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A B S T R A C T

In this paper, we study a capacity planning problem for a fourth-party logistics network (4PLN) in the face of
event-triggered demand surges. We aim to solve a stochastic optimization problem in order to minimize the
total cost for the 4PLN under chance-constrained service-level targets, where the stochastic demand process
is modeled as a summation of random variables with a Bernoulli term of jump processes. At the heart of our
solution procedure is a greedy pricing and weighting strategy based cell-and-bound (G-C&B) algorithm designed
for solving the SAA-based model. Compared to the standard C&B method, our G-C&B is able to largely reduce
the number of non-essential cell enumerations and achieve reduced running time complexity. To mitigate the
performance degradation due to large system scale and/or sample instance, we extend our base algorithm to
a two-step Local Experimentation for Global Optimization strategy based cell-and-bound (LEGO-C&B) framework,
in which we first solve a small-scale training problem to find the important scenarios (eliminating excessive
cell enumerations) and then use the training results to expedite the full optimization problem. We evaluate
the performance of our algorithms by conducting a comprehensive series of numerical experiments. Besides,
our results also demonstrate how the effectiveness of our methods depends on various factors including (i) the
algorithm’s hyperparameters such as the sample size and training ratio, and (ii) the 4PLN’s input parameters
such as the network scale, surge demand frequency, and rental price of 3PL resource. Our results exhibit
several qualitative insights.
1. Introduction

In response to the escalating imperative for enhancing the quality
of service in logistics and supply chain systems, fourth-party logistics
(4PL) emerges as a new operational model that successfully integrates
the traditional supply chain management technology and the con-
temporary mechanisms of the sharing economy. Expanding upon the
conventional third-party logistics (3PL) model that focuses on its own
customer cluster’s services, 4PL adds the platform (i.e., the ‘‘fourth
party’’) to the supply chain model in order to integrate the capabil-
ities of multiple 3PLs and information from multiple customers. The
4PL model improves the cost-effectiveness of logistics enterprises and
enhances service quality, offering unique advantages over emerging
financing approaches such as bank loans and e-commerce platform
funding (Bi et al., 2024). While the notion of 4PL is not recent,1
proper theoretical models of 4PL began to emerge in the field of
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1 The first proposal of 4PL was introduced in 1998 by Accenture (Gattorna and Jones, 1998).

operations research only recently. There are three extant models in
the 4PL literature (Büyüközkan et al., 2009): (i) the synergy plus model
where 4PL functions serve as auxiliary departments of the 3PL (Kutlu,
2007); here 4PL acts as the decision maker to help address operational
management issues for the 3PL (Marasco, 2008); (ii) the solution in-
tegrator model where 4PL aims to integrate multiple 3PLs to provide
a solution for a particular customer, examplified by the 4PL routing
problem (Liu et al., 2014; Huang et al., 2015; Tao et al., 2017), and (iii)
the industry innovator model where 4PL serves as a more comprehensive
platform to integrate multiple 3PLs and additional customer informa-
tion to provide integrated solutions, such as the risk management of
outsourcing (Huang et al., 2019; Guchhait and Sarkar, 2025), resource
auction (Yu et al., 2024), and 4PL network planning (Zhang et al., 2022;
Jiang et al., 2024; Zhang et al., 2024a,b). Among the aforementioned
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data mining, AI training, and similar technologies. 
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Fig. 1. Three different modes of 4PLNs.
three 4PL models, the industry innovator model has the largest infor-
mation integration capabilities. One practical example of the industry
innovator model is Cainiao Smart Logistics Network, a Chinese 4PL
platform for Tmall.2 To achieve high-quality quick delivery services,
Cainiao integrates the resources of more than 30 major domestic 3PL
entities including EMS, ZTO Express, and YUNDA. The effective integra-
tion of 3PL resources enables Cainiao to effectively reduce the courier
cost, and shorten delivery times; allowing for same-day and next-day
delivery services in most areas within China. In this study, we focus
our attention on the industry innovator 4PL model (see Fig. 1).

The paramount business question integral to the design and man-
agement of 4PLN is how the service capacity can be planned so as
to minimize the overall operational costs. Such an optimal capacity
planning problem is often subject to some designated service-level (SL)
constraints, which are crucial in many scenarios (see Sinha et al.,
2023; Cao et al., 2023 for instances). One predominant SL metric is
the fraction of customer demand fulfilled, in particular, the 4PL manager
hopes to achieve the SL level in the form of a chance constraint

P(𝑆 ≥ 𝐷) ≥ 𝛼 , (1)

where 𝑆 is the service capacity, 𝐷 is the customer demand, and 𝛼 ∈
(0, 1) is some desired probability target (e.g., 𝛼 = 95%). Constraints
structured in the form of (1) are also referred to as type-1 service
level (Lyu et al., 2022) and are widely used in many service systems
such as customer contact centers and healthcare systems; see Liu (2018)
and Liu et al. (2022) for examples.

The most challenging aspect of making optimal capacity plans for
4PL is the uncertainty in customer demand. Undesired violation of the
SL chance constraint may occur due to demand surges. Demand surges
manifest in two principal forms: (i) the random demand surge, pro-
pelled by the intrinsic stochastic nature of the demand process or un-
foreseeable natural causes, and (ii) the event-triggered demand surge,
stemming from specific service-related events such as promotional
activities or shopping festivals (e.g., Black Friday, Amazon’s Prime Day,
Tmall’s Double 11 shopping carnival). In 2023, sales achieved an as-
tounding $160 billion in gross merchandise value, exceeding Amazon’s
Prime Day sales by over ten times and nearly eclipsing U.S. Black Friday
spending by a similar margin.3 By October 30, 2024, total sales for the
‘‘Double 11’’ shopping festival had already soared to an impressive 845
billion yuan.4 For another example, we illustrate Wal-Mart’s demand
surges using its sales data from 45 stores.5 Fig. 2 clearly shows that

2 Tmall is a major online marketplace for business-to-consumer (B2C)
online retails in China, and for more details, refer to https://www.exportnow.
com/2014/06/tmall-introduction-worlds-largest-e-commerce-marketplace/.

3 https://tryon.kivisense.com/blog/double-11-2024-insights/.
4 https://www.globaltimes.cn/page/202411/1322863.shtml.
5 Data sourced from the Aliyun Tianchi open-source dataset: ‘‘Walmart

Recruiting - Store Sales Forecasting’’. The dataset encompasses historical sales
data from 45 Walmart stores across diverse regions, highlighting selected holi-
day promotional events that impact sales. https://tianchi.aliyun.com/dataset/
dataDetail?dataId=90208.
2 
Fig. 2. The weekly sales volume (the solid line) from 45 Wal-Mart stores (From
February 5, 2010 to November 1, 2012).

demand surges occur on four event-triggered special days during a year:
Super Bowl, Labor Day, Thanksgiving Day, and Christmas.

In response to the challenges posed by event-triggered demand
surges, 4PL managers need to proactively deploy logistics resources
to augment service capacity, ensuring the attainment of designated SL
targets. To enhance service performance, the integration of functional
facilities, such as transshipment centers, warehouses, logistics ports,
and transportation providers into the 4PLN, becomes imperative. Two
predominant options typically available to 4PL planners for capacity
planning include: (i) self-building and (ii) renting. While self-building
new facilities affords the advantage of achieving desired service ca-
pacities over the long term, it presents inflexibility in adjusting to
short-term fluctuations. Conversely, opting to rent certain facilities
from 3PL providers offers a temporary solution to fulfill demand surges.
However, this approach often entails elevated operational costs.

The 4PL model in this study is in general applicable to enterprises’
network capacity planning. It takes into consideration demand surges
arising from planned discount promotions and various other activities.
Our analysis serves as an operational tool, offering insights into the
optimal balance between self-built and rented logistics resources in
different surge scenarios, facilitating the development of a cost-effective
network solution subject to constraints on desired service level targets.

1.1. Main contribution

In this paper, we study an optimal service capacity planning prob-
lem for 4PL with event-triggered demand surges. We aim to seek the
optimal service capacity (i.e., the number of facilities to build and the
number of 3PL facilities to rent) so as to minimize the total operational
costs subject to SL constraints in form of (1). We make the following
contributions:

https://www.exportnow.com/2014/06/tmall-introduction-worlds-largest-e-commerce-marketplace/
https://www.exportnow.com/2014/06/tmall-introduction-worlds-largest-e-commerce-marketplace/
https://tryon.kivisense.com
https://www.globaltimes.cn/page/202411/1322863.shtml
https://tianchi.aliyun.com/dataset/dataDetail?dataId=90208
https://tianchi.aliyun.com/dataset/dataDetail?dataId=90208
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• We study a novel 4PL capacity planning problem with event-
triggered demand surges subject to chance constraints on the SL.
To characterize the surged demand process, we formulate it as a
sum of Bernoulli terms of jump processes.

• We aim to solve a stochastic program under a joint chance-
constrained service target. We reformulate the chance constraint
as a SAA-based mixed integer program (MIP) knapsack sub-
problem. To improve the solution efficiency of the knapsack
problem, we give another reformulation of the problem using
hyperplane arrangement to transform various knapsack schemes,
i.e., the satisfaction of scenarios, into cells of hyperplanes. Fur-
ther, we devise two algorithms within the cell-and-bound (C&B)
framework: greedy pricing and weighting strategy based C&B (G-
C&B) and local experimentation for global optimization strategy
based C&B (LEGO-C&B). We believe that the scope of these two
methods goes beyond the present problem (they can potentially
be used to solve other chance-constrained stochastic programs).

• We confirm the effectiveness of our methods by conducting a
comprehensive set of numerical studies. These results show that
the performance of our algorithms is robust to relevant model
parameters. Moreover, we investigate the effect of these model
parameters on the network design strategy and generate some
interesting insights. For example, when the surge frequency is
low, renting 3PLs is a more economic decision; on the other hand,
as the surge frequency increases, the manage leans to use rented
3PLs to self-building.

1.2. Notation and organization

Notably, we employ P(⋅) to denote the probability of an event
ccurring, and E(⋅) to signify the expectation of a random variable.
ll vectors are presented in boldface type (e.g., d), and e denotes the

vector whose elements consist of all ones, expressed as (1, 1,… , 1)𝑛.
Additionally, we utilize the notation [𝐾] = {1, 2,… , 𝐾} to represent
the set of positive running indices ranging from 1 to 𝐾. Throughout this
paper, a random variable is consistently denoted with a tilde symbol.

The remainder of this paper is organized as follows. In Section 2, we
review the related literature. In Section 3, we introduce the capacity
planning model for 4PLN with demand surges and formulate our ca-
pacity planning problem as a chance-constrained stochastic program.
In Section 4, we propose two algorithms and a two-stage learning-
based optimization framework to enhance the algorithm’s effectiveness,
further G-C&B algorithm and LEGO-C&B algorithm are designed sepa-
rately. In Section 5, numerical experiments based on realistic scenarios
re conducted to demonstrate the effectiveness of the developed model

and algorithms, and we reveal the laws of 4PLN designing under
demand surge. Section 6 concludes the paper. All proofs are relegated
to Appendix A. In Appendix B, we present a 4PL network design ex-
ample along with decision trees for each algorithm, demonstrating the
efficiency of the proposed G-C&B algorithm. Appendix C provides addi-
tional details on the three other stochastic models used for comparison.
In Appendix D, we elaborate on the goodness-of-fit test conducted on
samples of varying sizes to illustrate the convergence of the SAA-based
method.

2. Literature review

This paper studies a 4PLN planning problem with premeditated
demand surge, which is a supply chain network design (SCND) problem
with demand uncertainty under 4PL mode. To further clarify our
research orientation, we separately reviewed the literature on the issue
of 4PLN planning and demand uncertainty in 4PLN.
 e

3 
2.1. 4PLN planning

In essential, 4PLN is a kind of supply chain network, the literature
n SCND is extensive, and for more details, refer to the survey of Melo

et al. (2009). Here, we only review the literature related to the plan-
ning of 4PLN. In a 4PLN planning problem, different from SCND, the
decision maker not only determines the optimal location of stationary
acilities, and allocations among them but also focuses on the selection
f the corresponding 3PL TP(s) between stationary facilities and the
low on each selected 3PL TP. The transportation capacity on each 3PL
P is one of the main factors impacting the network capacity. Although
here are frequently several optional 3PL TPs between facilities, this
spect is frequently overlooked in the earlier studies of SCND. To
etter plan the network capacity, the selection of 3PL TPs has been
horoughly considered in the 4PLN planning problem. In the study
y Wang et al. (2021), a 4PLN model is designed for determining DCs,

3PL TPs, and flow assignments to achieve the goal of maximizing the
service satisfaction of suppliers and customers under a limited budget.
Yin et al. (2021) studied the designing of 4PLN considering delivery
time, in which a cost-saving 4PLN design scheme is obtained through
the decoding of the opening of DCs and selection of 3PL TPs. Zhang
et al. (2024a) utilized prospect theory to model customer satisfaction
with logistics services and investigated the selection of DCs and 3PL
providers within budget constraints to design a 4PLN that optimizes
customer satisfaction. It can be seen that, as an extension of SCND,
the introduction of decision variables for 3PL TPs’ selection in 4PLN is
the main difference from SCND, and aforementioned studies also point
out that this added kind of decision variables significantly increase the
difficulty of problem-solving. Therefore, in the study of 4PLN planning,
how to solve the problem more effectively is a notable challenge.

2.2. Demand uncertainty in 4PLN

It is necessary and meaningful to study 4PLN planning under uncer-
ainty to make its performance satisfactory in a changing environment
ecause, as a long-term strategy decision, the planning of 4PLN usu-
lly cannot be adjusted for a long period. The comprehensive review
y Govindan et al. (2017) points out that supply chain networks face

several uncertainties, the most significant of which is the uncertainty
of customer demand. The uncertainty of customer demand is a widely
considered factor in existing studies, and it has a clear impact on
upply chain network design. In previous studies around the planning of

4PLN, customer demand is usually considered as a stochastic variable,
and distribution is used to portray it (Wang et al., 2021; Yin et al.,
2022). However, in today’s e-commerce environment, demand surges
riggered by man-made causes such as promotion occur all the time.

hile the occurrence of such event-triggered surges is predictable,
he uncertainty of the magnitude of the surge still poses a challenge

for 4PLN (supply chain network) planning. To accurately portray the
emand surge, Huang et al. (2016) concluded some surge trajectories of

demand and developed a demand model that captures those character-
istics of surge trajectories, such as magnitude, duration, and intensity,
and then solve a reactive capacity planning problem for the supply
chain. This study provides an effective framework to model random
demand surges whose occurrence is considered completely random, and
several studies have taken into account such kind of demand surges as
a risk in their operation problem in different fields, such as inventory
management (Roni et al., 2015, 2016) and resource allocation (Liu
et al., 2021). When considering such random demand surges, the most
important problem for companies is how to do reactive capacity plan-
ning. Different from the aforementioned studies, the occurrence of the
vent-triggered demand surges considered in this paper is predictable,
his motivates us to consider, from a strategic level perspective, how
o address this risk by doing rational network designing and capacity
lanning. Therefore, in this paper, we investigate a 4PLN planning
roblem considering event-triggered demand surges under the indus-
ry innovator mode of 4PL and give the analysis of how companies
ffectively cope with demand surges in a sharing economy background.
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2.3. Methods for chance-constrained programs

In operational management problems, service level constraints in
the form of formula (1) are often used to limit the probability of stock-
outs; such models with probability constraints are referred to as chance-
onstrained programming (CCP) model. See for example (Bookbinder

and Tan, 1988; Chen and Krass, 2001; Lyu et al., 2022). Constrained
optimization problems sometimes can be efficiently solved with some

ild conditions (see Xiao et al., 2024 for example), however chance
constraint is still hard to handle due to its probabilistic characteristics.
The challenge in solving CCP lies in evaluating the probability values
corresponding to every candidate solution. The relevant literature can
be categorized into two streams specified by the availability of the
distributions of the random elements in the stochastic program.

Distribution is known. Having the exact form and parameters
of the distribution allows us to accurately characterize the random
variable. Although it is possible to calculate probabilities using the cu-
mulative distribution function if the distribution of the random variable
is given, this is considered quite challenging, as they plays an important
role in chance constraints. The probabilistic constraints can be reformu-
lated into linear or second-order cone constraints under a Gaussian-like
assumption (Nemirovski and Shapiro, 2007). For uncertain demand,
the Gaussian distribution is widely used in supply chain network de-
sign (Shu et al., 2005; Chou et al., 2010), or one may directly assume
that the demand follows a known discrete distribution (Yin et al., 2021,
2022; Zhang et al., 2022). This allows us to further treat the random
terms, thus making it possible to generate closed-form expressions for
the expectation or probability of the associated random variables.

Distribution is unknown. Unfortunately, in real-world problems,
we often cannot obtain the exact distribution of random variables but
nly have access to their limited information such as moments or lim-
ted historical data. To solve the CCP problem with limited information,
n effective approach is to develop a mixed-integer programming (MIP)
eformulation. For CCPs with individual chance constraints, we refer
o the comprehensive review (Küçükyavuz and Jiang, 2022). Here we

focus on the reviewing CCPs with joint chance constraints as considered
in our study (in the form of formula (1)). These methods can be
generally divided into two categories:

(i) The first approach is the sample average approximation (SAA),
hich uses finite discrete distributions to transform the CCP as a MIP
ith knapsack sub-problem (Ruszczyński, 2002). This reformulation

can be solved by state-and-the-art solvers. However, this model has
been proven to be NP-hard (Luedtke et al., 2010), which drives the
researchers to seek effective alternatives, such as branch-and-price
and cutting planes, to accelerate the solution of the knapsack sub-
problem (Liu et al., 2016; Deng et al., 2021). Another approach for
he SAA-based reformulation or CCP directly is to build approximate
odels with valid inequalities, see Porras et al. (2023), Zhang et al.

(2023). However, these approximations necessitate breaking down the
multivariate distribution corresponding to joint chance constraints into

ultiple univariate distributions, resulting in estimation bias for the
original distribution or conservative decision-making, such as CVaR
pproximation (Alexander and Baptista, 2004; Nemirovski, 2012) and
onferroni approximation (Nemirovski and Shapiro, 2007; Chen et al.,

2010).
(ii) Another approach for CCPs under limited information is to

model the stochastic program as a distributionally robust program
where the chance constraint is modeled under an ambiguity set. The
main downside of this approach is the conservativeness of its solution,
because the essential approach is based on the analysis of the worst
case. We refer to Rahimian and Mehrotra (2019) for a more compre-
hensive review. In our study, to address service level constraints on
demand surges, we employ an SAA-based MIP reformulation, utilizing
finite samples to solve the CCP model. To address the computational
challenges due to the need for a large number of samples for accurate
simulation, we propose several novel algorithms using a greedy strategy
and a learning framework, specifically designed for the large-scale

knapsack sub-problems.

4 
3. Problem description and formulation

In this section, we introduce our 4PLN model, describe the model
ssumptions, and specify the capacity optimization problem.

3.1. The 4PLN model

In a 4PLN, commodities are delivered from suppliers to customers
through a distribution center (DC) by 3PL transportation providers (TPs).
This network can be specified as a multi-graph (see in Fig. 3), where
suppliers, DCs, and customers are represented as nodes and the 3PL

Ps as edges connecting these nodes. There can be multiple edges
onnecting two nodes in the graph under 4PL operation mode. In what
ollows, we sometimes refer to DCs and TPs collectively as 3PL facilities
or ease of description.

Let S, F and D denote the sets of suppliers, DCs and customers.
We assume that all suppliers have stable supply capacity, and DCs
have a fixed location cost, unit processing cost, and a finite processing
capacity. The collection of nodes within the 4PLN network is denoted
as N = S ∪ F ∪ D. All 3PL TPs possess predetermined construction
costs, unit transportation expenses, and limited transport capacities.
We define the quantity of 3PL entities as 𝐾, where [𝐾] signifies the
roup of 3PLs present on any compliant path connecting nodes, while
ll feasible paths are encompassed within the set V. Then the 4PLN is
ully specified by the graph G(N,V). The 4PLN planner aims to solve

an optimal network design problem with the objective of minimizing
he total capacity cost (of the service capacities that are self-built and
ented) subject to constraints on the SL with designated targets (defined
s the probability of all demand fulfilled). We assume that all decisions
egarding self-building and renting are made at the beginning of a

planning cycle. In the event of a demand surge, the pre-determined
strategy to activate the rented 3PL resources is then implemented.

3.2. Stochastic demand

In the above-mentioned 4PLN capacity optimization problem, we
onsider two demand types: regular demand and surged demand. With-

out loss of generality, we assume the demands among different cus-
tomers are identically distributed.

The regular demand, denoted as 𝒅̃𝑟 = (𝑑𝑟(1),… , 𝑑𝑟(|D|)) ∈ R|𝐷|

+ , is
the demand that occurs during the regular operational cycles. Follow-
ing (Govindan et al., 2017), we use Normal distributions to model the
egular demand, that is, we assume that 𝑑𝑟(𝑗) ∼ 𝑁

(

𝜇𝑟, 𝜎2𝑟
)

for any 𝑗 ∈ D,
o that

P
(

𝑑𝑟(𝑗) = 𝜉𝑟
)

= 1
√

2𝜋 𝜎𝑟
⋅ exp

(

−

(

𝜉𝑟 − 𝜇𝑟
)2

2𝜎2𝑟

)

, (2)

this can serve as a good approximation to the actual demand, especially
when the business has a sufficient amount of demand data (following
the law of large numbers). In our study, without loss of generality, we
assume the enterprise has an adequate amount of regular demand data
to fit the distribution parameters.

The surged demand, denoted by 𝒅̃𝑠 = (𝑑𝑠(1),… , 𝑑𝑠(|D|)) ∈ R|𝐷|

+ ,
represents demand triggered by events (e.g., Black Friday). Unlike reg-
ular demand, surged demand occurs over a shorter duration and with
significantly greater magnitude. Since surged demands are infrequent,
it is challenging for firms to gather a substantial amount of data to
explore their distribution. In our study, we model the dynamics of
surged demand as a jump process, aiming to provide a work-well
empirical model; see Cai and Yang (2021) and Ewald and Zou (2021).
pecifically, we assume that a demand surge in each customer 𝑗 ∈ D

occurs according to a jump process 𝐽(𝑗) with the amplitude of the jump
𝐴̃(𝑗) following a Normal distribution, namely,

( )
𝐴̃(𝑗) = log(𝐽(𝑗)) ∼ 𝑁 𝜇𝑎, 𝜎2𝑎 , (3)
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Fig. 3. Multi-graph representation of 4PLN.
Fig. 4. Stochastic demand in a planning horizon.
where 𝜇𝑎 and 𝜎2𝑎 represent the mean and variance of the jump ampli-
tude. Hence, the surge demand can be written as

𝒅̃𝑠 = 𝒅̃𝑟 + 𝑱̃ (4)
We consider the planning for the 4PLN as a long-term project in

a given planning horizon, as it is a strategy-level problem. A decision
cycle is thought to be divided into numerous equal periods (denote the
number as 𝑁), thus planners can temporarily rent 3PL facilities during
each of those periods if necessary. Based on whether there is a surge in
customer demand, all periods can be easily classified as surged demand
period and regular demand period (see Fig. 4). For the ease of notation,
we use an indicator variable 𝜂𝑡, with 𝜂𝑡 = 1 representing there is an
event leading to a surge in demand in period 𝑡, and 𝜂𝑡 = 0 otherwise.
The stochastic customer demand in period 𝑡, comprising both regular
and surge components, is formulated as

𝒅̃𝑡 = (1 − 𝜂𝑡) ⋅ 𝒅̃𝑟 + 𝜂𝑡 ⋅ 𝒅̃𝑠 = 𝒅̃𝑟 + 𝜂𝑡 ⋅ 𝑱̃ , (5)

hence the demand for each customer over the entire planning horizon
is represented as a matrix 𝑫̃ = (𝒅̃1,… , 𝒅̃𝑁 ).

In the context of event-triggered demand surges, we assume that
these events (e.g., promotions) are prearranged, and their surge warn-
ings are expected in advance, implying that the values of 𝜂 are known
𝑡

5 
to the planner. Additionally, without loss of generality, we assume that
customer demands are identically distributed and the distribution is
stationary.

To validate the above model of the surged demand, we conduct
computer simulations of our demand model using parameters estimated
from the Wal-Mart sales data. We show that our simulated results can
effectively match with the real data. See Section 5.1 for details.

3.3. Rental of 3PL facilities

To enhance network capacity to cope with demand surges, a 4PL
planner can choose between self-building and renting 3PL facilities,
where only temporary renting is allowed. And we assume that the
rentable facilities have been determined before each decision cycle and
are used when needed during each surge period. High construction
expenses can be avoided by temporary renting, however, there will
be additional rentals for 3PLs to use those rented facilities. Due to
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Table 1
Summary of notations.
Sets

S Set of suppliers
F Set of DCs
D Set of customers
V𝑖𝑗 Set of compliant path between node 𝑖 and 𝑗
[𝐾] Set of 3PLs (the quantity of 3PLs included is 𝐾)

Model parameters
𝑑𝑖 Stochastic demand of customer 𝑖 ∈ D

𝑐𝑙𝑖 Fixed location cost of DC 𝑖 ∈ F

𝑐𝑝𝑖 Unit processing cost in DC 𝑖 ∈ F

𝑐𝑓𝑖𝑗 𝑘 Fixed construction cost of 3PL TP 𝑘 ∈ V between node 𝑖 and node 𝑗

𝑐𝑡𝑖𝑗 𝑘 Unit transportation cost of 3PL TP 𝑘 ∈ V between node 𝑖 ∈ N and
node 𝑗 ∈ N

ℎ𝑖𝑗 𝑘 Transport capacity of 3PL TP 𝑘 ∈ V between node 𝑖 and node 𝑗
𝜃𝑡 Proportion of contractual cost for 3PL TP charged at the time of renting
𝛾 Proportion of extra processing cost for 3PL TP charged at the time of

renting

Decision variables
𝑥𝑚𝑖𝑗 𝑘 Binary variable; the selection of 3PL TP 𝑘 ∈ V between node 𝑖 ∈ N and

node 𝑗 ∈ N during regular demand period denoted as 𝑚 = 𝑟 and surged
demand period as 𝑚 = 𝑠

𝑦𝑚𝑖 Binary variable; the selection of DC 𝑖 ∈ F during regular demand
period denoted as 𝑚 = 𝑟 and surged demand period as 𝑚 = 𝑠

Auxiliary decision variables
𝑧𝑚𝑖𝑗 𝑘 Non-negative integer variable; constructed capacity of the 3PL TP

𝑘 ∈ V between node 𝑖 ∈ N and node 𝑗 ∈ N during regular demand
period denoted as 𝑚 = 𝑟 and surged demand period as 𝑚 = 𝑠

the different usage scenarios, usually, the rental for DCs and TPs are
calculated differently, and we consider they are calculated as follows:

(i) To rent a DC, only the contractual cost is charged as rental based
on a proportional 𝜃𝑐 of its construction cost. (ii) To rent a 3PL TP,
besides the contractual cost will charged based on a proportional 𝜃𝑡 of
its construction cost, additional unit transportation cost will charged
on a proportional 𝛾.

3.4. Modeling

All notations are summarized in Table 1.
We next describe four operational costs for the 4PLN.

(i). Base costs of 4PLN (including facility costs and construction costs
of 3PL transportation carriers)

𝐶𝐹 =
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑓𝑖𝑗 𝑘 ⋅ 𝑥𝑟𝑖𝑗 𝑘 +
∑

𝑖∈F
𝑐𝑙𝑖 ⋅ 𝑦

𝑟
𝑖 . (6)

(ii). Costs of renting 3PL facilities and transportation carriers

𝐶𝑅 = 𝜃𝑐 ⋅
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑓𝑖𝑗 𝑘 ⋅
(

𝑥𝑠𝑖𝑗 𝑘 − 𝑥𝑟𝑖𝑗 𝑘
)

+ 𝜃𝑡 ⋅
∑

𝑖∈F
𝑐𝑙𝑖 ⋅

(

𝑦𝑠𝑖 − 𝑦𝑟𝑖
)

. (7)

(iii). Total operational costs during the regular demand period (includ-
ing operating cost of 3PL transportation carriers and processing
costs of 3PL facilities)

𝐶𝑃 𝑅 =
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑡𝑖𝑗 𝑘 ⋅ 𝑧𝑟𝑖𝑗 𝑘 +
∑

𝑖∈F
𝑐𝑝𝑖 ⋅

⎛

⎜

⎜

⎝

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑧𝑟𝑖𝑗 𝑘
⎞

⎟

⎟

⎠

. (8)

(iv). Total operational costs during the surged demand period (includ-
ing operating costs of 3PL transportation carriers, processing costs
of 3PL facilities and remuneration of resource renting)

𝐶𝑃 𝑆 =
∑

𝑖∈F
𝑐𝑝𝑖 ⋅

⎛

⎜

⎜

⎝

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘
⎞

⎟

⎟

⎠

+
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑡𝑖𝑗 𝑘 ⋅ 𝑣𝑖𝑗 𝑘

+ (1 + 𝛾) ⋅
∑ ∑ ∑

𝑐𝑡𝑖𝑗 𝑘 ⋅𝑤𝑖𝑗 𝑘, (9)

𝑖∈N 𝑗∈N 𝑘∈V𝑖𝑗

6 
where 𝑣𝑖𝑗 𝑘 ∈ R+ and 𝑤𝑖𝑗 𝑘 ∈ R+ are auxiliary variables represent-
ing the transport volumes of the self-built and rented 3PL resource
separately, and it satisfies 𝑧𝑠𝑖𝑗 𝑘 = 𝑣𝑖𝑗 𝑘 +𝑤𝑖𝑗 𝑘.

Denote the number of periods as 𝑁 , and recall that the vector
𝜼 = (𝜂1, 𝜂2,… , 𝜂𝑁 ) represents the surge warning information

The number of occurrences of the surged demand and regular
demand are 𝑁𝑆 =

∑𝑁
𝑖=1 𝜂𝑖 and 𝑁𝑅 = 𝑁 − 𝑁𝑆 . Define the frequency

f the surged demand as 𝜑 ≡ 𝑁𝑆
𝑁 , then the total cost is derived as

𝐶 = 𝐶𝐹 +𝑁 ⋅
[

(1 − 𝜑) ⋅ 𝐶𝑃 𝑅 + 𝜑 ⋅
(

𝐶𝑅 + 𝐶𝑃 𝑆
)

]

. (10)

The goal of the planning is to minimize the total cost specified in
(10) subject to a constraint on the SL, which is defined as the prob-
ability of demand fulfilled. As we assume that the regular demand is
normally distributed and there are sufficient historical data to estimate
the moments of the distribution, hence the SL constraint for regular
demand is presented in the following linear form using the 𝑧-score
method, which is commonly used in inventory control or capacity
planning to approximate demands (see, for example, Mak et al., 2013)
∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑟𝑖𝑗 𝑘 ≥ 𝜇𝑟 + 𝑧𝛼𝑟 ⋅ 𝜎𝑟, (11)

where ∑

𝑖∈F
∑

𝑘∈V𝑖𝑗
𝑧𝑟𝑖𝑗 𝑘 represents the total capacity required for com-

odities fulfillment (those successfully delivered to customer 𝑗), and
𝛼 is the corresponding quantile value for type-1 service level 𝛼𝑟. And

under constraint (11), we approximately calculate the long-run average
operational cost during regular demand periods as formula (8), i.e., we
onsider this cost only at the target demand level of 𝜇𝑟+𝑧𝛼𝑟 ⋅𝜎𝑟 to satisfy

the regular service level requirement. Thus the total cost function is
eformulated as

𝐶 = 𝐶𝐹 +𝑁 ⋅
[

(1 − 𝜑) ⋅ 𝐶𝑃 𝑅 + 𝜑 ⋅
(

𝐶𝑅 + 𝐶𝑃 𝑆
)

]

.

For the surged demand, we write the SL constraint as follows

P
⎛

⎜

⎜

⎝

∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝑑𝑠(𝑗) ≥ 0, ∀𝑗 ∈ D

⎞

⎟

⎟

⎠

≥ 𝛼𝑠, (12)

where ∑

𝑖∈F
∑

𝑘∈V𝑖𝑗
𝑧𝑠𝑖𝑗 𝑘 represents the total capacity required for com-

odities fulfillment for customer 𝑗 in surged demand periods, and 𝛼𝑠
is the designated target of type-1 service level for demand surges to
ensure an acceptable SL. The SL constraint in (12) is a joint chance
constraint; it provides a population-level control for the overall quality
of the service rather than focusing on the individual experience of
the customers. Specifically, when the demand from each customer
is independent, we can equivalently use a set of individual chance
constraints for each customer.

Putting things together, we give the complete version of our opti-
mization problem as below.

min 𝐶𝐹 +𝑁 ⋅
[

(1 − 𝜑) ⋅ 𝐶𝑃 𝑅 + 𝜑 ⋅
(

𝐶𝑅 + 𝐶𝑃 𝑆
)

]

(13a)

s.t. P
⎛

⎜

⎜

⎝

∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝑑𝑠(𝑗) ≥ 0, ∀𝑗 ∈ D

⎞

⎟

⎟

⎠

≥ 𝛼𝑠, (13b)

∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑟𝑖𝑗 𝑘 ≥ 𝜇𝑟 + 𝑧𝛼𝑟 ⋅ 𝜎𝑟, ∀𝑖 ∈ N,∀𝑗 ∈ N,∀𝑘 ∈ V𝑖𝑗 ,

(13c)
𝑥𝑟𝑖𝑗 𝑘 ≤ 𝑥𝑠𝑖𝑗 𝑘, ∀𝑖 ∈ N,∀𝑗 ∈ N,∀𝑘 ∈ V𝑖𝑗 ,

(13d)

𝑦𝑟𝑖 ≤ 𝑦𝑠𝑖 , ∀𝑖 ∈ F, (13e)
∑ ∑

𝑧𝑚𝑖𝑗 𝑘 ≤ 𝑦𝑚𝑖 ⋅ 𝑞𝑖, ∀𝑖 ∈ F,∀𝑚 ∈ {𝑟, 𝑠}, (13f)

𝑗∈𝑁 𝑘∈𝑉𝑖𝑗
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𝑧𝑟𝑖𝑗 𝑘 + 𝑣𝑖𝑗 𝑘 ≤ 𝑥𝑟𝑖𝑗 𝑘 ⋅ ℎ𝑖𝑗 𝑘, ∀𝑖 ∈ N,∀𝑗 ∈ N,∀𝑘 ∈ V𝑖𝑗 ,

(13g)
𝑤𝑖𝑗 𝑘 ≤ 𝑥𝑠𝑖𝑗 𝑘 ⋅ ℎ𝑖𝑗 𝑘, ∀𝑖 ∈ N,∀𝑗 ∈ N,∀𝑘 ∈ V𝑖𝑗 ,

(13h)
∑

𝑗∈𝑁

∑

𝑘∈𝑉𝑖𝑗

𝑧𝑚𝑖𝑗 𝑘 =
∑

𝑗∈𝑁

∑

𝑘∈𝑉𝑖𝑗

𝑧𝑚𝑗 𝑖𝑘, ∀𝑖 ∈ F,∀𝑚 ∈ {𝑟, 𝑠}, (13i)

𝑧𝑚𝑖𝑗 𝑘, 𝑣𝑖𝑗 𝑘, 𝑤𝑖𝑗 𝑘 ∈ R+, ∀𝑖 ∈ N,∀𝑗 ∈ N,

∀𝑘 ∈ V𝑖𝑗 ,∀𝑚 ∈ {𝑟, 𝑠},
(13j)

𝑥𝑚𝑖𝑗 𝑘 ∈ {0, 1}, ∀𝑖 ∈ N,∀𝑗 ∈ N,

∀𝑘 ∈ V𝑖𝑗 ,∀𝑚 ∈ {𝑟, 𝑠},
(13k)

𝑦𝑚𝑖 ∈ {0, 1}, ∀𝑖 ∈ F,∀𝑚 ∈ {𝑟, 𝑠}. (13l)

Constraint (13b) is a stochastic chance constraint, representing that the
joint probability to meet surged demand in each customer is at least 𝛼𝑠;

onstraint (13c) corresponds to the SL constraint for customers’ regular
emand; Constraints (13d) and (13e) relate the self-built network to
he rented network, requiring that the rented network is formed by

incorporating additional 3PL resources into the self-built network; Con-
straint (13f)–(13h) are capacity constraints, imposing finite capacities
or the 3PL transportation carriers, processing quantity in each 3PL fa-
ility; Constraint (13i) ensures flow conservation among all nodes, and
onstraints (13j)–(13l) specify the domains for all decision variables.

Let 𝒙 =
(

𝑥𝑚𝑖𝑗 𝑘
)

𝑖∈N,𝑗∈N,𝑘∈V𝑖𝑗 ,𝑚∈{𝑟,𝑠}
, 𝒚 =

(

𝑦𝑚𝑖
)

𝑖∈F,𝑚∈{𝑟,𝑠}, 𝒛 =
(

𝑧𝑚𝑖𝑗 𝑘
)

𝑖∈N,𝑗∈N,𝑘∈V𝑖𝑗 ,𝑚∈{𝑟,𝑠}
, with those notations, we rewrite the objec-

ive function that minimize the total cost, by defining

𝐶(𝒙, 𝒚, 𝒛) ∶= 𝐶𝐹 +𝑁 ⋅
[

(1 − 𝜑) ⋅ 𝐶𝑃 𝑅 + 𝜑 ⋅
(

𝐶𝑅 + 𝐶𝑃 𝑆
)

]

,

and we use (𝒙, 𝒚, 𝒛) ∈ 𝝌 to denote the compact feasible set determined
y constraints (13c)–(13l), except the joint chance constraint (13b).

Then we give the equivalent representation of problem (14) as follows
(𝐂𝐂𝐏) min 𝐶(𝒙, 𝒚, 𝒛)

s.t. P
⎛

⎜

⎜

⎝

∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝑑𝑠(𝑗) ≥ 0, ∀𝑗 ∈ D

⎞

⎟

⎟

⎠

≥ 𝛼𝑠,

(𝒙, 𝒚, 𝒛) ∈ 𝝌 .

(14)

Solving problem (14) directly is challenging, because even with
n exact probability distribution P and a given 𝒛 ∈ 𝝌 , computing
he probability requires multi-dimensional integration, let alone the
istribution is unknown (as discussed in Section 2.3). To efficiently

solve this joint chance-constrained programming problem with limited
information on the distribution, and without relying on Gaussian-like
assumptions, we establish an SAA-based mixed-integer programming
reformulation for (14) in the next section based on scenario simulations
f demand surges, following the approaches of Ruszczyński (2002)
nd Benati and Rizzi (2007).

3.5. Scenario-based MIP reformulation

Considering a realized scenario set 𝑅 = {𝝍1,… ,𝝍𝐿}, where 𝐿 = |𝑅|
represents the number of realized scenarios of demand surges. Typi-
cally, the value of 𝐿 is small, leading to an unexpected approximation
error (e.g., 𝐿 = 11 among a total of over 200 scenario points of a
ustomer in the Wal-Mart dataset). Hence, we first fit the parameters

of distribution (4) as the empirical distribution P̂𝝍 using the demand
et 𝑅 and then generate a scenario set 𝑆 = {𝝃1,… , 𝝃𝑀} of 𝒅̃𝑠 via
atin hypercube sampling, where 𝑀 = |𝑆| is the number of sampled

̄
scenarios. Then we generate 𝑆 = 𝑆 ∪ 𝑅 = {𝝃1,… , 𝝃𝑀 , 𝝃𝑀+1,… , 𝝃𝑀+𝐿} a

7 
where we let 𝝃𝑀+𝑞 = 𝝍𝑞 for any 1 ≤ 𝑞 ≤ 𝐿, and use 𝑀̄ = 𝑀 + 𝐿 to
enote the set size. The corresponding probability of the scenarios are
=
(

𝑝1,… , 𝑝𝑀̄
)𝑇 with ∑𝑀̄

𝑗=1 𝑝𝑗 = 1. Notice that 𝝃𝑞 is a |D|-dimensional
ector and we denote the demand of customer 𝑗 ∈ D in scenario 𝝃𝑞 by

𝜉𝑞(𝑗).
As we use the finite scenario set to simulate the stochastic surged

emand, only partial scenarios need to be satisfied to touch the SL
onstraint. Define a binary vector 𝒖 ≡

(

𝑢1, 𝑢2,… , 𝑢𝑀̄
)T, our chance

constraint in problem (14) can be reformulated as follows:
∑

∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝑢𝑞 ⋅ 𝜉𝑞(𝑗) ≥ 0, ∀𝑗 ∈ D,∀𝑞 ∈ [𝑀̄], (15)

𝑀̄
∑

𝑞=1
𝑝𝑞 ⋅

(

1 − 𝑢𝑞
)

≤ 1 − 𝛼𝑠, (16)

where the binary variable 𝑢𝑞 = 1 when scenario 𝝃𝑞 is selected to be
satisfied, and otherwise, 𝑢𝑞 = 0. Let 𝐾𝛼 ≡ ⌊𝑁𝛼⌋ be the minimum number
of scenarios to be satisfied under targeted SL 𝛼𝑠.

(𝐒𝐀𝐀 −𝐌𝐈𝐏) min 𝐶(𝒙, 𝒚, 𝒛)

s.t.
∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝑢𝑞 ⋅ 𝜉𝑞(𝑗) ≥ 0, ∀𝑗 ∈ D,∀𝑞 ∈ [𝑀̄],

∑

𝑞∈[𝑀̄]

𝑝𝑞 ⋅
(

1 − 𝑢𝑞
)

≤ 1 − 𝛼𝑠,

(𝒙, 𝒚, 𝒛) ∈ 𝝌 , 𝒖 ∈ {0, 1}𝑀̄ .

(17)

which is also known as the sample average approximation (SAA) model,
nd 𝒖 is the binary auxiliary decision variable. In problem (17), the

chance constraint is handled as a knapsack sub-problem in a linear form,
and then the reformulated version of the model can be solved straightly.

Then we show some convergence properties of the SAA model. Let
𝑣∗𝛼 and 𝑣∗𝑅 represent the optimal value of CCP model (14) with target
service level 𝛼 and SAA model (17) with realization set 𝑅, respectively.

Theorem 1 (Convergence of the SAA Model). Solving the SAA model
(17) with the desired service level target 𝛼 under realizations set 𝑅 is
asymptotically optimal, approaching the optimal solution almost surely as
the sample size |𝑅| increases, i.e.,

lim
|𝑅|→∞

P
(

𝑣∗𝛼 = 𝑣∗𝑅

)

→ 1.

Theorem 1 demonstrates the qualitative behavior of the sample
pproximation method, specifically stating that as the sample size

of realizations approaches infinity, solving the SAA model will yield
the exact optimal solution with high probability. Furthermore, in the
limiting case where |𝑅| → ∞, additional sampling from the empirical
distribution becomes unnecessary, as the empirical distribution over
the set 𝑅 sufficiently approximates the true distribution. In this asymp-
totic state, further sampling based on the empirical distribution does
not affect the accuracy of the SAA model, since the sample set 𝑆 can
e regarded as a realization of the true distribution, consistent with the
aw of large numbers.

Although the SAA model will provide a high-quality approximate
solution and is straightly solvable, the required scenario size is still
ot negligible for large-scale problems, especially those involving mul-
iple customers. Solving such a (large-scale) problem with a knapsack
ub-problem remains challenging. This motivates us to propose two ef-
ective algorithms in the next section to improve the solution procedure
urther.

4. Solution methodologies

In this section, we design two algorithms building on the cell-
nd-bound framework (Zheng et al., 2017). First, we give the MIP
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Fig. 5. The schematic presentation of the cell-and-bound method.
reformulation for our transformed model (17) based on the hyperplane
arrangement in Section 4.1. In Section 4.2, to improve the efficiency
of the algorithm, we propose a greedy pricing and weighting strategy to
speed up cell enumerations; we call this method the greedy pricing
and weighting strategy based cell-and-bound (G-C&B) algorithm. In
Section 4.3, to further improve the efficiency of G-C&B when treating
large-scale problems with a large sample size, we develop a local
experimentation for global optimization (LEGO) framework, dubbed
LEGO-C&B.

4.1. Cell-and-bound framework and hyperplane arrangement based MIP
reformulation

The cell-and-bound method is introduced by Zheng et al. (2017)
for solving math programming problems with binary variables; also
see Sleumer (1999). Under the cell-and-bound framework, each in-
equality (corresponding binary variable) is mapped into a hyperplane,
so that the value selection for binary variables is equivalent to picking
a cell in the positive or negative side of a hyperplane. For ease of
expression, we use 𝜋 to denote a cell. In such a framework, the cell-
and-bound algorithm continuously enumerates across all neighboring
cells, computes the solution for each cell, and generates the optimal
solution when identifying the optimal cell. See Fig. 5 for a schematic
presentation.

According to the knapsack sub-problem (15)–(16), each customer
demand 𝜉𝑗𝑞 can be represented as a hyperplane, and a scenario vector
𝝃𝑞 corresponds to a hyperplane class. The hyperplane class of each
demand scenario 𝝃𝑞 and the generated positive polyhedron in the joint
chance-constrained version are generated as follows.

Definition 1 (Hyperplane Class for Demand Scenario and Its Positive
Polyhedron). Given a demand scenario 𝝃𝑞 ∈ R|D|, its hyperplane class
including hyperplanes for each customer demand is defined as

𝑯𝑞 =

⎧

⎪

⎨

⎪

⎩

𝐻𝑞 𝑗 ∶=
⎧

⎪

⎨

⎪

⎩

𝒛𝑠 ∈ R+
|

|

|

|

|

|

∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝜉𝑗𝑞 = 0
⎫

⎪

⎬

⎪

⎭

,∀𝑗 ∈ R

⎫

⎪

⎬

⎪

⎭

, (18)

and the corresponding positive polyhedron 𝑃 (𝝃𝑞) is defined as the
intersection of the positive halfspace 𝐻+

𝑞 𝑗 of each hyperplane 𝐻𝑞 𝑗 ∈ 𝑯𝑞 ,
i.e.,

𝑃
(

𝝃𝑞
)

∶=
⋂

𝑗∈R
𝐻+

𝑞 𝑗 , (19)

here we use 𝜑𝑙 𝑞 = 1 to represent 𝜋𝑙 ⊆ 𝑃 (𝝃𝑞), and otherwise 𝜑𝑙 𝑞 = 0.
8 
In model (17), the scenario selection is represented as binary vari-
ables (𝒖) each of which is mapped into its corresponding hyperplane
class. Hence, we reformulate (17) as the following equivalent hyper-
plane arrangement (HA) version (see the Eq. (20) in Box I). Here 𝑣(⋅)
is the optimal objective value of the problem. Also, 𝛷 represents the
set of all cells and the optimal solution of (20) is iteratively obtained
by exploring sub-problems among all feasible cells.

Proposition 1 (Complexity Bound for C&B Framework). The maximum
number of cells to be explored under the C&B framework is bounded by
𝑂(|𝑆||D|), where |𝑆| is the number of demand scenarios and |D| is the
number of customers.

According to Proposition 1, the optimal solution can be obtained
by exploring no more than 𝑂(|𝑆||D|) cells under the C&B framework.
This is a significant performance improvement compared to the B&B
algorithm which has a worst-case complexity of 𝑂(2|𝑆|). In practice,
oftentimes |𝑆| may be much larger than |D|, which guarantees that
C&B requires searching a much smaller number of cells than the B&B
algorithm. However, we remark that every sub-problem is an NP-hard
network design problem. As the sample size or network size increases,
solving sub-problems on these cells still poses challenges. In order to
improve the solution efficiency for (20), we next propose the G-C&B
method.

4.2. Greedy pricing and weighting strategy based cell-and-bound algorithm

The cell-and-bound method intends to search all feasible cells and
continuously update the upper or lower bounds of the problem by
calculating the optimal value in each cell. The enumeration of the
neighboring cells gives the interior points of all neighboring cells
around a given cell at the same time (Zheng et al., 2017). Hence, this
is equivalent to a tree search of all feasible cells as depicted in Fig. B.2.

It should be noted that the C&B tree does not necessarily have a
binary structure because a cell may have more than two neighboring
cells, for example, the tree generated by choosing (+,+,+,+) as the root
cell in Sleumer (1999)’s example is a multi-branch tree.

To solve problem (20), we consistently set the all-negative cells
(i.e. those cells satisfying 𝜋𝑙∩

{

∪𝑞𝑃
(

𝝃𝑞
)}

= 𝜙) as the root cells. Then we
know that each layer in the obtained search tree has the same number
of negative signs ‘-’, meaning that these cells correspond to the same
SL (i.e., satisfying the same number of scenarios). It is apparent that
the optimal total cost of a cell having a greater depth in the search tree
will not be superior to that having a smaller depth, because it needs to
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(𝐇𝐀 −𝐌𝐈𝐏) min
{

𝑣(𝜋𝑙) ∣ 𝜋𝑙 ∈ 𝛷 , 𝒑𝑇 ⋅ 𝝋𝑙 ≥ 𝛼𝑠
}

where 𝑣(𝜋𝑙) ∶= min 𝐶(𝒙, 𝒚, 𝒛)

s.t.
∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝑢𝑞 ⋅ 𝜉
𝑗
𝑞 ≥ 0, ∀𝑗 ∈ D,∀𝑞 ∈ [𝑀̄]

(𝒙, 𝒚, 𝒛) ∈ 𝝌 , 𝒖 = 𝝋𝑙 ∈ {0, 1}𝑀̄

(20)

Box I.
p
n
s
a

m

satisfy more scenarios. Following this rule, we can remove some cells
ased on the upper and lower bounds in the C&B framework.

Throughout the solution process, finding a more optimal cell can
elp immediately remove those branches associated with less optimal
ells. To help reduce the running time of the C&B algorithm, we next
ropose a greedy pricing and weighting strategy using the depths of
ells. The main idea of G-C&B is to (i) compute weights for all scenarios
ased on their demand information (these weights are also referred
o as the price of scenarios), (ii) rank all scenarios, and (iii) priori-
izing the enumeration and exploration of scenarios corresponding to
ower prices. In this way, we can expedite the updating process of the

problem’s bounds, thus eliminating unnecessary cells at early stages to
void excessive computational complexity otherwise spent on solving
edundant sub-problems.

In details, we calculate the price of each scenario through following
ricing sub-problem,

(𝐏𝐫 𝐢𝐜𝐢𝐧𝐠 𝐏𝐫 𝐨𝐛𝐥𝐞𝐦) 𝛥𝑐𝑒 = min
𝐶(𝒙, 𝒚, 𝒛′|𝒅) − 𝐶(𝒙, 𝒚, 𝒛|𝒅)

𝛥𝑑
s.t.

∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝑑𝑗 ≥ 0, ∀𝑗 ∈ D,

∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧
′𝑠
𝑖𝑗 𝑘 − 𝑑𝑗 ≥ 0, ∀𝑗 ∈ D ⧵ {𝑒},

∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧
′𝑠
𝑖𝑗 𝑘 −

(

𝑑𝑗 + 𝛥𝑑
)

≥ 0, ∀𝑗 ∈ {𝑒},

(𝒙, 𝒚, 𝒛), (𝒙, 𝒚, 𝒛′) ∈ 𝝌 .
(21)

where 𝛥𝑐𝑒 is the unit price of demand change in customer 𝑒 ∈ D,
𝒅 ∈ R|D|

+ is a given demand vector (typically, we can set the value
as 𝑑𝑗 = 𝒆𝜇𝑎 for all 𝑗 = 1,… , |D|), and 𝛥𝑑 ≥ 0 is a positive value. Hence
the price of a demand scenario 𝝃𝑞 to any given demand vector 𝒅̂ is
calculated as

𝑤𝑞 =
∑

𝑗∈D
𝛥𝑐𝑗 ⋅

(

𝝃𝑗𝑞 − 𝑑𝑗
)

. (22)

Then we set the initial value 𝒅̂0 = 𝟎 and iteratively choose the
scenario 𝝃𝑞 with the smallest price 𝑤𝑡

𝑞 to the benchmark demand 𝒅̂𝑡 to
satisfy (i.e., let 𝑢𝑞 = 1) in iteration 𝑡 until touching the SL constraint. We
refer to this heuristic algorithm as the Greedy Pricing and Weighting
Strategy based Cell-and-Bound (G-C&B) algorithm, and we provide a
formal description of G-C&B in Algorithm 1. Additionally, we present
an example and the corresponding decision tree in Fig. B.2 to illustrate
the efficiency of G-C&B.

Proposition 2 (Complexity Bound for G-C&B). The maximum number of
sub-problems to be solved in G-C&B algorithm is bounded by 𝑂(|𝑆|).

In addition, G-C&B needs to search a fewer number of cells than
he base C&B algorithm (as illustrated in Fig. B.2). On the other
and, in each cell, the corresponding sub-problem is NP-hard with the
omputational complexity of 𝑂(2|V|), where |V| is the number of 3PL
Ps (i.e., a metric of the scale of the problem). In order to further
nhance the solution efficiency as the scenario size |𝑆| is large, we
9 
Algorithm 1: G-C&B algorithm
Input: 4PLN structure N and V; SL 𝛼; all model parameter in

Table 1; Demand scenarios set 𝑆.
Output: Optimal 4PLN solutions (𝒙, 𝒚).

1 Set all-negative cells as the root cells.
2 Initialize lowerBound = ∞, depth 𝑡 = 1, 𝒅̂0 = 𝟎, and scenarios

set 𝑆′ = 𝜙.
3 while 𝑡 ≤ 𝐾𝛼 do
4 Calculate 𝑤𝑡

𝑞 for each demand scenario in 𝑆, rank scenarios
in descending order of weights, and generate their
associated hyperplane classes.

5 Solve the sub-problem of (20) in the first cell and obtain
the solution value 𝑣𝑡 for current cell.

6 Update the lowerBound;
7 Enumerate the neighbouring cells of the current cell;
8 Update depth 𝑡 = 𝑡 + 1;
9 end
10 Set the optimal solution value v𝑏𝑒𝑠𝑡 as the updated lowerBound.
11 Output the optimal decision variables (𝒙, 𝒚) corresponding to

v𝑏𝑒𝑠𝑡.

next develop the LEGO framework and the corresponding LEGO-C&B
method.

4.3. Local experimentation for global optimization framework and LEGO-
C&B algorithm

Although G-C&B is able to achieve a significant performance im-
rovement over C&B and B&B, the total number of cells that G-C&B
eeds to search through may still be quite big when (i) the network
cale or (ii) the size of the demand scenario is large. In order to achieve
dditional reduction for the computational complexity, we propose a

two-stage learning-based optimization framework to further refine G-
C&B. Our main idea is to explore the cell space using a small subset
of samples, and then exploit the gained knowledge to expedite the
optimization of the full problem with complete samples (to avoid
extensive cell enumeration). See Fig. 6 for a schematic representation
of this idea.

Our two-stage approach, called local experimentation for global opti-
ization (LEGO), takes two stages:

(i). Local experimentation (exploration).
Step 1: Given the historical scenario set 𝑅, learn the parameters
of demand distributions, and generate sampled scenario set 𝑆
through LHS, and obtain 𝑆 = 𝑅 ∪ 𝑆;
Step 2: Given the training ratio 𝜅 ∈ (0, 1), randomly select 𝜅 ⋅ |𝑆|
scenarios from set 𝑆 to generate training set 𝑆train;
Step 3: Recall G-C&B to solve the network design problem under
set 𝑆train in form of (20), and obtain the output 𝒖train;
Step 4: Generate the training data set 𝛩train by letting each
demand vector 𝝃𝑞 ∈ 𝑆train as the features and the corresponding
𝑢 as the label;
𝑞
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Fig. 6. Two-stage local experimentation for global optimization (LEGO) framework.
Fig. 7. Supplier-DC-customer locations.

Step 5: Train the 0–1 classification model 𝑓 on 𝛩train, i.e., for any
given demand scenario 𝝃𝑖 we have 𝑢𝑖 = 𝑓 (𝝃𝑖).

(ii). Global optimization (exploitation).
Step 6: Utilize the well-trained model 𝑓 to predict the decision
𝒖 for problem (17) over the set 𝑆, i.e., 𝒖 = 𝑓 (𝑆). We denote the
set of scenarios with 𝑢𝑞 = 1 as 𝑆learn. If |𝑆learn| ≡ ‖𝒖‖ < 𝐾𝛼 , we
generate the demand vector 𝒅̂ ∶=

{

𝑑𝑗 |𝑑𝑗 = max𝑞{𝜉
𝑗
𝑞}, ∀𝑗 ∈ D

}

.
We then calculate the price of each scenario in 𝑆 ⧵𝑆learn through
(21) and select the top 𝐾𝛼 − ‖𝒖‖ scenarios 𝜉𝑞 in ascending order
of price, setting the corresponding 𝑢𝑞 = 1.
Step 7: Solve following SAA-MIP model with fixed 𝒖 to obtain the
4PLN solution (𝒙, 𝒚)

min 𝐶̂(𝒙, 𝒚, 𝒛, 𝒖)

s.t.
∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝑢𝑞 ⋅ 𝜉
𝑗
𝑞 ≥ 0, ∀𝑗 ∈ D,∀𝑞 ∈ [𝑀̄],

(𝒙, 𝒚, 𝒛) ∈ 𝝌 .

(23)

Using the above LEGO framework, we can learn knowledge about
the satisfaction of demand scenarios to meet a given service level (SL)
on a subset of samples. This allows us to predict the values of decision
variables (i.e., providing a solution to the knapsack sub-problem) in
model (20), thereby reducing computational complexity. Driven by
10 
the above-mentioned idea, we propose a further refined version of G-
C&B, called two-stage LEGO-based cell-and-bound (LEGO-C&B). The
pseudo-code of LEGO-C&B is described in Algorithm 2.
Algorithm 2: LEGO-C&B algorithm

Input: 4PLN structure N and V; SL 𝛼; All the model parameter
shown in Table 1; Set of demand scenarios 𝑆 obtained
by sampling; Training ratio 𝜅.

Output: An 4PLN design solution (𝒙, 𝒚).
1 Select 𝜅 ⋅ |𝑆| demand scenarios randomly to construct the

training set 𝑆train;
2 Solve HA-MIP model (20) under 𝑆train by using G-C&B

algorithm, and obtain 𝒖train;
3 Train binary classifier 𝑓𝐵 through input 𝑆train as the features

and 𝒖train as the label;
4 Predict 𝒖 = 𝑓 (𝑆) over full scenario set 𝑆, and generate satisfied

scenario set 𝑆learn;
5 if ‖𝒖‖ ≥ 𝐾𝛼 then
6 Randomly reduce ‖𝒖‖ −𝐾𝛼 scenarios from set 𝑆learn;
7 else
8 Calculate the price of each scenario in 𝑆 ⧵ 𝑆learn through

(21) and select the top 𝐾𝛼 − ‖𝒖‖ scenarios 𝜉𝑞 in ascending
order of price, setting the corresponding 𝑢𝑞 = 1;

9 end
10 Solve problem (23) with fixed 𝒖;
11 Output decision (𝒙, 𝒚).

In LEGO-C&B, we can reduce the number of cells to be explored
using the results generated from partial demand scenario samples. In
the first stage, the computational complexity bound of the training
problem is 𝑂(𝜅 ⋅ |𝑆|), i.e., the maximum number of sub-problems to
be solved. It is apparent that, the training ratio 𝜅 plays a role in the
efficiency of the algorithm; the choice of 𝜅 will be a balancing factor
for the training accuracy and solution efficiency. In the second stage,
the prediction of scenarios reduces the computational complexity, re-
quiring the solution of only a 4PLN problem, i.e., with the complexity
of 𝑂(1). Consequently, we conclude that the overall number of cells
to be explored in the LEGO-C&B algorithm is 𝑂(𝜅 ⋅ |𝑆|), which is
smaller than that under G-C&B. algorithm. As we will show soon in
our numerical experiments, LEGO-C&B is able to significantly reduce
the computational complexity for large-sample problems by properly
adjusting the value of the training ratio.
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5. Numerical studies

In this section, we evaluate the performance of the proposed model
and algorithms. We do so using a sequence of scale-specific 4PLN exam-
ples. To substantiate the effectiveness of our proposed algorithms, we
benchmark LEGO-C&B with G-C&B (Section 5.2). Further, we investi-
gate the performance of the CCP model (Section 5.3) and the efficiency
of SAA approximation (Section 5.4). We also investigate the impact
of the demand volume, surge intensity, demand surge frequency, and
3PL resources rental price on the system performance (Section 5.5) and
the value of 4PL (Section 5.6). In these experiments, all algorithms are
implemented in MATLAB with an Intel(R) Core (TIM) i5-7500 CPU @
3.40 GHz PC.

5.1. Experiment settings

Motivated by China’s Cainiao supply chain network,6 we consider
a data set that includes 8 different instances specified by the scale
and geographical distribution. The details of the network structure are
given in Table 2, where Instances 1–4 can be used to simulate 4PLNs
at provincial and municipal levels, while Instances 5–6 can represent
a bigger region such as East China (including eight provinces) and
North China (including five provinces), and instance 7–8 can emulate a
nationwide network. The location of suppliers, DCs, and customers are
uniformly distributed over [0, 100] × [0, 100].

Fig. 7 shows an instance with 15 suppliers, 24 DCs, and 18 cus-
tomers. We assume that the transport cost is proportional to the Eu-
clidean distance in the plane. When generating the costs and capaci-
ties of 3PL facilities and 3PL transportation carriers, we assume that
𝑐𝑙𝑖 ∼ 𝑁(100000, 10000), 𝑐𝑝𝑖 ∼ 𝑁(0.5, 0.05), 𝑞𝑖 ∼ 𝑁(500, 65), 𝑐𝑓𝑖𝑗 𝑘 ∼
𝑁(25000, 2000), 𝑐𝑡𝑖𝑗 𝑘 ∼ 𝑁(0.1, 0.02) × 𝑑 𝑖𝑠𝑡𝑎𝑛𝑐 𝑒, and ℎ𝑖𝑗 𝑘 ∼ 𝑁(100, 15).
Unlike a supply chain network, the complexity of a 4PLN is determined
not only by the number of nodes but also by the number of edges
(i.e. 3PL transportation carriers). A 4PLN can be seen as a transformed
network with the 3PL transportation carriers regarded as additional
layers. Thus, the complexity of Instances 7 and 8 is nearly equivalent to
that of a 1000-node network, which is challenging to solve in practice
due to the substantial number of decision variables and constraints
(typically exceeding millions) involved.

To generate the demand data, we first fit the real-world Walmart
data5 to our surge demand model, which gives

𝑑𝑟 ∼ 𝑁
(

6572, 1502
)

, 𝐴 ∼ 𝑁
(

8.723, 0.1822
)

.

Next, we use Latin hypercube sampling to generate demand data
according to the above model for the trace simulation. See Fig. 2 for a
comparison of the simulated data and the real data, which verifies the
effectiveness of our demand model.

5.2. Performance analysis

To evaluate the performance of our proposed algorithms, we con-
duct numerical experiments for LEGO-C&B, G-C&B, and C&B, branch-
and-bound (B&B), and the state-of-the-art solver Gurobi. Furthermore,
we also investigate how the sample size and network scale impact the
performance of proposed algorithms. We also investigate the effect of
the training ratio on the LEGO-C&B algorithm. Each numerical exper-
iment was independently repeated 30 times, and the average results
were reported.

5.2.1. Algorithm accuracy and effectiveness
We first test the effectiveness of LEGO-C&B and G-C&B. The settings

of numerical experiments are as follows: the number of periods is

6 The details are provided on its official website: https://www.cainiao.com/
land.html.
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Table 2
4PLN instances.

# Supplier # DC # Customer # 3PL TP

Instance 1 3 6 5 3
Instance 2 3 6 5 5
Instance 3 8 12 10 3
Instance 4 8 12 10 5
Instance 5 15 24 18 3
Instance 6 15 24 18 5
Instance 7 20 38 56 3
Instance 8 20 38 56 5

Fig. 8. Iterative output of G-C&B.

𝑁 = 50, the surge frequency is 𝜑 = 0.1, and the desired service-level
targets in the regular demand period and surge demand period are
𝛼𝑟 = 0.95 and 𝛼𝑠 = 0.9. And we set the training ratio 𝜅 = 0.2 for
LEGO-C&B. In all experiments, the limitation of the total algorithm
running time is set as 7200 s (2 h). For LEGO-C&B, the optimal
classification learner parameters and the best classifier are obtained
during learner data training in which a series of classification learning
methods (i.e. Logistic Regression, KNN, and SVM et al.) are tested.

We evaluate the accuracy and efficiency of LEGO-C&B, G-C&B, C&B,
B&B, and Gurobi. In Table 3, we report their optimality gaps (%) and
running times (sec). Here, we use Gap* to denote the optimality gap
reported by Gurobi directly, and let Gap represent the solution gap
relative to Gurobi for other algorithms.

Firstly, the results indicate that C&B outperforms B&B in all cases;
therefore, we exclusively compare our algorithms to C&B. Table 3
demonstrates that G-C&B runs faster than C&B, especially when the
scale is large while maintaining a high solution accuracy. G-C&B has
shown to be more efficient in solving small-sample problems, and
as the sample size increases, LEGO-C&B becomes significantly ad-
vantageous. When compared to the state-of-the-art solver Gurobi, G-
C&B exhibits faster speeds with a negligible error (less than 0.1%) in
most experiments. LEGO-C&B, while maintaining an acceptable error,
demonstrates even faster speeds, usually nearly a hundred times faster
than Gurobi. It is noteworthy that in large-scale problems, both LEGO-
C&B and G-C&B may achieve better solutions than Gurobi within
the specified time. In summary, G-C&B outperforms C&B in all cases,
and LEGO-C&B, as an enhanced version of G-C&B for large-sample
problems, exhibits a significant improvement in solution efficiency.

We also report the iterative output of G-C&B for Instance 1 with
a total of 500 scenarios as an example to show how the algorithm
converges to the near-optimal solution iteratively. Fig. 8 illustrates the
iterative output over a total of 450 iterations (as we terminate the
algorithm after 𝛼𝑠 ⋅ |𝑆| iterations), with the dotted line representing the
results obtained by directly solving the SAA-MIP model using Gurobi
as a benchmark.

https://www.cainiao.com/land.html
https://www.cainiao.com/land.html
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Table 3
Comparison of LEGO-C&B, G-C&B, C&B, B&B, and Gurobi.

Instance # Scenario LEGO-C&B G-C&B C&B B&B Gurobi

Gap CPU time Gap CPU time Gap CPU time Gap CPU time Gap* CPU time

Instance 1
100 0.22 0.58 0.01 1.18 0.00 14.79 0.00 6.23 0.00 1.95
500 0.08 0.58 0.01 5.13 0.00 226.79 0.00 1584.56 0.01 444.18
1000 0.10 0.73 0.01 18.39 0.00 1428.95 0.05 7200* 0.01 2417.86
2000 0.49 1.35 0.02 58.09 0.00 2668.50 0.10 7200* 0.04 7200*

Instance 2
100 0.35 0.39 0.10 2.08 0.00 29.71 0.00 3.11 0.01 1.62
500 0.07 0.85 0.02 6.65 0.00 507.96 0.00 4739.93 0.01 809.21
1000 0.30 1.07 0.03 23.40 0.00 2501.63 0.03 7200* 0.01 1736.36
2000 0.48 1.29 0.03 290.82 0.00 3565.90 0.04 7200* 0.03 7200*

Instance 3
100 0.23 2.64 0.01 17.56 0.00 124.28 0.00 32.92 0.00 9.84
500 0.17 6.76 0.01 49.00 0.00 1334.53 0.01 7200* 0.01 154.88
1000 0.13 5.98 0.02 57.85 0.00 3314.38 0.01 7200* 0.01 799.45
2000 0.36 6.58 0.02 176.19 0.62 7200* 0.01 7200* 0.01 2251.39

Instance 4
100 0.14 4.45 0.02 71.68 0.00 510.86 0.00 1416.29 0.00 180.47
500 0.24 7.44 0.03 82.44 0.00 2197.24 0.01 7200* 0.01 3488.23
1000 0.17 13.47 0.01 126.15 0.00 3967.66 0.01 7200* 0.01 7200*
2000 0.22 8.72 0.01 313.02 0.94 7200* 0.01 7200* 0.01 7200*

Instance 5
100 0.30 34.97 0.00 49.68 0.00 98.67 0.00 139.40 0.00 93.37
500 0.24 55.16 0.01 320.70 0.12 7200* 0.00 7200* 0.01 163.35
1000 0.37 76.56 0.01 379.76 0.03 7200* 0.04 7200* 0.01 310.37
2000 0.27 90.14 0.01 708.71 0.01 7200* 0.01 7200* 0.01 1447.45

Instance 6
100 0.23 115.26 0.00 458.35 0.00 967.23 0.00 1860.92 0.00 404.11
500 0.12 227.27 0.01 993.01 0.02 7200* 0.02 7200* 0.01 7200*
1000 1.70 506.57 0.01 1397.36 0.01 7200* 0.01 7200* 0.01 7200*
2000 0.54 139.72 −0.52 3195.62 0.05 7200* 0.25 7200* 1.74 7200*

Instance 7
100 0.37 972.34 0.25 7200* 2.24 7200* 3.29 7200* 0.00 7200*
500 0.78 1089.01 0.74 7200* 4.62 7200* 4.99 7200* 0.01 7200*
1000 0.53 1050.34 0.02 7200* 4.87 7200* 8.07 7200* 3.73 7200*
2000 −4.55 854.31 −5.02 7200* 2.03 7200* 1.21 7200* 12.46 7200*

Instance 8
100 0.09 3214.97 0.00 7200* 3.32 7200* 3.78 7200* 5.10 7200*
500 −1.60 4544.66 −1.26 7200* 0.89 7200* 0.79 7200* 4.45 7200*
1000 −1.06 4991.83 −1.94 7200* 6.02 7200* 6.90 7200* 10.47 7200*
2000 −6.62 4129.88 −0.99 7200* 5.23 7200* 6.40 7200* 8.68 7200*
Table 4
Running times under different scenario sizes.

# Scenario 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

LEGO-C&B (𝜏 = 0.1) 0.231 0.467 0.523 0.805 0.962 1.093 1.096 1.743 1.948 2.022
LEGO-C&B (𝜏 = 0.2) 0.328 0.602 0.908 0.976 1.212 1.611 1.867 1.896 1.963 2.800
LEGO-C&B (𝜏 = 0.3) 0.446 0.636 1.109 1.207 1.248 1.669 2.016 2.862 2.896 3.998
G-C&B 1.495 4.703 10.367 22.531 32.461 45.426 61.969 79.955 106.686 154.159
5.2.2. On the scenario size
To investigate the effect of the sample size on the performance of

EGO-C&B and G-C&B, we report their running times under different
ample sizes on the Instance 1 setting.

Table 4 indicates that the computation time for both LEGO-C&B and
G-C&B algorithms increases with the growth of scenario size. However,
LEGO maintains a relatively low rate of increase, where an increase
in the training ratio leads to time increases, providing satisfactory
computational speed even for very large scenario sizes. Hence, it is
evident that our LEGO-C&B is the most advantageous algorithm when
dealing with large scenario (sampling) size problems.

5.2.3. On the scale of the network
To investigate the performance of algorithms under different net-

ork scales, we consider a series of network models having an #
upplier = 𝑛, # DC = 2𝑛 and # Customer = 𝑛 structure (where # TP
3 is a constant), in which all nodes between different echelons are

ully connected. We report the running times of LEGO-C&B and G-C&B
lgorithms in Table 5 (under 1000 scenarios setting).

First, G-C&B is the most computationally expensive algorithm of
which the running time grows explosively as 𝑛 increases. Next, between
G-C&B and LEGO-C&B, the latter is more stable in 𝑛 and has a smaller
growth rate, and the increase in the training ratio has a negligible
12 
Table 5
Running times under different network scales.
𝑛 1 3 5 7 9 11 13 15

LEGO-C&B
(𝜏 = 0.1)

0.017 0.069 0.216 0.504 0.790 1.994 3.502 5.272

LEGO-C&B
(𝜏 = 0.2)

0.018 0.071 0.240 0.609 0.873 2.177 3.767 5.485

LEGO-C&B
(𝜏 = 0.3)

0.019 0.083 0.263 0.703 0.957 2.297 4.065 5.628

G-C&B 0.038 0.173 0.657 2.002 2.602 5.077 9.425 12.680

impact on the computation time. Hence, we conclude that LEGO-C&B
exhibits the highest efficiency when dealing with large-scale problems.

5.2.4. On the training ratio of LEGO-C&B
In LEGO-C&B, we investigate the impact of how many scenarios are

selected for training on its performance. We conduct a set of numerical
experiments to report the optimality gap (let the output of G-C&B as
a benchmark) and running time under different training ratios (ratio
of the size of the training set to the total number of scenarios). In all
cases, LEGO-C&B is tested 30 times under every training ratio as the
setting of instance 1, and the results are shown in Fig. 9.
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Fig. 9. Performance of LEGO-C&B under different training ratios.
Table 6
Comparison result of models for demand surge management (SL target is set as
𝛼𝑠 = 0.9).

# realized
scenario

CCP model EV model WS model WMD model

SL SL Cost (%) SL Cost (%) SL Cost (%)

50 0.932 0.358 −8.91 0.691 −4.37 0.985 4.56
60 0.929 0.358 −8.92 0.732 −3.35 0.989 5.78
70 0.959 0.358 −9.78 0.609 −5.44 0.997 5.96
80 0.932 0.358 −8.91 0.652 −4.24 0.996 6.99
90 0.959 0.358 −9.78 0.693 −4.69 0.999 6.78
100 0.959 0.358 −9.78 0.652 −4.93 1.000 7.07

According to Fig. 9, as the training ratio 𝜅 increases, the gap
between the LEGO-C&B solution and the G-C&B solution gradually
narrows and diminishes. On the other hand, the running time of the al-
gorithm increases due to the larger training set size for the exploration
step. In fact, when the training ratio reaches a certain level, further
increasing 𝜅 does not guarantee a notable improvement in the accuracy
of the algorithm, and it comes at the expense of sacrificing algorithm
efficiency. Therefore, a proper training ratio should be identified to
strike a balance between solution accuracy and algorithm efficiency.

5.3. Analysis on the chance-constrained model

To investigate the decision-making performance of the chance-
constrained programming model (refer to CCP model), we compared
its performance with the commonly used expected value (EV) model
and worst-case model, including two versions: the worst scenario (WS)
model and the worst marginal demand (WMD) model in stochastic
programming (we provide the specific models in Appendix C). Given
the realized scenario set, we solved the different models, and the output
of the CCP model is used as a benchmark (in this experiment we let
𝑆 = 𝑅). We report the SLs and the cost difference of the aforementioned
models compared to the CCP model (defined as 𝐶 𝑜𝑠𝑡(⋅)−𝐶 𝑜𝑠𝑡𝐶 𝐶 𝑃

𝐶 𝑜𝑠𝑡𝐶 𝐶 𝑃 × 100%)
in Table 6.

From Table 6, it can be observed that, compared to the overly
optimistic EV model and WS model, which fail to meet the service
13 
level constraints, the CCP model can obtain effective network design
solutions without being overly conservative like the WMD model,
which would result in excessively high total costs.

5.4. Impact of scenario size on the performance of SAA

To investigate the impact of scenario size on the performance of
SAA, we initially examine its convergence behavior. We first conduct
a goodness-of-fit test for sampled scenarios (realizations) of varying
sizes to assess the fit to the underlying distribution (specific details
are provided in Appendix D). To numerically show the impact of
scenario size on the optimization error, we create finite discrete support
set 𝑆real comprising a total of 1000 scenarios to represent the given
empirical distribution P̂𝝍 , then randomly generate scenarios from 𝑆real
to construct the sampled scenario set 𝑆. Subsequently, we solve the
network design problem under 𝑆 to obtain a network solution and
evaluate its SL under 𝑆real. Fig. 10 reports the SL performance under
varying sampling numbers.

Fig. 10 demonstrates that with an increasing number of samples,
the SL of the network gradually approaches the preset level (set at
0.9 in this experiment). This result indicates that a larger number
of samples allows for a better simulation of the given distribution.
Simultaneously, we observe that as the number of customers increases,
a greater number of samples is needed to effectively simulate this
multivariate distribution (typically more than 500 in our case).

Next, we analyze the performance of the SAA model with and with-
out supplementary sampling from the empirical distribution. In this
experiment, we generate a realized scenario set 𝑅 from the underlying
true demand distribution, and estimate the empirical distribution P̂𝝍
on 𝑅. Then we obtain the supplementary sample set 𝑆 by sampling
from P̂𝝍 , and do the network decision based on 𝑆 = 𝑅 ∪ 𝑆 (here we
set |𝑆| = 500 as a fixed value). Then we compare the SL performance
of the network obtained by with sampling from the empirical distribu-
tion (hereafter referred to as SL-S) and only using realized scenarios
(hereafter referred to as SL-R). The comparison results are shown in
Fig. 11.

Fig. 11 generates the following insights: (i) Whether using samples
from the empirical distribution or not, the performance of network
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Fig. 10. Convergence of SAA model under different scenario size.

Fig. 11. (Color Online) Service level performance of CCP model with and without
sampling.

design solutions in terms of service level converges to the preset
level with the increasing number of realized scenarios. (ii) When the
number of realized scenarios is limited, sampling from the empirical
distribution can still improve the performance of network solutions,
even if the empirical distribution may be imprecise at this point. This
is because obtaining a certain number of samples from the empirical
distribution can help avoid the omission of low-probability scenarios
due to insufficient samples. This, to some extent, compensates for the
limited discovery of the demand distribution when there are fewer
realized scenarios.

5.5. Analysis of model parameters

In this section, we conduct sensitivity analysis on several other
factors including the parameters in the demand (e.g., demand volume,
surge intensity, surge frequency), and 3PL resources rental prices. All
experiments in this section are conducted under instance 1.

5.5.1. On the demand level
The demand volume is the representation of the average customer

demand of a 4PLN, which affects the demand in both regular demand
period and surge demand period. The numerical results are shown in
Fig. 12.

It can be seen from Fig. 12 that, as the demand level increases,
the overall network cost grows significantly. Consequently, the 4PLN
is under higher operational pressure, so that the planner should select
to build or rent more facilities to warrant a sufficient network capacity.
14 
In the face of a higher demand level, the number of self-built facilities
in the network rises, which is the main driving force for the rise of the
total number of network facilities. In addition, the number of rented
facilities fluctuates with the number of self-built facilities. It can be seen
that increasing the capacity of the self-built facilities is a more effective
solution to cope with a higher demand level.

5.5.2. On the surge intensity
In our surge demand model, more than one factor affects the surge

intensity (i.e. 𝜇𝑎 and 𝜎𝑎). To better understand the effect of the surge
intensity, we focus on the surge coefficient 𝑘 = E(𝐷̃𝑠)

E(𝐷̃𝑟)
, which represents

the intensity of demand surge compared with regular demand. The
results of numerical experiments of surge coefficient are shown in
Fig. 13.

According to Fig. 13, we observe that a bigger surge coefficient leads
to an increase in the network’s total cost because the increase in the
surge coefficient gives rise to a higher volume of the surge demand,
so the 4PL planner needs to expand the network capacity and thus
incur higher operating costs to handling the orders. Specifically, the
number of rented facilities rises significantly, which is the main reason
for the total number of facilities to boost. But when the surge demand
occurs less frequently, the impact of the surge coefficient on the number
of self-built facilities is less evident. In response to the higher surge
in demand, expanding the network capacity through temporary rental
facilities seems a more effective decision.

5.5.3. On the demand surge frequency
In each decision-making cycle, surge demand triggered by events

may appear multiple times. The demand surge frequency describes
the occurrence times of surge demand in a cycle. In this section,
numerical experiments are conducted under different surge frequencies,
the results are shown in Fig. 14.

It can be seen that when the frequency increases, the greater the
pressure on the 4PLN to withstand strong disturbances of demand
surging. As a result, the total cost of the network increases as more
facility resources are needed to satisfy more customer demand. The
increasing demand surge frequency in the decision-making cycle means
that the planner needs to focus on the management of the capacity of
the 4PLN to fulfill the surged demand. With the objective of minimizing
the network’s total cost, we see that a self-built 4PLN with a bigger
capacity is a more effective solution. In addition, the number of self-
built facilities increases significantly as the surge demand frequency
increases. However, the number of rented facilities looks quite in-
sensitive: demand surges occur frequently, and it is not an economic
option to rent facilities because of the extra costs and remunerations.
In extreme cases, when the demand surge frequency reaches one,
the network is faced with high-level regular demand, so it becomes
necessary to self-built facilities to increase network capacity.

5.5.4. On the rental price
The 3PL resources rental price is the key factor that affects the

4PLN planner’s choice of self-built or rented facilities. To investigate
the effect of 3PL resource’s rental price on 4PLN designing, we conduct
numerical experiments of which the results are reported in Fig. 15.

According to Fig. 15, as the price increases, the overall network
cost first increases and then plateaus after the rental price reaches a
certain threshold. To understand this, let us focus on how the rental
price influences the 4PLN’s decision-making. In the right-hand panel
of Fig. 15, we see that the number of self-built facilities in the 4PLN
increases in price, while the number of rented facilities decreases and
eventually diminishes to zero, which validates our observation in the
left-hand panel (the total cost is independent of the price changes when
no rental is needed due to its expensiveness).

The costs incurred in renting facilities during the surge demand
periods can be seen as revenue for the 3PL resource owners. We
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Fig. 12. Effect of stochastic demand level.
Fig. 13. Effect of surge coefficient.
Fig. 14. Effect of demand surge frequency.
f
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explored the total revenue of 3PL resource owners at different demand
levels and calculated the optimal rental price for 3PL resource holders.
The results are shown in Fig. 16.

The total revenue of 3PL resources increases significantly as the
demand level becomes larger. However, the optimal rental price for
PL resources is not monotonically increasing in the demand level.
hen the demand level is sufficiently low or high, 3PL resource owners

hould attract 4PL planners to rent their facilities by lowering the rental
rices; When the demand volume is above a certain level, 4PL planners
 h

15 
need to trade off between self-building and renting, so 3PL resource
owners are likely to increase their revenue by raising rental price.

5.5.5. Adapting the network to diverse surge scenarios
To understand the trade-off between self-building and renting in

4PL networks under different demand surge scenarios, we established
our distinct situations by combining the following factors: (i) surge
ntensity (measured by the surge coefficient defined in Section 5.5.2):
igh level with 𝑘 = 2.5, low level with 𝑘 = 1.2; (ii) surge frequency: high
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Fig. 15. Effect of 3PL resource’s rental price.
Fig. 16. Effect of demand level and 3PL resources rental price on revenue of 3PL
resource owners.

Fig. 17. Network construction under different surge scenarios.

level with 𝜑 = 0.25, low level with 𝜑 = 0.05. We conducted numerical
experiments on Instance 1, and the results are illustrated in Fig. 17.
16 
Fig. 18. (Color Online) Systemic cost under 4PL and different 3PLs.

The above results suggest: (i) As the surge intensity increases, the
total quantity of 3PLs used in the network also increases. Specifically,
when the surge frequency is low, renting 3PLs is preferred, while when
the surge frequency is high, self-building 3PLs is more favorable. (ii)
Correspondingly, as the surge frequency increases, the preference shifts
from using rented 3PLs to self-building.

5.6. The value of 4PL

In order to investigate the advantages of network solutions under
the 4PL mode, we conducted comparative experiments in an environ-
ment with a total of 5 3PLs. In this setting, we specified that under
the 3PL mode, all network facilities must belong to the same 3PL. The
comparative results are shown in Fig. 18.

The results indicate that the total cost of the 4PL network is con-
sistently smaller than that of relying on a single 3PL. This is because,
as a platform, the 4PL can select the optimal solution from a potential
network composed of multiple 3PLs. This also reflects the pooling effect
of the 4PL as a platform.

6. Conclusion

In this paper, we study a novel 4PLN capacity planning problem
in the face of a surged demand. We investigate the impact of demand
surges on network design and study the optimal ways to design a 4PLN
under the trade-off between self-building and renting from 3PL resource
holders. We propose to model the event-triggered surge demand by a
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jump process and we solve a stochastic optimization problem subject
o SL requirements in the form of chance constraints, i.e., we stipulate
hat the probability of satisfying customer stochastic demand be at least
t certain designated target. To facilitate the computation, we give
 scenario-based MIP reformulated model in the form of a knapsack
roblem. Then, under the cell-and-bound framework, we propose a
ew weight strategy and scenarios learning strategy, which can help
mprove the solving efficiency by reducing redundant cell enumeration
nd sub-problem solution complexity. We design two new algorithms:
-C&B and LEGO-C&B, and we conduct a series of numerical studies to

est their performance.
Through numerical experiments, we investigate how key model

parameters impact the performance of these algorithms. Our analysis
generates several useful insights that are of practical interest. For
instance, in the face of stochastic demand with surge characteristics,
self-built facilities, and transportation carriers are the primary methods
o warrant a sufficient network capacity, and temporary rental of

resources is an effective secondary option. We also demonstrate that
the rental price of 3PL resources has an interesting impact on 4PLN
design, even though rented resources are not the primary way for
network construction. The detailed managerial insights for capacity
planning with event-triggered demand surges can be summarized as
follows: (i) With the increase of surge intensity, the total quantity of
3PLs employed in the network should also increase. Specifically, in
cases with low surge frequency, opting for rented 3PLs is preferable,
whereas in cases with high surge frequency, self-building becomes more
advantageous. (ii) When the surging intensity remains constant but the
surge frequency increases, expanding network capacity with more self-
built facilities is more cost-effective. (iii) When the rental price is high,
the manager should consider reducing the frequency of promotional
events to reduce excessive costs.
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Appendix A. Technical proofs

A.1. Proof of Theorem 1

Our proof primarily builds upon the results presented in Luedtke
nd Ahmed (2008). To facilitate the analysis, we first express the

original CCP and SAA models in the same form as the model in Luedtke
nd Ahmed (2008). Without loss of generality, we collectively denote
ll decision variables as 𝒘 = (𝒙, 𝒚, 𝒛𝑟, 𝒛𝑠), and let 𝜴 represent the

corresponding feasible domain. Denote 𝑧𝑠(𝑗) =
∑

𝑖∈F
∑

𝑘∈V𝑖𝑗
𝑧𝑠𝑖𝑗 𝑘 and 𝑑𝑠(𝑗)

to represent the designed capacity and stochastic demand at customer
𝑗, respectively. Define function

̃
(

𝑠 ̃ 𝑠 ̃
)𝑇

|D|×1
𝐺(𝒘,𝒅𝑠) ∶= 𝑧(1) − 𝑑𝑠(1),… , 𝑧(|D|) − 𝑑𝑠(|D|) ∈ R .

17 
Recall 𝐶(𝒘) is the total cost function, we can then equivalently
xpress the CCP model as follows:

𝑣∗𝛼 = min
{

𝐶(𝒘) ∶ P
(

𝐺(𝒛𝑠, 𝑑𝑠 ≥ 𝟎)
)

≥ 𝛼𝑠, 𝒘 ∈ 𝜴
}

(A.1)

Given a sample set 𝑅 = {𝝃1,… , 𝝃𝑁}, the SAA model with a specific
service level target 𝛼𝑠 is formulated as follows

𝑣̄∗𝑅 = min

{

𝐶(𝒘) ∶ 1
𝑁

𝑁
∑

𝑞=1
I
(

𝐺(𝒛𝑠, 𝝃̃𝑞) ≥ 𝟎
)

≥ 𝛼𝑠, 𝒘 ∈ 𝜴

}

(A.2)

Our SAA model (17) with service level target 𝛼𝑠 can be expressed as

𝑣∗𝑅 = min
{

𝐶(𝒘̄) ∶ 𝒘̄ ∈ 𝛺𝑢
}

(A.3)

where

𝜴𝑢 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝒘̄ ∈ 𝜴

|

|

|

|

|

|

|

|

|

|

|

|

|

|

∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧̄𝑠𝑖𝑗 𝑘 − 𝑢𝑞 ⋅ 𝜉𝑞(𝑗) ≥ 0, ∀𝑗 ∈ D,∀𝑞 ∈ [𝑁]

𝑁
∑

𝑞=1
𝑢𝑞 ≥ 𝛼𝑠,

𝒖 ∈ {0, 1}𝑁 .

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

We then establish the equivalence between models (A.2) and (A.3),
s outlined in the following lemma. The proof of Lemma 1 will be

presented after the completion of Theorem 1’s proof.

Lemma 1. Model (A.2) and model (A.3) are equivalent, i.e.,
𝑣∗𝑅 = 𝑣̄∗𝑅, and 𝑋∗

𝑅 = 𝑋̄∗
𝑅,

where 𝑋∗
𝑅 is the collection of all optimal solutions 𝒘∗ of model (A.3), and

̄ ∗
𝑅 is that of model (A.2).

Lemma 1 demonstrates that our SAA model is equivalent to the
odel in the form of (A.2), which is consistent with the formula-

tion in Luedtke and Ahmed (2008). We now apply their results to
demonstrate the convergence of the SAA model to the true problem.

Lemma 2 (Luedtke and Ahmed, 2008’s Convergence Result). Since 𝜴 is a
finite set, let 𝑋∗

𝛼 ⊆ 𝜴 represent the collection of optimal solutions for (A.1).
ssume max

{

P
(

𝐺(𝒘, 𝒅̃𝑠) ≱ 𝟎
)

,𝒘 ∈ 𝑋∗
𝛼
}

< 1 − 𝛼𝑠. Then, it holds that
P(𝑣∗𝑅 = 𝑣̄∗𝛼) ≥ 1 − (|𝜴| + 1) exp{−2𝜅2 ⋅ |𝑅|}, (A.4)

where 𝜅 = min
{

𝛼𝑠 − max
{

P
(

𝐺(𝒘, 𝒅̃𝑠) ≱ 𝟎
)

,𝒘 ∈ 𝑋∗
𝛼
}

,min
{

P
(

𝐺(𝒘, 𝒅̃𝑠)
≱ 𝟎

)

,𝒘 ∈ 𝜴 ⧵𝑋∗
𝛼
}

− 𝛼𝑠
}

is a positive constant.
Lemma 2 indicates that the SAA model will almost surely obtain

the optimal objective function value as the sample size |𝑅| increases.
urthermore, by applying Lemma 1, we can ensure that our SAA model

(A.2) will converge to the true optimal objective function value as
|𝑅| → ∞, i.e.,

lim
|𝑅|→∞

P(𝑣∗𝑅 = 𝑣∗𝛼) → 1.

This completes the proof.
Finally, we present the proof of Lemma 1.

Proof of Lemma 1. The proof is carried out using a contradiction
argument. Assume the optimal solution set for model (A.2) is 𝑋̄∗

𝑅. First,
we verify that any 𝒘̄∗ ∈ 𝑋̄∗

𝑅 is a feasible solution for model (A.3). Let
𝑢𝑞 = I

(

∑

𝑖∈F
∑

𝑘∈V𝑖𝑗
𝑧̄𝑠∗𝑖𝑗 𝑘 − 𝜉𝑞(𝑗) ≥ 0, ∀𝑗 ∈ D

)

for all 𝑞 ∈ [𝑁], it is easy
to see that 𝒘̄∗ is feasible for (A.3) under this specifically defined 𝒖.
Conversely, the optimal solutions of model (A.3) are also feasible for
(A.2). Next we check the optimality of any 𝒘̄∗ ∈ 𝑋̄∗

𝑅 for (A.3). Suppose
here is an optimal solution 𝒘∗ for (A.3) satisfies 𝐶(𝒘∗) < 𝐶(𝒘̄∗). As we
nown, 𝒘∗ and the corresponding 𝒖∗ are feasible for (A.2). This implies
hat 𝒘̄∗ is not optimal for (A.2), which contradicts the assumption.

Conversely, any 𝒘∗ ∈ 𝑋∗
𝑅 is also optimal for (A.2). This completes the

roof. ■
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Fig. B.1. Network structure of 4PLN example.
A.2. Proof of Proposition 1

Assume that there are m hyperplanes in the n-dimensional Euclidean
space, which is divided into at most ∑𝑛

𝑗=0 𝐶
𝑗
𝑚 cells by these hyperplanes.

We write
𝑛
∑

𝑗=0
𝐶𝑗
𝑚 =

(

𝑎(𝑛)𝑛 ⋅ 𝑚𝑛 + 𝑎(𝑛)𝑛−1 ⋅ 𝑚
𝑛−1 +⋯ + 𝑎(𝑛)1 ⋅ 𝑚

)

+⋯+

(

𝑎(2)2 ⋅ 𝑚2 + 𝑎(2)1 ⋅ 𝑚
)

+ 𝑎(1)1 ⋅ 𝑚 + 1,

because 𝐶𝑛
𝑚 = 𝑚!

𝑛!⋅(𝑚−𝑛)! = 𝑎𝑛 ⋅ 𝑚𝑛 + 𝑎𝑛−1 ⋅ 𝑚𝑛−1 + ⋯ + 𝑎1 ⋅ 𝑚. This

expression can be further simplified by combining terms such as 𝑏𝑛 ⋅
𝑚𝑛 + 𝑏𝑛−1 ⋅ 𝑚𝑛−1 + ⋯ + 𝑏1 ⋅ 𝑚1 + 1. It is straightforward to see that
𝐶𝑛
𝑚 ≤

(

𝑏𝑛 + 𝑏𝑛−1 +⋯ + 𝑏1 + 1) ⋅ 𝑚𝑛 = 𝑐 ⋅ 𝑚𝑛. This concludes that the
maximum number of cells for hyperplane division is bounded by 𝑂(𝑚𝑛).
When applied to our 4PLN problem, each scenario corresponds to a
hyperplane class. Each hyperplane class generates a positive polyhe-
dron defined as (19), and we are only concerned with whether a cell
lies in each positive polyhedron. Notice that the number of regions
enclosed by positive polyhedrons will not exceed 𝑂(𝑚𝑛). This is because,
within a hyperplane class with size ℎ, the family of hyperplanes forms
at most 𝑂(ℎ𝑛) regions, but for the corresponding positive polyhedron,
the number of regions will be reduced to 2. Therefore, for a total of 𝑚
positive polyhedrons, the number of ‘cells’ is bounded by 𝑂(𝑚𝑛). In our
problem, each demand scenario includes the demand of all customers
and is therefore |D|-dimensional, and each scenario gives a positive
polyhedron, totaling |𝑆|. Hence, we have shown that the maximum
number of cells to be explored when applying the G-C&B algorithm to
the 4PLN problem is bounded by 𝑂(|𝑆||D|). ■

A.3. Proof of Proposition 2

We know that a decision tree is generated within the C&B frame-
work to explore feasible cells, with the depth of cells corresponding
to the SL. In Algorithm 1, we assess the weight (i.e., price) of all cells
with equal depth and then explore only the cell with the smallest price.
Since we terminate the algorithm once the depth of the cell reaches the
SL, we can calculate that only 𝛼 ⋅ |𝑆| cells are explored. That is, the
𝑠

18 
number of cells to be explored in G-C&B is bounded by 𝑂(|𝑆|). ■

Appendix B. An example of 4PLN design and algorithms’ decision
tree

We present an example of 4PLN to demonstrate the efficiency of our
proposed G-C&B algorithm. The potential network is defined as Fig. B.1,
and we set the capacity of DCs and TPs uniformly to 381.6 and 190.8,
respectively.

Then, given demand scenario set as
{

𝝃1 = (52.63, 52.33)𝑇 , 𝝃2 = (59.59, 64.61)𝑇 , 𝝃3 = (72.58, 60.64)𝑇
𝝃4 = (62.32, 68.88)𝑇 , 𝝃5 = (64.03, 44.15)𝑇 , 𝝃6 = (42.63, 40.12)𝑇

}

, (B.1)

we provide the decision tree of B&B, C&B, and G-C&B algorithm in
Fig. B.2.

In this example, it can be observed that the number of cells to
explore in the C&B algorithm is smaller than the number of branching
nodes explored by the B&B algorithm. Furthermore, with the adoption
of the greedy pricing strategy, the G-C&B algorithm requires even
fewer cells to explore. This intuitively demonstrates the improvement
in algorithm efficiency.

Appendix C. Benchmark models used in Section 5.3

C.1. The expected-value model

Recall that 𝝌 is the compact feasible set determined by constraints
(13c)–(13l). Then given a realized surged demand scenario set 𝑆, the
operational cost for surged demand is

𝐶𝑃 𝑆 = E(𝝃∈𝑆)

⎡

⎢

⎢

⎣

∑

𝑖∈F

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑝𝑖 ⋅ 𝑧
𝑠
𝑖𝑗 𝑘 +

∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑡𝑖𝑗 𝑘 ⋅ 𝑣𝑖𝑗 𝑘 + (1 + 𝛾)

⋅
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑡𝑖𝑗 𝑘 ⋅𝑤𝑖𝑗 𝑘
⎤

⎥

⎥

⎦

=
∑

𝑖∈F

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑝𝑖 ⋅ E(𝝃∈𝑆)

(

𝑧𝑠𝑖𝑗 𝑘
)

+
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑡𝑖𝑗 𝑘 ⋅ E(𝝃∈𝑆)
(

𝑣𝑖𝑗 𝑘
)

+ (1 + 𝛾) ⋅
∑ ∑ ∑

𝑐𝑡𝑖𝑗 𝑘 ⋅ E(𝝃∈𝑆)
(

𝑤𝑖𝑗 𝑘
)

.

(C.1)
𝑖∈N 𝑗∈N 𝑘∈V𝑖𝑗
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Fig. B.2. The schematic presentations of the decision tree of (a) B&B, (b) C&B, and (c) G-C&B.
Then the objective function of the expected value model can be
formulated as
𝐶𝐸 (𝒙, 𝒚, 𝒛, 𝝃) =

∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑓𝑖𝑗 𝑘 ⋅ 𝑥𝑟𝑖𝑗 𝑘 +
∑

𝑖∈F
𝑐𝑙𝑖 ⋅ 𝑦

𝑟
𝑖 + 𝜃𝑐

⋅
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑓𝑖𝑗 𝑘 ⋅
(

𝑥𝑠𝑖𝑗 𝑘 − 𝑥𝑟𝑖𝑗 𝑘
)

+ 𝜃𝑡 ⋅
∑

𝑖∈F
𝑐𝑙𝑖 ⋅

(

𝑦𝑠𝑖 − 𝑦𝑟𝑖
)

+
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑡𝑖𝑗 𝑘 ⋅ 𝑧𝑟𝑖𝑗 𝑘 +
∑

𝑖∈F
𝑐𝑝𝑖 ⋅

⎛

⎜

⎜

⎝
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𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑧𝑟𝑖𝑗 𝑘
⎞

⎟

⎟

⎠

+
∑

𝑖∈F

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑝𝑖 ⋅ 𝑧
𝑠
𝑖𝑗 𝑘

+
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑡𝑖𝑗 𝑘 ⋅ 𝑣𝑖𝑗 𝑘 + (1 + 𝛾)

⋅
∑

𝑖∈N

∑

𝑗∈N

∑

𝑘∈V𝑖𝑗

𝑐𝑡𝑖𝑗 𝑘 ⋅𝑤𝑖𝑗 𝑘,

(C.2)
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and the expected value model is formulated as

(𝐄𝐱 𝐩𝐞𝐜𝐭 𝐞𝐝 𝐕𝐚𝐥𝐮𝐞 𝐌𝐨𝐝𝐞𝐥) min 𝐶𝐸 (𝒙, 𝒚, 𝒛, 𝝃)

s.t.
∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − E𝝃∈𝑆
(

𝝃𝑗
)

≥ 0, ∀𝑗 ∈ D,

(𝒙, 𝒚, 𝒛) ∈ 𝝌 .
(C.3)

C.2. The worst-case model

Similarly, recall that 𝝌 is the compact feasible set determined by
constraints (13c)–(13l), and given a realized surged demand scenario
set 𝑆, the objective function of the worst-scenario model is derived as

min sup 𝐶𝑊 (𝒙, 𝒚, 𝒛, 𝝃) = min sup

𝝃∈𝑆 𝝃∈𝑆



S. Jiang et al. Computers and Operations Research 176 (2025) 106956 
Fig. D.1. (Color Online) Probability Density Function (PDF) of real distribution and samples.
Table D.1
Kolmogorov–Smirnov test for samples with different sizes.

# Samples Average KS
statistic

Average
p-value

Worst KS
statistic

Worst
p-value

50 0.1204 0.4879 0.2392 0.0052
100 0.0868 0.4811 0.1645 0.0078
200 0.0606 0.4870 0.1160 0.0083
500 0.0384 0.4921 0.0650 0.0282
1000 0.0271 0.5073 0.0536 0.0065
2000 0.0188 0.5256 0.0341 0.0201

×
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,

(C.4)

then the worst scenario model can be equivalently formulated as

(𝐖𝐨𝐫 𝐬𝐭 𝐒𝐜𝐞𝐧𝐚𝐫 𝐢𝐨 𝐌𝐨𝐝𝐞𝐥) min sup
𝝃∈𝑆

𝑣(𝝃)

where 𝑣(𝝃) = min 𝐶𝑊 (𝒙, 𝒚, 𝒛, 𝝃)

s.t.
∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − 𝜉𝑗 ≥ 0, ∀𝑗 ∈ D,

(𝒙, 𝒚, 𝒛) ∈ 𝝌 .
(C.5)

Considering the worst-case scenario in the marginal distribution for
each customer, we can formulate the following worst demand vector
model

(𝐖𝐨𝐫 𝐬𝐭 𝐌𝐚𝐫 𝐠𝐢𝐧𝐚𝐥 𝐃𝐞𝐦𝐚𝐧𝐝 𝐌𝐨𝐝𝐞𝐥) min 𝐶𝑊 (𝒙, 𝒚, 𝒛, 𝝃)

s.t.
∑

𝑖∈F

∑

𝑘∈V𝑖𝑗

𝑧𝑠𝑖𝑗 𝑘 − max
𝝃∈𝑆

{

𝜉𝑗
}

≥ 0, ∀𝑗 ∈ D,

(𝒙, 𝒚, 𝒛) ∈ 𝝌 .
(C.6)
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In the worst scenario model, we aim to minimize the total cost under
the worst marginal demand scenario, while in the worst demand model,
the objective is to minimize the total cost under the worst (i.e., largest)
demand for each customer individually. Notably, the worst demand
vector (consisting of the largest demand in each customer among
all scenarios) may break the correlation between customer demands
(which can be reflected in demand scenarios) and could result in a
relatively conservative solution under the worst-case for the marginal
distribution.

Appendix D. Goodness-of-fit test for samples of different sizes

As given the real distribution of demand surge as

𝐴 ∼ 𝑁
(

8.723, 0.1822
)

,

we perform random sampling to generate sample sets of various sizes
and then conduct the Kolmogorov–Smirnov test to assess the fit of
samples to the specified distribution. We utilize the KS statistic and
p-value as metrics for goodness-of-fit, reporting their average values
and worst-case values over 100 repeated trials in Table D.1, and the
corresponding fitting graph is provided in Fig. D.1.

It is noteworthy that the results presented here are specific to the
instance data employed in our experiments. For cases involving larger
scale or greater system variability, a more extensive sample size might
be essential to guarantee the accuracy of the fitting.

Data availability

Data will be made available on request.

References

Alexander, G.J., Baptista, A.M., 2004. A comparison of VaR and CVaR constraints on
portfolio selection with the mean-variance model. Manage. Sci. 50 (9), 1261–1273.

Benati, S., Rizzi, R., 2007. A mixed integer linear programming formulation of the
optimal mean/value-at-risk portfolio problem. European J. Oper. Res. 176 (1),
423–434.

http://refhub.elsevier.com/S0305-0548(24)00428-3/sb1
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb1
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb1
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb2
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb2
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb2
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb2
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb2


S. Jiang et al. Computers and Operations Research 176 (2025) 106956 
Bi, G., Shen, F., Xu, Y., 2024. Third-party logistics firm’s technology investment and
financing options in platform-based supply chain with 4PL service. Naval Res.
Logist..

Bookbinder, J.H., Tan, J.-Y., 1988. Strategies for the probabilistic lot-sizing problem
with service-level constraints. Manage. Sci. 34 (9), 1096–1108.

Büyüközkan, G., Feyzioğlu, O., Ersoy, M.Ş., 2009. Evaluation of 4PL operating models:
A decision making approach based on 2-additive Choquet integral. Int. J. Prod.
Econ. 121 (1), 112–120.

Cai, N., Yang, X., 2021. A computational approach to first passage problems of reflected
hyperexponential jump diffusion processes. INFORMS J. Comput. 33 (1), 216–229.

Cao, C., Liu, J., Liu, Y., Wang, H., Liu, M., 2023. Digital twin-driven robust bi-level
optimisation model for COVID-19 medical waste location-transport under circular
economy. Comput. Ind. Eng. 186, 109107.

Chen, F.Y., Krass, D., 2001. Inventory models with minimal service level constraints.
European J. Oper. Res. 134 (1), 120–140.

Chen, W., Sim, M., Sun, J., Teo, C.-P., 2010. From CVaR to uncertainty set: Implications
in joint chance-constrained optimization. Oper. Res. 58 (2), 470–485.

Chou, M.C., Chua, G.A., Teo, C.-P., Zheng, H., 2010. Design for process flexibility:
Efficiency of the long chain and sparse structure. Oper. Res. 58 (1), 43–58.

Deng, Y., Jia, H., Ahmed, S., Lee, J., Shen, S., 2021. Scenario grouping and decom-
position algorithms for chance-constrained programs. INFORMS J. Comput. 33 (2),
757–773.

Ewald, C., Zou, Y., 2021. Analytic formulas for futures and options for a linear quadratic
jump diffusion model with seasonal stochastic volatility and convenience yield: Do
fish jump? European J. Oper. Res. 294 (2), 801–815.

Gattorna, J., Jones, T., 1998. Strategic Supply Chain Alignment: Best Practice in Supply
Chain Management. Gower Publishing, Ltd..

Govindan, K., Fattahi, M., Keyvanshokooh, E., 2017. Supply chain network design under
uncertainty: A comprehensive review and future research directions. European J.
Oper. Res. 263 (1), 108–141.

Guchhait, R., Sarkar, B., 2025. Economic evaluation of an outsourced fourth-party
logistics (4PL) under a flexible production system. Int. J. Prod. Econ. 279, 109440.

Huang, M., Ren, L., Lee, L.H., Wang, X., 2015. 4PL routing optimization under
emergency conditions. Knowl.-Based Syst. 89, 126–133.

Huang, L., Song, J.-S., Tong, J., 2016. Supply chain planning for random demand
surges: Reactive capacity and safety stock. Manuf. Serv. Oper. Manag. 18 (4),
509–524.

Huang, M., Tu, J., Chao, X., Jin, D., 2019. Quality risk in logistics outsourcing: A fourth
party logistics perspective. European J. Oper. Res. 276 (3), 855–879.

Jiang, S., Huang, M., Zhang, Y., Wang, X., Fang, S.-C., 2024. Fourth-party logistics
network design with demand surge: A greedy scenario-reduction and scenario-price
based decomposition algorithm. Int. J. Prod. Econ. 269, 109135.

Küçükyavuz, S., Jiang, R., 2022. Chance-constrained optimization under limited
distributional information: A review of reformulations based on sampling and
distributional robustness. EURO J. Comput. Optim. 10, 100030.

Kutlu, S., 2007. Fourth Party Logistics: Is It the Future of Supply Chain Outsourcing?.
best global publishing.

Liu, Y., 2018. Staffing to stabilize the tail probability of delay in service systems with
time-varying demand. Oper. Res. 66 (2), 514–534.

Liu, S., Hua, G., Cheng, T., Dong, J., 2021. Unmanned vehicle distribution capacity
sharing with demand surge under option contracts. Transp. Res. E 149, 102320.

Liu, X., Küçükyavuz, S., Luedtke, J., 2016. Decomposition algorithms for two-stage
chance-constrained programs. Math. Program. 157 (1), 219–243.

Liu, Y., Sun, X., Hovey, K., 2022. Scheduling to differentiate service in a multiclass
service system. Oper. Res. 70 (1), 527–544.

Liu, Q., Zhang, C., Zhu, K., Rao, Y., 2014. Novel multi-objective resource allocation
and activity scheduling for fourth party logistics. Comput. Oper. Res. 44, 42–51.

Luedtke, J., Ahmed, S., 2008. A sample approximation approach for optimization with
probabilistic constraints. SIAM J. Optim. 19 (2), 674–699.

Luedtke, J., Ahmed, S., Nemhauser, G.L., 2010. An integer programming approach for
linear programs with probabilistic constraints. Math. Program. 122 (2), 247–272.
21 
Lyu, G., Chou, M.C., Teo, C.-P., Zheng, Z., Zhong, Y., 2022. Stochastic knapsack
revisited: The service level perspective. Oper. Res. 70 (2), 729–747.

Mak, H.-Y., Rong, Y., Shen, Z.-J.M., 2013. Infrastructure planning for electric vehicles
with battery swapping. Manage. Sci. 59 (7), 1557–1575.

Marasco, A., 2008. Third-party logistics: A literature review. Int. J. Prod. Econ. 113
(1), 127–147.

Melo, M.T., Nickel, S., Saldanha-Da-Gama, F., 2009. Facility location and supply chain
management–A review. European J. Oper. Res. 196 (2), 401–412.

Nemirovski, A., 2012. On safe tractable approximations of chance constraints. European
J. Oper. Res. 219 (3), 707–718.

Nemirovski, A., Shapiro, A., 2007. Convex approximations of chance constrained
programs. SIAM J. Optim. 17 (4), 969–996.

Porras, Á., Domínguez, C., Morales, J.M., Pineda, S., 2023. Tight and compact sample
average approximation for joint chance-constrained problems with applications to
optimal power flow. INFORMS J. Comput. 35 (6), 1454–1469.

Rahimian, H., Mehrotra, S., 2019. Distributionally robust optimization: A review. URL:
https://doi.org/10.48550/arXiv.1908.05659.

Roni, M.S., Eksioglu, S.D., Jin, M., Mamun, S., 2016. A hybrid inventory policy with
split delivery under regular and surge demand. Int. J. Prod. Econ. 172, 126–136.

Roni, M.S., Jin, M., Eksioglu, S.D., 2015. A hybrid inventory management system
responding to regular demand and surge demand. Omega 52, 190–200.

Ruszczyński, A., 2002. Probabilistic programming with discrete distributions and
precedence constrained knapsack polyhedra. Math. Program. 93 (2), 195–215.

Shu, J., Teo, C.-P., Shen, Z.-J.M., 2005. Stochastic transportation-inventory network
design problem. Oper. Res. 53 (1), 48–60.

Sinha, P., Kumar, S., Chandra, C., 2023. Strategies for ensuring required service level
for COVID-19 herd immunity in Indian vaccine supply chain. European J. Oper.
Res. 304 (1), 339–352.

Sleumer, N.H., 1999. Output-sensitive cell enumeration in hyperplane arrangements.
Nordic J. Comput. 6 (2), 137–147.

Tao, Y., Chew, E.P., Lee, L.H., Shi, Y., 2017. A column generation approach for the
route planning problem in fourth party logistics. J. Oper. Res. Soc. 68 (2), 165–181.

Wang, H., Huang, M., Ip, W., Wang, X., 2021. Network design for maximizing service
satisfaction of suppliers and customers under limited budget for industry innovator
fourth-party logistics. Comput. Ind. Eng. 158, 107404.

Xiao, N., Liu, X., Toh, K.-C., 2024. Dissolving constraints for Riemannian optimization.
Math. Oper. Res. 49 (1), 366–397.

Yin, M., Huang, M., Qian, X., Wang, D., Wang, X., Lee, L.H., 2021. Fourth-party logistics
network design with service time constraint under stochastic demand. J. Intell.
Manuf. 34, 1203–1227.

Yin, M., Huang, M., Wang, X., Lee, L.H., 2022. Fourth-party logistics network design
under uncertainty environment. Comput. Ind. Eng. 167, 108002.

Yu, H., Huang, M., Yue, X., 2024. Sharing the shared rides: Multi-party carpooling
supported strategy-proof double auctions. Prod. Oper. Manage. 33 (7), 1569–1590.

Zhang, Y., Gao, Z., Huang, M., Jiang, S., Yin, M., Fang, S.-C., 2022. Multi-period distri-
bution network design with boundedly rational customers for the service-oriented
manufacturing supply chain: A 4PL perspective. Int. J. Prod. Res. 1–20.

Zhang, Y., Gao, Z., Huang, M., Jiang, S., Yin, M., Fang, S.-C., 2024a. Multi-period
distribution network design with boundedly rational customers for the service-
oriented manufacturing supply chain: A 4PL perspective. Int. J. Prod. Res. 62 (20),
7412–7431.

Zhang, Z., Gao, C., Luedtke, J., 2023. New valid inequalities and formulations for
the static joint chance-constrained lot-sizing problem. Math. Program. 199 (1–2),
639–669.

Zhang, Y., Huang, M., Gao, Z., Jiang, S., Fang, S.-C., Wang, X., 2024b. Multi-period
fourth-party logistics network design from the viability perspective: a collaborative
hyper-heuristic embedded with double-layer Q-learning algorithm. Int. J. Prod. Res.
1–31.

Zheng, X., Wu, B., Cui, X., 2017. Cell-and-bound algorithm for chance constrained
programs with discrete distributions. European J. Oper. Res. 260 (2), 421–431.

http://refhub.elsevier.com/S0305-0548(24)00428-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb4
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb4
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb4
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb5
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb5
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb5
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb5
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb5
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb6
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb6
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb6
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb7
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb7
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb7
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb7
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb7
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb8
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb8
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb8
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb9
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb9
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb9
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb10
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb10
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb10
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb11
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb11
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb11
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb11
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb11
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb13
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb13
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb13
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb14
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb14
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb14
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb14
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb14
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb15
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb15
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb15
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb16
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb16
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb16
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb17
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb17
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb17
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb17
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb17
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb18
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb18
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb18
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb19
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb19
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb19
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb19
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb19
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb20
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb20
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb20
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb20
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb20
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb21
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb21
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb21
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb22
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb22
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb22
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb23
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb23
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb23
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb25
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb25
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb25
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb26
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb26
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb26
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb27
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb27
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb27
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb28
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb28
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb28
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb29
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb29
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb29
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb30
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb30
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb30
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb31
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb31
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb31
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb32
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb32
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb32
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb33
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb33
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb33
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb34
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb34
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb34
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb35
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb35
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb35
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb35
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb35
https://doi.org/10.48550/arXiv.1908.05659
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb37
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb37
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb37
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb38
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb38
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb38
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb39
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb39
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb39
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb40
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb40
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb40
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb42
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb42
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb42
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb43
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb43
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb43
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb44
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb44
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb44
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb44
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb44
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb45
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb45
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb45
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb46
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb46
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb46
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb46
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb46
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb47
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb47
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb47
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb48
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb48
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb48
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb49
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb49
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb49
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb49
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb49
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb50
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb50
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb50
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb50
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb50
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb50
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb50
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb51
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb51
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb51
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb51
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb51
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb52
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb52
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb52
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb52
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb52
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb52
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb52
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb53
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb53
http://refhub.elsevier.com/S0305-0548(24)00428-3/sb53

	Capacity planning to cope with demand surges in fourth-party logistics networks under chance-constrained service levels
	Introduction
	Main Contribution
	Notation and Organization

	Literature Review
	4PLN Planning
	Demand Uncertainty in 4PLN
	Methods for Chance-Constrained Programs

	Problem Description and Formulation
	The 4PLN Model
	Stochastic Demand
	Rental of 3PL Facilities
	Modeling
	Scenario-based MIP Reformulation

	Solution Methodologies
	Cell-and-Bound Framework and Hyperplane Arrangement based MIP Reformulation
	Greedy Pricing and Weighting Strategy based Cell-and-Bound Algorithm
	Local Experimentation for Global Optimization Framework and LEGO-C&B Algorithm

	Numerical Studies
	Experiment Settings
	Performance Analysis
	Algorithm Accuracy and Effectiveness
	On the Scenario Size
	On the Scale of the Network
	On the Training Ratio of LEGO-C&B

	Analysis on the Chance-Constrained Model
	Impact of Scenario Size on the Performance of SAA
	Analysis of Model Parameters
	On the Demand Level
	On the Surge Intensity
	On the Demand Surge Frequency
	On the Rental Price
	Adapting the Network to Diverse Surge Scenarios

	The Value of 4PL

	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Technical Proofs
	Appendix A. Technical Proofs
	Proof of Theorem 1
	Proof of Proposition 1 
	Proof of Proposition 2 

	An Example of 4PLN Design and Algorithms' Decision Tree
	Appendix B. An Example of 4PLN Design and Algorithms' Decision Tree
	Benchmark Models Used in Section 5.3 
	Appendix C. Benchmark Models Used in Section 5.3 
	The Expected-Value Model
	The Worst-Case Model

	Goodness-of-Fit Test for Samples of Different Sizes
	Appendix D. Goodness-of-Fit Test for Samples of Different Sizes
	Data availability
	Appendix . Data availability
	References


