2k)− 2f(x̄k))] =E[Tk(f
′′(x′)+ f ′′(x′′))δ2k]≤K4Tkδ

2
k,

where x′,x′′ ∈B and the last inequality follows from Lemma EC.5. □
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EC.2.3. Proof of Theorem 3

The proof of Theorem 3 follows a structure similar to that of the proof of Theorem 2. We first

need to build bounds on (i) moments; (ii) transient bias of the queueing data; (iii) variance of

the queueing data; (iv) and FD approximation error of the gradient in terms of the parameter h

which corresponds to Lemmas EC.10 to EC.13. Based on the results, we could bound the bias and

variance of our gradient estimator in Lemma EC.14 and the order of strong-convexity coefficient in

Lemma EC.15. Then, following the regret decomposition in the main paper, we bound the regret

of suboptimality, nonstationary and finite difference in Lemmas EC.16 to EC.18, which complete

the proof of Theorem 3.

For M/M/1 queue with unit service rate, the mean stationary workload is equal to mean sta-

tionary queueing length (including the customer in service). So, one could estimate the objective

function using the observed queue length data, and hence, entirely eliminate the bias of delayed

observation. In the following analysis, we use Qh
l (t) and phl to denote the observed queueing length

and control price, respectively, in cycle l when applying LiQUAR to the h-th system.

In addition, when applying LiQUAR to the h-th system, we denote the gradient estimator in

iteration k as

Hh
k =

1

2δhk

[
−ph2k−1

Nh
2k−1

Tk

+ ph2k
Nh

2k

T h
k

+h

∫ Th
k

αTh
k

Qh
2k−1(t)−Qh

2k(t)dt

]
and the corresponding finite difference

fh(p
h
2k−1)− fh(p

h
2k+1)

2δhk
≡Dfh(p̄

h
k),

where

ph2k−1 = p̄hk + δhk , ph2k = p̄hk − δhk .

Following the main paper, we define the bias and variance of the gradient estimator as

Bh
k ≡E[(E[Hh

k − f ′(p̄hk)|Fk])
2], Vh

k ≡E[(Hh
k )

2].

For the simplicity of notation, we will denote all positive constants that are independent of h and

T0 by C in the following analysis.

Lemma EC.10 (Moment Bounds). Under any control sequence phl ,

E
[
(Qh

l (t))
m
]
≤Ch−m/2, for all l≥ 1 and t∈ [0, Tk].

Proof of Lemma EC.10 Let Q̃h(·) be the stationary queue length process of an M/M/1 queue

with service rate 1 and arrival rate λ(p∗+ c1
√
h). Then, for arbitrary control sequence phl , we have

Qh
l (t)≤st Q̃h(t),
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for all t≥ 0. Therefore, it is sufficient to show that

E[Q̃h(t)
m]≤Ch−m/2

for some C > 0 and 1≤m≤ 4. By Taylor expansion, λ(p∗ + c1
√
h) = 1+λ′(p∗ + θc1

√
h)c1
√
h with

some θ ∈ (0,1), so the corresponding traffic intensity satisfies

1− ρ=−λ′(p∗ + θc1
√
h)c1
√
h≤ c1 ·C0

√
h,

with C0 =−argminp∈B1
λ′(p). Then, by the stationary distribution of M/M/1 queue, the moment

bounds are valid. □

Lemma EC.11 (Transient Bias Bound). Suppose Q̄h
l (·) is a stationary queue length process

synchronously coupled with Qh
l (·). Then, conditional on their initial values,

E[|Qh
l (t)− Q̄h

l (t)||Qh
l (0), Q̄

h
l (0)]≤ |Qh

l (0)
2− Q̄h

l (0)
2| · 2Ct−3/2

h
exp(−ht/2C).

Proof of Lemma EC.11 Consider an M/M/1 queue with traffic intensity ρ and i customers in

the system at time 0. Let τ be the first hitting time when the system gets empty. Following theorem

3.1 in Abate and Whitt (1988b),

P((1− ρ)2τ > t) =

∫ ∞

t

f(s; i,0)ds,

with

f(t; i,0) = (i/t)ρ1/2 exp(−2t/(1+√ρ)2) exp(−4ρ1/2t/(1− ρ)2)Ii(4ρ
1/2t/(1− ρ)2).

Here Ii(x) is the modified Bessel function of the first kind such that Ii(x)≤ I0(x) for any integer

i≥ 0. By Olivares et al. (2018), for all x> 0,

I0(x)≤ 1.006 · ex + e−x

2(1+x2/4)1/4
1+0.24273x2

1+0.43023x2
≤ 1.006 · ex

(1+x2/4)1/4
≤ 1.006 · ex · (1∧

√
2/x).

We bound f(t; i,0) by

f(t; i,0)≤ 1.006 · (i/t) exp(−t/2) ·
(
1∧ (1− ρ)

√
1/t
)
,

if ρ> 1/4. Therefore, for t≥ 1,

P(τ > t) = P
(
(1− ρ)2τ > (1− ρ)2t

)
=

∫ ∞

(1−ρ)2t

f(s; i,0)ds

≤
∫ ∞

(1−ρ)2t

1.006 · i
s
exp(−s/2)(1− ρ)

√
1/s ds

≤ 2.012(1− ρ)is−3/2 exp(−s/2)|s=(1−ρ)2t

=
2.012i

(1− ρ)2
t−3/2 exp(−(1− ρ)2t/2)
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The last inequality comes from integral by part. Suppose we synchronously couple an M/M/1

queue length process Q(t) with a stationary one Q̄(t) and denote by τ̄ the first hitting time to 0

of Q̄(t). Then, we have

E[|Q(t)− Q̄(t)||Q(0) = i]≤E[|i− Q̄(0)|1(τ ∨ τ̄ > t)]

≤E
[
2.012|i− Q̄(0)|(i+ Q̄(0))

(1− ρ)2
t−3/2 exp(−(1− ρ)2t/2)

]
≤E[|i2− Q̄(0)2|] · 2.012

(1− ρ)2
t−3/2 exp(−(1− ρ)2t/2).

Note that for p ∈ Bh, 1− ρ = O(
√
h) . Then, setting Q(t), Q̄(t) being the Qh

l (t), Q̄
h
l (t) closes the

proof. □

Lemma EC.12 (Variance Bound). For all h and l, the stationary queue satisfies

V ar

[∫ T

0

Q̄h
l (t)ds

]
≤ CT

h2
.

Proof of Lemma EC.12 Let cq(t) = corr(Q̄h
l (0), Q̄

h
l (2t/(1− ρ)2) ), with ρ= 1−λ(phl ) and thus

1− ρ≥C
√
h. According to corollary 5 of Abate and Whitt (1988a),∫ ∞

0

cq(t)dt=
1+ ρ

2
≤ 1.

Consequently, we have∫ ∞

0

Cov(Q̄h
l (0), Q̄

h
l (2t/(1− ρ)2))dt≤E[Q̄h

l (0)]
2 =

ρ(1+ ρ)

(1− ρ)2
≤ C

h
.

By changing of variables, we would see∫ ∞

0

Cov(Q̄h
l (0), Q̄

h
l (t))dt≤

C

h2
.

Now, we have

V ar

[∫ T

0

Q̄h
l (t)ds

]
=

∫ T

0

∫ T

0

Cov(Q̄h
l (t), Q̄

h
l (s))dtds

≤ 2

∫ T

0

∫ ∞

0

Cov(Q̄h
l (t), Q̄

h
l (t+ s))dsdt≤ CT

h2
.

□

Lemma EC.13 (FD Approximation Error Bound).

|Dfh(p
h
k)− f ′

h(p
h
k)| ≤Ck−2/3.
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Proof of Lemma EC.13 For fixed h, p∈Bh and δ > 0,

fh(p+ δ) = fh(p)+ δf ′
h(p)+

δ2

2
f ′′
h (p)+

δ3

6
f ′′′
h (p1)

fh(p− δ) = fh(p)− δf ′
h(p)+

δ2

2
f ′′
h (p)−

δ3

6
f ′′′
h (p2)

Therefore,

fh(p+ δ)− fh(p− δ)

2δ
= f ′

h(p)+
δ2f ′′′

h (p3)

6
.

Note that

f ′′′
h (p) = 3λ′′(p)+ pλ′′′(p)− 6hλ′(p)3

(1−λ(p))4
− 6hλ′′(p)λ(p)

(1−λ(p))3
− hλ′′′(p)

(1−λ(p))2
.

As 1−λ(p) =O(
√
h), we can conclude that

f ′′′
h (p) =O(h−1).

As δ=O(
√
hk−1/3), we conclude that the FD approximation error is of order O(k−2/3). □

Lemma EC.14 (Bounds on Gradient Estimator Bias and Variance). For all h and k,

Bh
k ≤C · k−2/3, Vh

k ≤C.

Proof of Lemma EC.14 We first prove the bias term and then we prove the variance term.

Bias term By definition, the bias is defined by

(Bh
k )

2 =E[(E[Hh
k − f ′(p̄hk)|Fk])

2]≤ 2E[E[f ′
h(p

h
k)−Dfh(p

h
k)|Fk]

2] + 2E[E[Hh
k −Dfh(p

h
k)|Fk]

2].

By Lemma EC.13, we have following bound for the first term.

E[E[f ′
h(p

h
k)−Dfh(p

h
k)|Fk]

2]≤Ck−4/3.

We next bound the second term. By Lemma EC.11, we have

E[|Qh
l (t)− Q̄h

l (t)||Qh
l (0), Q̄

h
l (0)]≤ |Qh

l (0)
2− Q̄h

l (0)
2| · 2Ct−3/2

h
exp(−ht/2C).

Consequently, we have

E[f̂h(phl )− fh(p
h
l )
∣∣Gl] = h

(1−α)T h
k

E

[∫ Th
k

αTh
k

Qh
l (t)− Q̄h

l (t)dt
∣∣∣Gl]

≤ |Q
h
l (0)

2− Q̄h
l (0)

2|
(1−α)T h

k

·
∫ Th

k

αTh
k

2Ct−3/2 exp(−ht/2C)dt

≤ C|Qh
l (0)

2− Q̄h
l (0)

2|
α3/2(T h

k )
3/2

exp(−αhT h
k /2C),
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where the last inequality holds due to the monotonicity of t−3/2 exp(−ht/2C). Therefore, by our

choice of T h
k , δ

h
k , we have

E[Hh
k −Dfh(p

h
k)|Fk] =

CE[Qh
l (0)

2− Q̄h
l (0)

2|Fk]

δk(T h
k )

3/2
exp(−αhT h

k /2C)

≤C h−1

√
hk−1/3h−3/2k1/2

exp(−αk1/3/2C)≤C · k−2/3,

for sufficient large k. This closes the proof of Bias.

Variance Term For the variance term, we have

E[H2
k ]≤ 3(δhk )

−2

2k∑
l=2k−1

E[f̂h(phl )− fh(p
h
l )

2] + 3(δhk )
−2E[fh(ph2k)− fh(p

h
2k−1)

2].

For the second term, we calculate that for p∈Bh,

f ′
h(p) =−pλ′(p)−λ(p)+h

λ′(p)

(1− ρ(p))2
=O(1).

Consequently, we have

(δhk )
−2E[fh(ph2k)− fh(p

h
2k−1)

2]≤max
p∈Bh

∥f ′
h(p)∥=O(1).

For the first term, we have

E[(f̂h(phl )− fh(p
h
l ))

2]≤ 2E

[(
phl

Nl

Tk

− phl λ(p
h
l )

)2
]
+2

h2

((1−α)T h
k )

2
E

(∫ Th
k

αTh
k

Qh
l (t)−E[Q̄h

l (t)]

)2
 .

Let’s denote Q̄h
l (t) as a stationary version of queueing process synchronously coupled with Qh

l (t),

and define τ, τ̄ as the first hitting time of them to the empty states. Note that

E

(∫ Th
k

αTh
k

Qh
l (t)−E[Q̄h

l (t)]dt

)2


≤E

(∫ Th
k

αTh
k

Q̄h
l (t)−E[Q̄h

l (t)]dt

)2
+E

(∫ Th
k

αTh
k

Qh
l (t)−E[Q̄h

l (t)]dt

)2

1(τ ∨ τ̄ > αT h
k )


(a)

≤C(1−α)T h
k

h2
+(1−α)T h

k E

[∫ Th
k

αTh
k

(Qh
l (t)−E[Q̄h

l ](t))
2dt1(τ ∨ τ̄ > αT h

k )

]

≤C(1−α)T h
k

h2
+CT h

k ·
T h
k

h
·P(τ ∨ τ̄ > αT h

k )
1/2

≤C(1−α)T h
k

h2
+

C

h2
T h
k ·hT h

k ·
√
hE[Qh

l (0)+ Q̄h
l (0)]

(hT h
k )

3/2
e−hTh

k /2C

≤C

h2
T h
k .
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Here, the inequality (a) comes from Lemma EC.12 and the Cauchy-Schwartz inequality, and the

last inequality comes from the fact that hT h
k →∞ and

√
hE[Qh

l (0)+ Q̄h
l (0)] =O(1). Consequently,

we have

E[(f̂h(phl )− fh(p
h
l ))

2]≤ C

Tk

,

for some C large enough. Therefore, we have

E[H2
k ]≤max

(
C

T h
k δ

2
k

,C

)
=C.

□

Lemma EC.15 (Convexity). There exists a constant K0 > 0 independent of h such that, for all

p∈Bh,

f ′′
h (p)>h−1/2K0.

Proof of Lemma EC.15 Note that for all p∈Bh, the traffic intensity 1−ρ(p) =O(1/
√
h). Then,

by direct calculation and Polleczk-Khinchine formula, we have

f ′′
h (p) = (−pλ(p))′′ + h

(1− ρ(p))3
(
2(λ′(p)2 +(1− ρ(p))λ′′(p))

)
>h−1/2K0,

with K0 = 2minp∈B1
2|λ′(p)|2. □

Given Lemmas EC.14 and EC.15, we are ready to provide an upper bound on the L2 distance

E[(p̄hk − p∗h)
2] following the analysis of main paper.

Lemma EC.16 (Suboptimal Regret). The suboptimal regret could be bounded by

Rh
1(L)≤C · L

2/3

√
h
.

Proof of Lemma EC.16 For all h> 0 and k≥ 1, we denote

bhk ≡ h−1(p̄hk − ph)
2.

For a given h small enough, we omit the superscript h for the simplicity of notation and obtain

hbk+1 =E[(p̄k+1− p∗)2]≤E[(p̄k− p∗− ηkHk)]

=E[(p̄k− p∗)2− 2ηkf
′(p̄k) · (p̄k− p∗)]− 2ηkE[(Hk− f ′(p̄k)) · (p̄k− p∗)]+ 2η2

kE[H2
k ]

≤ (1− 2ηkh
−1/2K0)E[(p̄k− p∗)2] +

√
hηkBk(1+ bk)+ 2η2

kVk

= (1− 2cηK0k
−1)hbk +hcηk

−1Bk +hcηk
−1Bkbk +2hc2ηVk

≤ h ·
[
(1− 2cηK0k

−1)bk +Ck−5/3 +Ck−5/3bk +Ck−2
]
.
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Following the proof of theorem 2 in the main paper, we can prove by induction that, there exists

a constant C > 0 independent of h such that bk ≤Ck−2/3, and therefore, we can conclude

E[(p̄hk − p∗h)
2]≤C ·hk−2/3.

As a result, we have

Rh
1(L) =

L∑
k=1

E
[
(f(p̄hk)− f(p∗h))T

h
k

]
≤

L∑
k=1

E
[
∇2f(p∗ + c1

√
h)(p̄hk − p∗h)

2T h
k

]
≤

L∑
k=1

C
√
hk−2/3T h

k ≤C · L
2/3

√
h

□

Lemma EC.17 (Non-stationary Regret). The non-stationary regret could be bounded by

Rh
2(L)≤C · L

2/3 log(L)√
h

.

Proof of Lemma EC.17 Following the decomposition of non-stationary regret in the main

paper, we have

Rh
2k =

2k∑
l=2k−1

hE

[∫ Th
k

0

Qh
l (t)− Q̄h

l (t)dt

]

=
2k∑

l=2k−1

hE

[∫ thk

0

Qh
l (t)− Q̄h

l (t)dt

]
+hE

[∫ Th
k

th
k

Qh
l (t)− Q̄h

l (t)dt

]
,

with thk =
2 logk

h
. In this way, we following the similar analysis in our main paper. For the second

term, by Lemma EC.11, we have

h

∫ Th
k

th
k

E[|Qh
l (t)− Q̄h

l (t)|]dt≤
∫ ∞

th
k

CE[|Qh
l (0)

2− Q̄h
l (0)|2]

ht
3/2
k

exp(−ht/2C)dht
(b)

≤ C

h2t
3/2
k

· k−1 ≤ C√
hk

.

(EC.11)

The inequality (b) comes from the fact that E[Qh
l (0)

2],E[Q̄h
l (0)

2] =O(h−1). For the first term, we

decompose E[Qh
l (t)−Qh

l (t)] into E[Q̄h
l−1(t)− Q̄h

l (t)] and E[Qh
l (t)− Q̄l−1(t)] as we did in the main

paper. By Polleczk-Khinchine formula, we have

E[Q̄h
l−1(t)− Q̄h

l (t)] =E
[

λ(phl )−λ(phl−1)

(1−λ(phl ))(1−λ′(phl−1))

]
≤ C

h
E[|phl − phl−1| ≤

C

h
E[|phl − phl−1|2]1/2.
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Next, following the same argument in Lemma 7 in the main paper, we define Q̃h
l (·) and X̃h

l (·) as

the queue length and busy period process with arrival rate 1 and service rate 1/λ(phl ). Then, by

the same analysis in Lemma 7 in the main paper,∫ thk

0

E[Qh
l (t)− Q̄h

l−1(t)]dt

≤ 1

λl

∫ λl−1t
h
k

0

E[|Q̃h
l (t)− Q̃l−1(T

h
k(l−1) + t)dt|] +E

[∣∣∣∣ 1λl

− 1

λl−1

∣∣∣∣ ∫ λl−1t
h
k

0

Q̃l−1(t)dt

]
+E

[
1

λl

∫ λlt
h
k

λl−1t
h
k

Q̃l(t)dt

]

≤E

[∣∣∣∣ 1

λ(phl )
− 1

λ(phl−1)

∣∣∣∣2
]1/2

E[X̃l(t)
2]1/2thk +CE

[∣∣∣∣ 1

λ(phl )
− 1

λ(phl−1)

∣∣∣∣2
]1/2

E[Q̃h
l−1(t)

2]1/2thk

≤CE[|phl − phl−1|2]1/2
thk
h

Therefore, by Lemma EC.12, we have

hE

[∫ thk

0

Qh
l (t)− Q̄h

l (t)dt

]
≤C ·E[|phl − phl−1|2]1/2thk ≤Cthk ·max(ηk

√
Vk, δk) =C

logk√
hk1/3

. (EC.12)

Combining equations (EC.12) and (EC.11), we have Rh
2k ≤C logk√

hk1/3
. Therefore, we have

Rh
2(L)≤C

L2/3 logL√
h

.

□

Lemma EC.18 (Finite-Difference Regret). The finite-difference regret could be bounded by

Rh
3(L)≤C · L

2/3

√
h
.

Proof of Lemma EC.18 By calculation, we have

Rh
3(L) =

L∑
k=1

E
[
(f(p̄2k−1)+ f(p̄2k)− 2f(p∗h))T

h
k

]
≤C

L∑
k=1

1√
h
(δhk )

2T h
k ≤C · L

2/3

√
h
.

□

Summing up all three regrets, the total regret in the first L cycle is

Rh(L) =Rh
1(L)+Rh

2(L)+Rh
3(L)≤C

L2/3 logL√
h

.

Note that the total time that used is T h = T0
h
= L4/3

h
, and therefore,

Rh(T0/h)≤C
√
h
−1√

T0 logT0.

□
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EC.2.4. Proof of Proposition 6

We neglect the superscribe h in the following analysis to ease the burden of notation. The proof

of Proposition 6 basically follows the proof of proposition 2 in Besbes and Zeevi (2009). Let ∆0 =

maxp∈Bh
fh(p)− fh(p∗) =O(

√
h), and denote p∗G as the optimal points in the testing pricing grid.

The regret can be decomposed according to three sources of cost: exploration cost, stochastic error,

and discrete grid cost.

Rh(T0)≤∆0t0 +(T − t0)E[f(p̂∗)− f(p∗)]

≤ ∆0t0︸︷︷︸
Exploration Cost

+E[T · [f(p̂∗)− f(p∗G)︸ ︷︷ ︸
Stochastic Error

+ f(p∗G)− f(p∗)︸ ︷︷ ︸
Discrete Grid Cost

]]

We treat the first two terms following in the same way as in Besbes and Zeevi (2009). For the third

term, we apply second order Taylor expansion (rather than the first order in Besbes and Zeevi

(2009)) as ∇f(p∗) = 0 in our problem. Therefore, using the fact that the grid length is at most

|p∗G− p∗| ≤ |Bh|/κ=O(
√
h/κ), we have

Rh(T0)≤∆0t0 +CT ·
√

κ logT

t0
+CT · ∇

2f(ξ)

2
|p∗G− p∗|2

≤C
√
ht0 +CT ·

√
κ logT

t0
+C

T√
h
·

(√
h

κ

)2

.

By optimizing the regret order, we choose

t0 =O

(
T

5/7
0 log(T )2/7

h

)
, κ=O

(
T

1/7
0

logT

)
,

such that

Rh(T0) =O

(
T

5/7
0 log(T0/h)

2/7

√
h

)
.

□

EC.3. Regret Lower Bound

In this section, we aim to demonstrate that when the demand function is unknown, the worst-case

suboptimal regret for any pricing and capacity-sizing policy is at least of order Ω(
√
T ), where

T denotes the total time elapsed. However, deriving a tight lower bound for the regret due to

nonstationarity presents significant technical challenges. First, this type of regret is not necessar-

ily positive in general, making it inherently difficult to analyze. Second, transient errors in the

queueing system can become substantial if the control parameters are frequently adjusted, further
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complicating the task of bounding the nonstationary regret from below for arbitrary learning poli-

cies. Despite these challenges, we provide a partial result in the form of a theoretical lower bound

for the suboptimality regret component R1, showing that it scales at the order of Ω(
√
T ).

In particular, we construct a specific demand function with an unknown parameter. The proof

is then based on the analysis of KL divergence that measures the uncertainty on this unknown

parameter. Intuitively, the proof basically says that, on the one hand, if the uncertainty on the

parameter is high, the regret is also high because of the uncertainty (Lemma EC.21). On the other

hand, it is shown that to reduce uncertainty, a learning cost must be paid (Lemma EC.20). As a

consequence, there is a lower bound for the regret caused by the uncertainty of the parameter.

To make the analysis more intuitive, we consider T as an integer and decompose the total time

T into T periods with unit period length. We restrict the policy class so that any admissible policy

can only change the price and service capacity at the beginning of each period. This simplification

is reasonable because changing policy is usually costly for service providers in reality, and this

restriction does not lose generality for our intuition in practice. Note that LiQUAR also belongs

to this class. We can formally describe the admissible policies as follows. Denote ω0 as the initial

decision (µ0, p0) and ωt, t ≥ 1, as the arrivals and corresponding job sizes in t-th period and let

ωt = (ω0, ω1, · · · , ωt). We denote the corresponding filters as {(Ωt,Ft)}Tt=0. An admissible policy

is defined by a sequence of decision functions π = {π1, · · · , πT}, πt : Ωt−1→ R2
+. We denote these

non-anticipating policy class as Ψ.

Theorem 4 (Theoretic Lower Bound of Regret) There exists a demand function λ(p) sat-

isfying Assumption 1 in our main paper and a positive constant C2 such that for any admissible

policy π ∈Ψ and T ≥ 2,

R1(T )≥C2

√
T .

Next, we first introduce the demand class and some key properties of problem class C in Section

EC.3.1. Based on these properties, we prove two critical lemmas craving the trade-off between

learning cost and uncertainty cost in Section EC.3.2. The lower bound is the direct consequence

of these two lemmas.

EC.3.1. Demand Class and Its Properties

We consider a parametric problem class C where the demands are linear functions with slope z as

parameter

λ(p;z) = 4− z(p− 5.5), (EC.13)
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We set z ∈Z = [0.95,1.05] and B= [5,6.5]× [5.4,6] and the queueing system is M/M/1. Moreover,

we set h0 = 1 and c(µ) = µ. In this case, the objective function is

f(µ,p;z) =−pλ(p;z)+ λ(p;z)

µ−λ(p;z)
+µ.

Denote optimal decision under demand λ(p;z) as

(µ∗(z), p∗(z)) = arg min
(µ,p)∈B

f(µ,p;z).

The corresponding suboptimal regret is

R1(z,π, t) =Ez,π

[
t∑

k=1

(f(µk, pk;z)− f(µ∗(z), p∗(z);z))Tk

]
.

In the next lemma, we summarize the key properties of this demand class, which we will use in

lower bound analysis.

Lemma EC.19. The problem instance class C has the following properties:

1. Uninformative point. All demand curves cross an uninformative point, i.e., λ(5.5;z) = 4

for all z ∈Z. Moreover, p∗(1) = 5.5.

2. Strongly convex. For any z ∈ Z, the objective function f(µ,p;z) is strongly convex. As a

result, there exists a constant K5 > 0, such that

|f(µ∗(z), p∗(z))− f(p,µ;z)| ≥K5

(
(p− p∗(z)2 +(µ−µ∗(z))2

)
3. Uniform stability. The system is uniformly stable for all problem instances, i.e.,

sup
p,z

λ(p;z) = λ(5.4; 0.95)<µ.

4. Continuity of demand function. The difference between two demand curves can be repre-

sented by difference of z and z0

|λ(p;z)−λ(p;z0)|= |(p− 5.5)(z− 1)|.

5. Separability between optimal solutions. There exists a constant K1 such that |p∗(z)′| ≥K1

for all z ∈Z. Therefore,

|p∗(z)− 5.5| ≥K6|z− 1|.

Proof of Lemma EC.19 Properties 1, 3 and 4 are obvious by direct calculation. For property 2,

notice that the demands λ(p;z) are linear functions and by direct calculation, we have the strongly
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convexity result. For property 5, by the first-order condition ∇f(µ∗(z), p∗(z)) = 0, the optimal

solution is given by {
µ∗(z) = λ(p∗(z);z)+

√
λ(p∗(z);z)

1 = (2p∗(z)− 6.5− 4z−1)2(4+5.5z− p∗(z)z).

To show property 5, we define an auxiliary function g(p, z) = (2p − 6.5 + 4z−1)2(4 + 5.5z − pz).

By direct calculation, there is an p∗(z) ∈ [5.4,6] satisfying g(p∗(z), z) = 1. In addition, by direct

calculation, in our problem instance,

∂

∂p
g(p, z) = [16+22z− 6p+6.5+4z−1](2p− 6.5− 4z−1)> 0,

∂

∂z
g(p, z) = 5.5(2p− 6.5− 4z−1)2 +

8

z2
(4+5.5z− p)(2p− 6.5− 4z−1)> 0.

Note that
d

dz
g(p∗(z), z) =

∂

∂p
g(p∗(z), z)p∗(z)′ +

∂

∂z
g(p∗(z), z) = 0,

which implies that p∗(z)′ < 0 for all z ∈Z. Since Z is compact, there is a constant K6 > 0 satisfying

the statement in this property. This closes the proof. □

According to Lemma EC.19, this problem class has an uninformative point at p= 5.5, where all

demands cross. It’s also the optimal price for z = 1. As a consequence, when z = 1, the algorithm

needs to step away from the uninformative point to learn the demand, which will incur suboptimal

cost. On the other hand, if one algorithm performs very well when z = 1, it seldom learns any

information and thus cannot perform well under other z. The above observations lead to our proof

of the lower bound.

EC.3.2. Proof for the Regret Lower Bound

We denote p∗0 = 5.5 and z0 = 1. We shall introduce two lemmas to describe the trade-off between

learning cost and the cost of uncertainty. We use Kullback-Leibler divergence to measure the

information gain. Let Pπ,z
t denote the probability measure of ωt under demand λ(p;z) with policy

π. We measure the knowledge of demand by

K(Pπ,z0
T ∥Pπ,z

T ).

The following lemma craves the learning cost. Denote λ≡ infz,p λ(p;z) = λ(6.5; 1.05) = 2.95.

Lemma EC.20. For any z ∈Z, T > 0 and any piecewise constant policy π ∈Ψ,

K(Pπ,z0
T ∥Pπ,z

T )≤ (z− z0)
2

2λK5

R1(z0, π,T )
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Proof of Lemma EC.20 We decompose the KL-divergence in T into conditional KL-divergence

in each periods. By chain rule of KL divergence,

K(Pπ,z0
T ∥Pπ,z

T ) =
T∑

t=1

K(Pπ,z0
T ∥Pπ,z

T |ωt−1)

K(Pπ,z0
T ∥Pπ,z

T |ωt−1) =

∫
ωt

log

(
dPπ,z0

t (ωt|ωt−1)

dPπ,z
t (ωt|ωt−1)

)
dPπ,z0

t (ωt)

Conditional on ωt−1, the arrivals in cycle t follows Poisson process with rate λz
t ≡ λ(pt;z) and we

denote the density function of individual work load V by g(·). Then, using the conditional density

of Poisson arrivals, we have

K(Pπ,z0
t ∥Pπ,z

t |ωt−1)

=

∫
ωt−1

∫
ωt

log

(
dPπ,z0

t (ωt|ωt−1)

dPπ,z
t (ωt|ωt−1)

)
dPπ,z0

t (ωt|ωt−1)dPπ,z0
t−1 (ωt−1)

=

∫
ωt−1

∞∑
k=0

∫
v1,··· ,vk

(λz0
t )ke−λ

z0
t

k!
log

(
(λz0

t )k exp(−λz0
t )(k!)−11−k

∏k

i=1 g(vi)

(λz
t )k exp(−λz

t )(k!)−11−k
∏k

i=1 g(vi)

)
dv1 · · ·dvkdPπ,z0

t−1 (ωt−1)

=

∫
ωt−1

(λz
t −λz0

t )+λz0
t log

(
λz0
t

λz
t

)
dPπ,z0

t−1 (ωt−1)

=

∫
ωt−1

(λz
t −λz0

t )−λz0
t log

(
1+

λz
t −λz0

t

λz0
t

)
dPπ,z0

t−1 (ωt−1)

(a)

≤
∫
ωt−1

(λz
t −λz0

t )2

2λ
dPπ,z0

t−1 (ωt−1) =
(z− z0)

2

2λ

∫
ωt−1

(pt− p∗0)
2dPπ,z0

t−1

(b)

≤ (z− z0)
2

2K5λ
Eπ,z0 [f(µt, pt;z0)− f(u∗(z0), p

∗(z0);z0)]

Here (a) uses the fact that − log(1 + x)≤−x+ x2

2
, and (b) uses the strongly convex property

(Lemma EC.19) of our problem case. Therefore, summing up all t, we have the result. □

The next lemma describes the cost of uncertainty.

Lemma EC.21. For any integer T ≥ 1, set z1 = z0 +K7T
−1/4 with K7 specified later. Then, for

any policy π ∈Ψ, we have

R1(z0, π,T )+R1(z1, π,T )≥
K5K

2
6K

2
7

18
T 1/2e−K(Pπ,z0

T
∥Pπ,z1

T ).

Lemma EC.21 directly follows lemma 3.4 in Broder and Rusmevichientong (2012), so we omit the

proof here. With these two lemmas, we now complete the proof of Theorem 4.

Proof of Theorem 4 Let z1 = z0+K7T
−1/4 and by Lemma EC.20, we have

R1(z0, T,π)+R1(z1, T,π)≥
2λK5

K2
7

√
TK(Pπ,z0

T ,∥Pπ,z1
T ).
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By Lemma EC.21, we also have

R1(z0, T,π)+R1(z1, T,π)≥
K5K

2
6K

2
7

18

√
Te−K(Pπ,z0

T
∥Pπ,z1

T
).

Therefore, set C2 =
1
4
min

{
2λK5

K2
7
,
K5K

2
6K

2
7

18

}
and we have

max
z∈{z0,z1}

R1(1, π,T )≥
R1(z0, π,T )+R1(z1, π,T )

2

≥
√
T

4

(
2λK5

K2
7

K(Pπ,z0
T ∥Pπ,z1

T )+
K5K

2
6K

2
7

18
e−K(Pπ,z0

T
∥Pπ,z1

T
)

)
≥C2

√
T
(
K(Pπ,z0

T ∥Pπ,z1
T )+ e−K(Pπ,z0

T
∥Pπ,z1

T
)
)

≥C2

√
T

The last inequality is because x+ e−x ≥ 1 for all x. This finishes the proof of the lower bound. □

EC.4. Examples of the Demand Function

In this part, we verify that the following two inequalities in Condition (a) of Assumption 1 hold

for a variety of commonly-used demand functions.

−λ′(p)>max

(√
0∨ (−λ′′(p)(µ̄−λ(p)))

2
,
pλ′′(p)

2

)
, (EC.14)

λ′(p)> max
µ∈[µ,µ̄]

(
2g(µ)

λ′′(p)λ(p)

λ′(p)
− 4λ(p)(µ−λ(p))

h0C

)
. (EC.15)

Example EC.1 (Linear Demand). Consider a linear demand function

λ(p) = a− bp, with 0< b<
4λ(µ− λ̄)

h0C
.

Then, inequality (EC.14) holds immediately as λ′′(p)≡ 0. Inequality (EC.15) is equivalent to

−b >−
4λ(p)(µ−λ(p))

h0C
,

which also holds as λ(p)(µ−λ(p))≥ λ(µ− λ̄).

Example EC.2 (Quadratic Demand). Consider a quadratic demand function

λ(p) = c− ap2, with a, c > 0 and 0<
µ̄− c

3p2
<a<

(
3(µ− λ̄)p

h0C
−

µ

µ− λ̄

)
λ

p̄2
.
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Inequality (EC.14) is equivalent to 3a2p2 >a(µ̄−c), which holds as a> µ̄−c
3p2

. For inequality (EC.15),

note that λ′′ =−2a and λ′ =−2ap. So, for any µ∈ [µ, µ̄], we have

λ′(p)− 2g(µ)
λ′′(p)λ(p)

λ′(p)
+

4λ(p)(µ−λ(p))

h0C

=− 2ap− 2

(
µ

µ−λ
− (µ−λ)p

h0C

)
λ

p
+

4λ(µ−λ)

h0C

=2p

(
λ

p2

(
3(µ−λ)p

h0C
− µ

µ−λ

)
− a

)
.

Note that 3(µ−λ)p

h0C
− µ

µ−λ
>

3(µ−λ̄)p

h0C
− µ

µ−λ̄
> 0 by our assumption, and consequently,

λ

p2

(
3(µ−λ)p

h0C
− µ

µ−λ

)
− a>

(
3(µ− λ̄)p

h0C
−

µ

µ− λ̄

)
λ

p̄2
− a> 0,

which shows that (EC.15) holds.

Example EC.3 (Exponential Demand). Consider an exponential demand function

λ(p) = exp(a− bp), with b > 0 and bp̄ < 2.

Then λ′(p) =−bλ(p) and λ′′(p) = b2λ(p)> 0. Therefore, inequality (EC.14) is automatically satis-

fied as b < 2/p̄. For inequality (EC.15), given that p≤ p̄ < 2/b, we have, for any µ∈ [µ, µ̄],

λ′(p)− 2g(µ)
λ′′(p)λ(p)

λ′(p)
+

4λ(p)(µ−λ(p))

h0C

= − bλ(p)− 2
µ

µ−λ
· b

2λ2(p)

−bλ(p)
+

4λ(µ−λ)− 2bpλ(µ−λ)

h0C

> − bλ(p)+ 2
µ

µ−λ
bλ(p)> bλ(p)> 0.

Therefore, (EC.15) holds as well.

Example EC.4 (Logit Demand). Consider a logit demand function

λ(p) = c · exp(a− bp)/(1+ exp(a− bp)), with a− bp̄ < log(1/2) and 0< b< 2/p̄.

We have

λ′(p) =− b

1+ e
λ(p), λ′′(p) =

b2(1− e)

(1+ e)2
λ(p), with e≡ exp(a− bp).

As a result, inequality (EC.14) becomes 2 > bp(1 − e)/(1 + e) if e < 1. Since a − bp < log(1/2),

e < 1/2 and (EC.14) holds accordingly. We next show that (EC.15) holds as well. For any µ∈ [µ, µ̄],

λ′(p)− 2g(µ)
λ′′(p)λ(p)

λ′(p)
+

4λ(p)(µ−λ(p))

h0C

=

(
− b

1+ e
+

2µ(1− e)b

(µ−λ)(1+ e)
− 2p(µ−λ)

h0C
· b(1− e)

1+ e
+

4(µ−λ)

h0C

)
·λ

>

(
− b

1+ e
+

µb

(µ−λ)(1+ e)
− 2bp(1− e)

1+ e

(µ−λ)

h0C
+

4(µ−λ)

h0C

)
·λ> 0,
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where the first inequality holds as 0< e< 1/2 and the second inequality holds as long as b < 2/p. So

(EC.15) holds as well. In summary, we can conclude that (EC.14) and (EC.15) hold if 0< b< 2/p̄

and a− bp̄ < log(1/2).

EC.5. Additional Numerical Experiments

EC.5.1. Robustness of LiQUAR

In this section, we give more discussion on the robustness of LiQUAR via numerical examples.

Specifically, we test the performance of LiQUAR in a set of model settings with different values of

optimal traffic intensity ρ∗ and service time distributions.

We consider anM/GI/1 model with phase-type service-time distribution and the logistic demand

function in (20) with M0 = 10, a= 4.1 and b= 1. We fix staffing cost coefficient c0 = 1 in (21) in

this experiment. By PK formula and PASTA, the service provider’s problem reduces to

min
µ,p

{
f(µ,p) =−pλ(p)+ h0(1+ c2s)

2
· λ(p)/µ

1−λ(p)/µ
+µ

}
,

where c2s is SCV of the service time. We investigate the impact on performance of LiQUAR of

the following two factors: (i) the optimal traffic intensity ρ∗ (which measures the level of heavy

traffic), and the service-time SCV c2s (which quantifies the stochastic variability in service and in

the overall system).

To obtain different values of ρ∗, we vary the holding cost h0 ∈ {0.001,0.02,1}. For the SCV, we

consider c2s = 0.5,1,5 using Erlang-2, exponential and hyperexponential service time distributions.

In Figure EC.1 we plot the regret curves in logarithm scale along with their linear fits in all above-

mentioned settings. We set ηk = 4k−1, δk = min(0.1,0.5k−1/3), Tk = 200k1/3 and α = 0.1. For all

9 cases, we run LiQUAR for L= 1000 iterations and estimate the regret curve by averaging 100

independent runs.

Note that the optimal traffic intensity ρ∗ ranges from 0.547 to 0.987. In all the cases, the linear

fitted regret curve has a slope below the theoretic bound 0.5, ranging in [0.35,0.42]. Besides, the

intercept (which measures the constant term of the regret) does not increase significantly in ρ∗ and

ranges in [7.64,7.79] for ρ∗ > 0.95. The results imply that the performance of LiQUAR is not too

sensitive to the traffic intensity ρ∗ and service-time SCV.

EC.5.2. Relaxing the Uniform Stability Condition

In this section, we address the relaxation of the uniform stability assumption by introducing an

enhanced version of LiQUAR that adaptively detects and mitigates system instability. Specifically,

the refined algorithm incorporates two additional hyperparameters: a workload threshold, τ , and

an anchoring price, pa, under which the system is known to remain stable. During each cycle,
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Figure EC.1 The regret curve in logarithm scale and a linear fit for the M/GI/1 model, under different traffic

intensity ρ∗ ∈ [0.547,0.989] and service-time SCV c2s = 0.5 (E2 service), 1 (M service) and 5 (H2

service). All curves are estimated by averaging 100 independent runs.

the algorithm continuously monitors the observed workload. If the average workload exceeds the

threshold τ , the current cycle is terminated, and a new cycle is initiated. In this new cycle, the

service price is updated using a weighted combination of the current price and the anchoring price

pa, effectively applying a backtracking mechanism to restore stability. If the average workload

remains below τ , the system proceeds identically to the original LiQUAR algorithm. For a detailed

description of this enhanced method, please refer to Algorithm 2. We refer to this updated algorithm

as LiQUAR with backtracking (LiQUAR-b).

Next, we test the performance of LiQUAR-b under the heavy-traffic setting in Section 7.1, this

time with the uniformly stable assumption relaxed. Specifically, we consider a pricing problem

for M/M/1 queue having exponential demand function λ(p) = exp(a− bp) with a= 1+ log(2) and

b = 1. In addition, we set coefficient of holding cost h = 0.005. To see how LiQUAR-b can help

maintain a stable system, we relax the feasible domain for p from the uniform stable region to

[0,∞). In addition, we intentionally make the system unstable at t= 0 by setting the initial price

p0 = 1.55 and thus initial traffic intensity ρ0 = λ(p0)/µ= 1.15> 1. Following the analysis in Section

5.3, we set the hyperparameters Tk = 2000k1/3, δk = 0.07k−1/3, ηk = 0.21k−1 and τ = 141 with the

anchoring price pa = 1.84. In the top panel of EC.2, we plot the learning curve of price pk which
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Algorithm 2: LiQUAR with backtracking

Input: number of iterations L, workload threshold τ , anchoring price pa;

parameters 0<α< 1, and Tk, ηk, δk for k= 1,2, ..,L;

initial value p̄1, W1(0) = 0;

1 for k= 1,2, ...,L do

2 Set control parameter p2k−1 = p̄k− δk/2 and Stable Sign= 0;

3 while 1
t

∫ t

0
Q2k−1(t)dt < τ for t < Tk do

4 Run Cycle 2k− 1: Run the system under p2k−1 ;

5 end

6 if Cycle 2k− 1 finishes without early-stop then
7 Set control parameter p2k = p̄k + δk/2 ;

8 while 1
t

∫ t

0
Q2k(t)dt < τ for t < Tk do

9 Run Cycle 2k: Run the system under p2k ;

10 end

11 if Cycle 2k finishes without early-stop then
12 Stable Sign = 1

13 end
14 end

15 if Stable Sign=1 then
16 Compute FD gradient estimator:

Hk =
1

δk

[
h0

(1− 2α)Tk

∫ (1−α)Tk

αTk

(Q2k(t)−Q2k−1(t))dt−
p2kN2k− p2k−1N2k−1

Tk

)

]
Update p̄k+1 =Π[0,∞)(p̄k− ηkHk).

17 end

18 else
19 Backtracking: p̄k+1 =

p̄k+pa
2

20 end
21 end

eventually converges to the optimal p∗. The middle panel of EC.2 shows that traffic intensity ρk is

consistently held below 1 after a few iterations.

To evaluate the impact of this relaxation on regret, we consider two operational scenarios: (i)

LiQUAR-b with p∈ [0,∞), and (ii) LiQUAR with p constrained to a uniform stable region as used

in Section 5.3. We set the hyperparameters as Tk = 2000k1/3, δk = 0.07k−1/3, and ηk = 0.21k−1,

and plot the regret curves for LiQUAR-b and LiQUAR in the bottom panel of Figure EC.2. We

observe that LiQUAR-b exhibits a steeper initial regret growth, attributable to the algorithm’s

need to dedicate initial iterations to steer the policy into the stable domain. This is because p0
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for LiQUAR-b was deliberately chosen outside the stability domain, while p0 for LiQUAR was

set within it. Notably, the backtracking mechanism in LiQUAR-b acts as an effective safeguard,

ensuring that subsequent pk values remain within the stability region. Consequently, after this

initial adjustment phase, the regret curve for LiQUAR-b stabilizes and exhibits a growth rate

similar to that of LiQUAR.

Although this experiment serves only as an initial exploration of relaxing the uniform stabil-

ity condition in LiQUAR, Figure EC.2 demonstrates the promising potential of the LiQUAR-b

approach. Several important directions for future research remain:

• Theoretical regret analysis: A comprehensive theoretical analysis of the regret for LiQUAR-b

is required. This involves developing effective techniques to bound the regret growth during

unstable learning cycles and quantifying the impact of accumulated excessive workload on

subsequent cycles.

• Optimizing the detection threshold τ : It is crucial to determine an optimal workload threshold

τ that balances two competing factors: frequent false detections of instability (when τ is too

small) and excessive workload accumulation during unstable cycles (when τ is too large).

Further exploration of these aspects will provide deeper insights and strengthen the practical

applicability of LiQUAR-b. We leave these extensions for future study.

EC.6. Details of Algorithm 3 in Section 8

In this section, we provide the detailed description for the PG algorithms in Algorithm 3, the outline

of which is described in Section 8. Specifically, in Algorithm 3, Policy Gradient algorithm organizes

time by cycles, with each cycle containing L episodes. In each episode, the system operates the

system following πθ for episode length T time units. At the end of each episode, a gradient gradient

estimator in this episode ∇̂i,t is calculated using the policy gradient formula (Sutton and Barto

2018, p.339) and the closed form of Gaussian parameterization (line 9 in Algorithm 3). Then, at

the end of each cycle, an overall policy gradient estimator is obtained by averaging over all the

episodic policy gradient estimators in the cycle (line 11 in Algorithm 3). The full algorithm is given

in Algorithm 3.
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Figure EC.2 LiQUAR vs. LiGUAR-b: (i) sample path of price pk under LiQUAR-b (top panel); (ii) sample

path of traffic intensity ρk under LiQUAR-b; (iii) regret curves under LiQUAR with pk subject

to uniform stability constraint and LiQUAR-b with pk ∈ [0,∞). The hyperparameter choices are

Tk = 2000k1/3, δk = 0.07k−1/3, ηk = 0.21k−1 and τ = 141 with the anchoring price pa = 1.84 and

h= 0.005.
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Algorithm 3: Policy Gradient method

Input: normal parameterization π(a|θ), step size η > 0, initial policy parameter

θ : (p̄1, µ̄1, σ
2
p,1, σ

2
µ,1), cycle length L (how many episodes in each episode), episode

length T (how many time slots in each episode);

1 for each cycle do
2 for episode i= 1 :L do
3 Generate an episode Q1, (p1, µ1),R1, · · · ,QT−1, (pT , µT ),RT following πθ;

4 R̄= 1
T

∑T

t=1RT ;

5 for t= 1, · · · , T do

6 G=
∑T

k=tRk− R̄;

7 ∇̂i,t←G ·


(pt− p̄)/σ2

p

(µt− µ̄)/σ2
µ[

(pt− p̄)2−σ2
p

]
/σ3

p[
(µt− p̄)2−σ2

µ

]
/σ3

µ

;

8 end

9 ∇̂i =
1
T

∑T

t=1 ∇̂i,t;
10 end

11 θ← θ+ η · 1
L

∑L

i=1 ∇̂i;
12 end
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Notation Description

Model
parameters

and
functions

B= [µ, µ̄]× [p, p̄] Feasible region
c(µ) Staffing cost
c2s = V ar(S)/E[S]2 Squared coefficient of variation (SCV) of the service times

C =
1+c2s

2
Variational constant in PK formula

f(µ,p) Objective (loss) function
h0 Holding cost of workload
λ(p) Underlying demand function
µ Service rate
p Service fee
θ, γ0, η Parameters of light-tail assumptions (Assumption 2)
Vn Individual workload
W∞(µ,p) Stationary workload under decision (µ,p)
x∗ = (µ∗, p∗) Optimal decision service rate and fee

Algorithmic
parameters

and
variables

α Warm-up and overtime rate
δk, (δ

h
k ) Exploration length in iteration k (of hth system )

ηk, (η
h
k ) Step length for gradient update in iteration k (of hth system )

Hk Gradient estimator in iteration k

f̂G(µl, pl) Estimation of objective function in cycle l
Qh

k(t) Queue length at time t in cycle k of the hth system
Tk, Tk(l), (T

h
k ) Cycle length of iteration k and cycle l (of hth system )

Wl(t)(Ŵl(t)) (Estimated) workload at time t in cycle l
Xl(t) Observed busy time at time t in cycle l
x̄k Control parameter in iteration k
Zk Updating direction in iteration k

Constants and
bounds in

regret analysis

Bk,Vk Bias and Variance upper bound for Hk

c Constant for noise-free FD error in Lemma EC.4
cη, cT , cδ Coefficient of hyperparameters in Theorem 2
C Constant in Theorem 3 irrelevant to h
C0 Constant in Lemma EC.7
M Upper bound for queueing functions in Lemma EC.9
γ Ergodicity rate constant in Lemma EC.2
K0,K1 Convex and smoothness constant of objective function in Lemma EC.5
K2,K3 Constants in the proof of Theorem 1 in Appendix EC.2.1
K4 Constant in Lemma EC.8
K5,K6,K7 Constants in Theorem 4 in Section EC.3
KV Constant of auto-correlation in Lemma EC.3

KM Constant of MSE of f̂G in Proposition 2
R(L),R1(L),R2(L),R3(L) Total regret, regret of sub-optimality, non-stationarity, finite difference
θ0 Constant in Lemma EC.9
θ1 =min(γ, θ0µ/2) Constant in Proposition 3
W̄l(t) Stationary workload process coupled from the beginning of cycle l
W̄ s

l (t) Stationary workload process coupled from time s of cycle l (in Appendix)
WD

l (t),XD
l (t) Workload and observed busy time for the dominating queue (in Appendix)

Table EC.1 Glossary of key notations


