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Abstract. We study a dynamic pricing and capacity sizing problem in a GI=GI=1 queue, in 
which the service provider’s objective is to obtain the optimal service fee p and service 
capacity µ so as to maximize the cumulative expected profit (the service revenue minus the 
staffing cost and delay penalty). Because of the complex nature of the queueing dynamics, 
such a problem has no analytic solution so that previous research often resorts to heavy- 
traffic analysis in which both the arrival and service rates are sent to infinity. In this work, 
we propose an online learning framework designed for solving this problem that does not 
require the system’s scale to increase. Our framework is dubbed gradient-based online 
learning in queue (GOLiQ). GOLiQ organizes the time horizon into successive operational 
cycles and prescribes an efficient procedure to obtain improved pricing and staffing poli
cies in each cycle using data collected in previous cycles. Data here include the number of 
customer arrivals, waiting times, and the server’s busy times. The ingenuity of this 
approach lies in its online nature, which allows the service provider to do better by inter
acting with the environment. Effectiveness of GOLiQ is substantiated by (i) theoretical 
results, including the algorithm convergence and regret analysis (with a logarithmic regret 
bound), and (ii) engineering confirmation via simulation experiments of a variety of repre
sentative GI=GI=1 queues.

Funding: The first author acknowledges support [Grants NSFC72171205, NSFC11901493, and 
RCYX20210609103124047]. 

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2020.612. 
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1. Introduction
1.1. Problem Statement and Methodology
We study a service queueing model in which the service 
provider manages congestion and revenue by dynami
cally adjusting the price and service capacity. Specifically, 
we consider a GI=GI=1 queue in which the demand for 
service is λ(p) per unit of time when each customer is 
charged by a service fee p; the cost for providing service 
capacity µ is c(µ), and a holding cost h0 incurs per job per 
unit of time. By choosing the appropriate service fee p 
and capacity µ, the service provider aims to maximize 
the net profit, which is the service fee minus the staffing 
cost and penalty of congestion, that is,

max
µ,p

P(µ, p) ≡ pλ(p)� c(µ)� h0E[Q∞(µ, p)], (1) 

where Q∞(µ, p) is the steady-state queue length under 
service rate µ and price p.

Problems in this framework have a long history; see, 
for example, Kumar and Randhawa (2010), Lee and Ward 
(2014, 2019), Maglaras and Zeevi (2003), Nair et al. (2016), 
Kim and Randhawa (2018), and the references therein. 
Because of the complex nature of the queueing dynamics, 
exact analysis is challenging and often unavailable (com
putation of the optimal dynamic pricing and staffing rules 
is not straightforward even for the Markovian M=M=1 
queue; Ata and Shneorson 2006). Therefore, researchers 
resort to heavy-traffic analysis to approximately obtain 
performance evaluation and optimization results. Com
monly adopted heavy-traffic regimes require sending the 
arrival rate and service capacity (service rate or number of 
servers) to ∞. Although heavy-traffic analysis provides 
satisfactory results for large-scale queueing systems, ap
proximation formulas based on heavy-traffic limits often 
become inaccurate as the system scale decreases.

In this paper, we propose an online learning frame
work designed for solving Problem (1). According to 
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our online learning algorithm, the GI=GI=1 queue is 
operated in successive cycles, in which, in each cycle, 
the service provider’s decisions on the service fee p and 
service capacity µ, deemed the best by far, are obtained 
using the system’s data collected in previous opera
tional cycles. Data hereby include (i) the number of cus
tomers who join for service, (ii) customer waiting 
times, and (iii) the server’s busy time, all of which are 
easy to collect. Newly generated data, which represent 
the response from the (random and complex) environ
ment to the present operational decisions, are used to 
obtain improved pricing and staffing policies in the 
next cycle. In this way, the service provider can dynam
ically interact with the environment so that the opera
tional decisions can evolve and eventually approach 
the optimal solution.

At the beginning of each cycle k, the service provi
der’s decisions (pk,µk) are computed and enforced 
throughout the cycle. At the heart of our procedure for 
computing (pk,µk) is to obtain a sufficiently accurate 
estimator Hk�1 for the gradient of the objective function 
of (1), using past experience. Specifically, our online 
algorithm updates (pk,µk) according to

(µk, pk) ← (µk�1, pk�1) + ηk�1Hk�1, 

where ηk is the updating step size for cycle k. We call 
this algorithm gradient-based online learning in queue 
(GOLiQ).

Besides showing that, under our online learning scheme, 
the decisions in cycle k, (µk, pk) converge to the optimal 
solutions (µ∗, p∗) as k increases, we quantify the effective
ness of GOLiQ by computing the regret—the cumula
tive loss of profit because of the suboptimality of (µk, pk), 
namely, the maximum profit under the (unknown) opti
mal strategy minus the expected profit earned under the 
online algorithm over time. When GOLiQ’s hyperpara
meters are chosen optimally, we show that our regret 
bound is logarithmic so that the service provider with 
any initial pricing and staffing policy (µ0, p0) quickly 
learns the optimal solutions without losing much profit 
in the learning process.

1.2. Advantages, Challenges, and Contributions
In what follows, we first discuss the general advantages 
of the online learning approach by contrasting with 
heavy-traffic methods; we next explain the key chal
lenges we face in the development of online learning 
algorithms for queueing systems.

1.2.1. Online Learning vs. Heavy-Traffic Method. First, 
heavy-traffic solutions are derived from approximating 
models that arise as the system scale approaches infinity, 
so the fidelity of the solutions is sensitive to the system 
scale. Unlike heavy-traffic methods, online learning ap
proaches do not require any asymptotic scaling, so they 
can treat service systems at any scale (small or large). 

Second, heavy-traffic approaches usually require the 
knowledge of certain distributional information a priori 
(e.g., moments and distribution functions of service 
times), which serve as critical input parameters for the 
heavy-traffic models. On the other hand, online learning 
methods require information of this kind to a lesser 
extent. Although certain distribution information can 
help fine-tune parameters of online algorithms, it is less 
crucial to algorithm design and implementation. So, in 
this sense, the dependence on the distributional informa
tion is weaker than that of heavy-traffic analysis. Finally, 
online learning is advantageous when the underlining 
problem focuses on performance optimization in the long 
run. Heavy-traffic analysis gives approximate solutions 
that are static, and in a longer time frame, the perfor
mance discrepancy (relative to the true optimal reward) 
should grow linearly as time increases. But online learn
ing is a dynamic evolution, and its data-driven nature 
enables it to constantly produce improved solutions that 
eventually reach optimality. In addition, heavy-traffic 
solutions require the establishment of heavy-traffic limit 
theorems and careful analysis of the dynamics of the limit 
processes (e.g., fluid and diffusion). Both steps can be 
quite sophisticated in general. See Remark 11 and Section 
EC.1 for more detailed discussions; also see Section 6.3
for numerical evidence.

1.2.2. Challenges of Online Learning in Queueing Sys
tems. Online learning in queues is by no means an easy 
extension of online learning in other domains; its theo
retical development has to account for the unique fea
tures in queueing systems. A crucial step is to develop 
effective ways to control the nonstationary error that 
arises at the beginning of every cycle because of the pol
icy update. Toward this, we develop a new regret analy
sis framework for the transient queueing performance 
that not only helps establish desired regret bounds for 
the specific online GI=GI=1 algorithm, but may also be 
used to develop online learning methods for other 
queueing models (see Section 4). Another challenge we 
have to address here is to devise a convenient gradient 
estimator for the online learning algorithm (essentially, 
an estimator for the gradient of E[Q∞(µ, p)]). The esti
mator should have a negligible bias to warrant a quick 
convergence of the algorithm, and at the same time, 
its computation (using previous data) should be suffi
ciently straightforward to ensure the ease of implemen
tation (the detailed gradient estimator of GOLiQ for the 
GI=GI=1 system is given in Section 5).

1.2.3. Main Contributions. We summarize our 
contributions. 
• To the best of our knowledge, the present work is 

the first to develop an online learning framework for 
joint pricing and staffing in a queueing system with log
arithmic regret bound in the total number of customers 
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served (Theorem 3). Because of the complex nature of 
queueing systems, previous research often resorts to 
asymptotic heavy-traffic analysis to approximately solve 
for desired operational decisions. The ingenuity of our 
online learning method lies in the ability to obtain the 
optimal solutions without needing the system scale (e.g., 
arrival and service rates) to grow large. The other appeal 
of our method is its robustness, especially in its weaker 
dependence on the distributions of service and arrival 
times.
• A critical step in the regret analysis is the treatment 

of the transient system dynamics because, when im
proved operational decisions are obtained and imple
mented at the beginning of a new period, the queueing 
performance shifts away from previously established 
steady-state level. Toward this, we develop a new way 
to treat and bound the transient queueing performance 
in the regret analysis of our online learning algorithm 
(Theorem 1). Bounding the transient error also guar
antees convergence of the stochastic gradient descent 
(SGD) iteration (Theorem 2). Compared with previous 
literature (e.g., the regret bound is O(T2=3) in Huh et al. 
(2009)), our analysis of the regret resulting from non
stationarity gives a much tighter logarithmic bound. In 
addition, the regret analysis in the present paper may 
be extended to other queueing systems that share simi
lar properties to GI=GI=1.
• Supplementing the theoretical results of our regret 

bound, we evaluate the practical effectiveness of our 
method by conducting comprehensive numerical experi
ments. Our simulations draw the following two main 
conclusions. First, our method is robust in several dimen
sions: (i) GOLiQ exhibits convincing performance for 
GI=GI=1 queues having representative arrival and ser
vice distributions; (ii) GOLiQ remains effective even 
when certain theoretical assumptions are relaxed. Fur
thermore, in order to clearly highlight the advantages of 
our online learning approach relative to the previous 
results of heavy-traffic limits, we provide a careful per
formance comparison of these two methods. We show 
that GOLiQ is more effective in any one of the following 
three cases: the system scale is not too large, staffing cost 
is high, or service times are more variable.

1.3. Organization of the Paper
In Section 2, we review the related literature. In Section 
3, we introduce the model assumptions and provide 
an outline of our online learning algorithm. In Section 
4, we conduct the regret analysis for GOLiQ by sepa
rately treating the regret of nonstationarity, the part of 
regret arising from the transient system dynamics, and 
the regret of suboptimality, the part originating from 
the errors because of suboptimal pricing and staffing 
decisions. In Section 5, we give the detailed description 
of GOLiQ and establish a logarithmic regret bound by 
appropriately selecting our algorithm parameters. In 

Section 6, we conduct numerical experiments to con
firm the effectiveness and robustness of GOLiQ. We 
conclude in Section 7. In the online e-companion, we 
give all technical proofs and provide additional numer
ical examples.

2. Related Literature
The present paper is related to the following three streams 
of literature.

2.1. Pricing and Capacity Sizing in Queues
There is a rich literature on pricing and capacity sizing in 
service systems under different settings. Maglaras and 
Zeevi (2003) study a pricing and capacity sizing problem 
in a processor sharing queue motivated by internet appli
cations; Kumar and Randhawa (2010) consider a single- 
server system with nonlinear delay costs; Nair et al. 
(2016) study M=M=1 and M=M=k systems with network 
effect among customers; Kim and Randhawa (2018) con
sider a dynamic pricing problem in a single-server sys
tem. The specific Problem (1) we consider here is most 
closely related to Lee and Ward (2014), that is, joint pric
ing and capacity sizing for the GI=GI=1 queue. Later, the 
authors extend their results to the GI=GI=1+G model 
with customer abandonment in Lee and Ward (2019). As 
there is usually no closed-form solution for the optimal 
strategy or equilibrium, asymptotic analysis is adopted 
under large-market assumptions. In detail, their analysis 
is rooted in a deterministic static planning problem that 
requires both the service capacity and the demand rate to 
scale to infinity. Most of the papers conclude that the 
heavy-traffic regime is economically optimal. (There are 
some exceptions in which the heavy-traffic regime is not 
optimal; for example, Kumar and Randhawa (2010) 
show that an agent is forced to decrease its utilization if 
the delay cost is concave.) Our algorithm is motivated by 
the pricing and capacity sizing problem for service sys
tems; however, as explained previously, our methodol
ogy is very different from the asymptotic analysis used 
in these papers.

2.2. Reinforcement Learning (RL) for 
Queueing Systems

Our paper is also related to a small but growing litera
ture on RL for queueing systems. Dai and Gluzman 
(2021) study an actor–critic algorithm for queueing net
works. Liu et al. (2019) and Shah et al. (2020) develop RL 
techniques to treat the unboundedness of the state space 
of queueing systems. Jia et al. (2021) study a price-based 
revenue management problem in an M=M=c queue with 
a discrete price space; their methodology draws from the 
multiarmed bandit framework (with each price treated 
as an “arm”). Krishnasamy et al. (2021) develop bandit 
methods for scheduling problem in a multiserver queue 
with unknown service rates. Our work draws distinction 
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from the aforementioned literature in two dimensions. 
To the best of our knowledge, we are the first to develop 
an online learning method for joint pricing and capacity 
sizing in queue. In addition, our method applies to set
tings of continuous decision variables. Compared with 
the more general RL literature, our algorithm design 
and regret analysis take advantage of the specific queue
ing system structure so as to establish tight regret 
bounds and more accurate control of the convergence 
rate. In some sense, the algorithm developed in the pre
sent paper may be viewed as a version of the policy gra
dient method, a special class of RL methods (Sutton and 
Barto 2018); see Remark 2 for detailed discussions.

2.3. Stochastic Gradient Decent Algorithms
In general, our algorithm falls into the broad class of 
SGD methods. There are some early papers on SGD 
algorithms for steady-state performance of queues (see 
Fu 1990, Chong and Ramadge 1993, L’Ecuyer and Glynn 
1994, L’Ecuyer et al. 1994, and the references therein). In 
particular, these papers establish convergence results of 
SGD algorithms for capacity sizing problems with a 
variety of gradient estimating designs. In this paper, we 
consider a more general setting in which the price is also 
optimized jointly with the service capacity. Besides, in 
order to establish theoretical bounds for the regret, we 
conduct a careful analysis on the convergence rate of the 
algorithm and provide an explicit guidance for the opti
mal choice of algorithm parameters, which is not dis
cussed in this early literature. Our algorithm design and 
analysis are also related to the online learning methods 
in recent inventory management literature (Burnetas 
and Smith 2000, Huh et al. 2009, Huh and Rusmevi
chientong 2013, Zhang et al. 2020, Yuan et al. 2021). 
Among these papers, our work is perhaps most closely 
related to Huh et al. (2009), in which the authors develop 
an SGD-based learning method for an inventory model 
with a bounded replenishment lead time. Still, because 
of the unique natures of queueing models, we develop a 
new regret analysis framework as explain in detail in 
Section 1.2.3.

3. Problem Setting and Algorithm Outline
In Section 3.1, we describe the queueing model and 
technical assumptions. In Section 3.2, we provide a gen
eral outline of GOLiQ. Finally, in Section 3.3, we con
duct preliminary analysis of the queueing performance 
under GOLiQ.

3.1. Model and Assumptions
We study a GI=GI=1 queueing system having customer 
arrivals according to a renewal process with generally 
distributed interarrival times (the first GI); independent 
and identically distributed (i.i.d.) service times follow
ing a general distribution (the second GI); and a single 

server that provides service under the first-in, first-out 
discipline. Each customer, upon joining the queue, is 
charged by the service provider a fee p>0. The demand 
arrival rate (per time unit) depends on the service fee p 
and is denoted as λ(p). To maintain a service rate µ, the 
service provider continuously incurs a staffing cost at a 
rate c(µ) per time unit.

For µ ∈ [µ,µ] and p ∈ [p, p], the service provider’s 
goal is to determine the optimal service fee p∗ and ser
vice capacity µ∗ with the objective of maximizing the 
steady-state expected profit (1) or, equivalently, mini
mizing the objective function f (µ, p) as follows:

min
(µ,p)∈B

f (µ, p) ≡ h0E[Q∞(µ, p)] + c(µ)� pλ(p),

B ≡ [µ,µ] × [p, p]: (2) 

We impose the following assumptions on this service 
system throughout the paper.

Assumption 1 (Demand Rate, Staffing Cost, and Uni
form Stability) 

a. The arrival rate λ(p) is continuously differentiable and 
nonincreasing in p.

b. The staffing cost c(µ) is continuously differentiable 
and nondecreasing in µ.

c. The lower bounds p and µ satisfy that λ(p) < µ so that 
the system is uniformly stable for all feasible choices of the 
pair (µ, p).

Part (c) of Assumption 1 is commonly used in the liter
ature of SGD methods for queueing models to ensure 
that the steady-state mean waiting time E[W∞(µ, p)] is 
differentiable with respect to model parameters (see Fu 
1990, Chong and Ramadge 1993, L’Ecuyer and Glynn 
1994, L’Ecuyer et al. 1994; also see theorem 3.2 of Glasser
man 1992). In our numerical experiments (see Online Sec
tion EC.4.1), we show that our online algorithm remains 
effective when this assumption is relaxed.

We do not require full knowledge of service and inter
arrival time distributions. But, in order to develop explicit 
bounds for the part of the regret resulting from the non
stationarity of the queueing processes, we require both 
distributions to be light-tailed. Specifically, because the 
actual service and interarrival times are subject to our 
pricing and staffing decisions, we model the interarrival 
and service times by two scaled random sequences 
{Un=λ(p)} and {Vn=µ}, where U1, U2, : : : and V1, V2, : : :
are two independent i.i.d. sequences of random variables 
having unit means, that is, E[Un] � E[Vn] � 1. We make 
the following assumptions on Un and Vn.

Assumption 2 (Light-Tailed Service and Interarrival 
Times). There exists a sufficiently small constant η > 0 
such that the moment-generating functions

E[exp(ηVn)] <∞ and E[exp(ηUn)] <∞:
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In addition, there exist constants 0 < θ < η=2µ, 0 < a < (µ
�λ(p))=(µ+λ(p)) and γ > 0 such that

φU(�θ) <�(1� a)θ� γ and φV(θ) < (1+ a)θ� γ,
(3) 

where φV(θ) ≡ log E[exp(θVn)] and φU(θ) ≡ log E[exp 
(θUn)] are the cumulant generating functions of V and U.

Note that φ′U(0) � φ
′
V(0) � 1 as E[U] � E[V] � 1. Sup

pose φU and φV are smooth around zero; then, we have 
φU(�θ) ��θ+ o(θ) and φV(θ) � θ+ o(θ) by Taylor’s 
expansion. This implies that, for any a>0, we can make θ 
small enough such that φU(�θ) <�(1� a)θ and φV(θ)
< (1+ a)θ. To obtain the bound in (3), we can simply take 
γ � 1

2 min(�(1 � a)θ � φU(�θ), (1 + a)θ�φV(θ)) > 0. 
Hence, a sufficient condition that warrants (3) is to require 
that φU and φV be smooth around zero, which is true for 
many distributions of U and V considered in common 
queueing models. Assumption 2 is used in our proofs to 
build an explicit bound for the regret of nonstationarity.

Finally, in order to warrant the convergence of our 
online learning algorithm, we require a convex structure 
for the problem in (2), which is common in the SGD liter
ature; see Broadie et al. (2011), Kushner and Yin (2003), 
and the references therein.

Let x∗ ≡ (µ∗, p∗) and x ≡ (µ, p). Let ∇f (x) denote the 
gradient of a function f(x) and ‖ · ‖ denote the Euclidean 
norm.

Assumption 3 (Convexity and Smoothness). There exist 
finite positive constants K0 ≤ 1 and K1 > K0 such that, for 
all x ∈ B, 

a. (x� x∗)T∇f (x) ≥ K0‖x� x∗‖2.
b. ‖∇f (x)‖ ≤ K1‖x� x∗‖.

Remark 1. Our simulation experiments show that our 
algorithm works effectively for some representative GI=
GI=1 queues with conditions in Assumption 3 relaxed; 
see Section 6 and Online Section EC.4. In addition, we 
later provide some sufficient conditions for Assump
tion 3 in the special case of M=GI=1 queues in Online 
Section EC.5.

3.2. Outline of GOLiQ
In general, an SGD algorithm for a minimization prob
lem minx f (x) over a compact set B relies on updating 
the decision variable via the recursion

xk+1 �ΠB(xk � ηkHk), k ≥ 1:

Here, ηk is the step size, Hk is a random estimator for 
∇f (xk), xk is the decision variable by step k, and the pro
jection operator ΠB restricts the updated decision in B. 
For Problem (2), we let xk ≡ (µk, pk) represent the service 
capacity and price at step k. We define

Bk ≡ E[‖E[Hk�∇f (xk) |F k]‖
2
]

1=2 and Vk ≡ E[‖Hk‖
2
],
(4) 

where F k is the σ-algebra including all events in the 
first k�1 iterations. Intuitively, Bk measures the bias of 
the gradient estimator Hk and Vk measures its variabil
ity. As we see later, Bk and Vk play important roles in 
designing the algorithm and establishing desired regret 
bounds.

The standard SGD algorithm iterates in discrete step 
k. In our setting, however, the queueing system and 
objective function f (µ, p) are defined in continuous time 
(in particular, Q∞(µ, p) is the steady-state queue length 
observed in continuous time). To facilitate the regret 
analysis, we first transform the objective function into an 
expression of customer waiting times that are observed 
in discrete time. By Little’s law, we can rewrite the objec
tive function f (µ, p) as, for all (µ, p) ∈ B,

f (µ, p) � h0λ(p) E[W∞(µ, p)] + 1
µ

� �

+ c(µ)� pλ(p),

(5) 

where W∞(µ, p) is the steady-state waiting time under 
(µ, p). In each cycle k, our algorithm adopts the average 
of Dk observed customer waiting times to estimate 
E[W∞(µ, p)], where Dk denotes the number of custo
mers that enter service in cycle k (we refer to Dk as the 
cycle length or sample size of cycle k). But any finite Dk 
introduces a bias to our gradient estimate Hk. To miti
gate the bias resulting from the transient performance 
of the queueing process, we let the cycle length Dk be 
increasing in k (in this way the transient bias vanishes 
eventually). We give the outline of the algorithm as 
follows.

3.2.1. Outline of GOLiQ. 
0. Input: {Dk} and {ηk} for k � 1, 2, ::, L, initial policy 

x1 � (µ1, p1). For k � 1, 2, : : : , L,
1. In the kth cycle, operate the GI=GI=1 queue under 

policy xk � (µk, pk) until Dk customers enter service.
2. Collect and use the data (e.g., customer delays) to 

build an estimator Hk for ∇f (µk, pk).
3. Update xk+1 �ΠB(xk� ηkHk).

Remark 2 (Exploration vs. Exploitation). The online 
nature of this algorithm makes it possible to obtain 
improved decisions by learning from past experience, 
which is in the spirit of the essential ideas of reinforce
ment learning in which an agent (hereby the service 
provider) aims to trade off between exploration (step 1) 
and exploitation (steps 2 and 3). Effectiveness of the 
algorithms lies in properly choosing the algorithm para
meters and devising an efficient gradient estimator Hk. 
For example, if Dk is too small, we are unable to gener
ate sufficient data (we do not have much to exploit in 
order for devising a better policy); if Dk is too large, we 
incur a higher profit loss because of suboptimality of 
the policy in use (we do not explore enough for seeking 
potentially better policies). In particular, GOLiQ may be 
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viewed as a special case of the policy gradient (PG) 
algorithm (the general idea of PG is to estimate the pol
icy parameters using the gradient of the value function 
learned via continuous interaction with the system; see, 
for example, Sutton and Barto (2018)). To put this into 
perspective, the policy in the present paper is specified 
by a pair of parameters (µ, p), and in each iteration, we 
update the policy parameters using an estimated policy 
gradient Hk learned from data of the queueing model. 
In the subsequent sections, we give detailed regret anal
ysis that can be used to establish optimal algorithm 
parameters (Section 4) and develop an efficient gradient 
estimator (Section 5).

3.3. System Dynamics Under GOLiQ
We explain explicitly the dynamic of the queueing sys
tem under GOLiQ with the system starting empty. We 
first define notations for relevant performance func
tions. For k ≥ 1, let Tk be the length of cycle k in the units 
of time, and let Dk be the total number of customers 
who enter service in cycle k. For n � 1, 2, : : : , Dk, let Wk

n 
be the waiting time of the nth customer that enters ser
vice in cycle k. We define Wk

0 ≡Wk�1
Dk�1

. We use the two 
i.i.d. random sequences Vk

n and Uk
n to construct the ser

vice and interarrival times in cycle k, n � 1, 2, : : : , Dk. In 
particular, Vk

n corresponds to the service time of cus
tomer n�1, and Uk

n corresponds to the interarrival 
time between customers n�1 and n in cycle k. Let 
λk ≡ λ(pk). Finally, we use Qk to denote the number 
of existing customers (those who arrive in previous 
cycles) at the beginning of cycle in k with Q1 � 0. We 
have Qk ≥ 1 for k ≥ 2 as we explain soon, according to 
our updating procedure. The detailed dynamics of the 
queueing system in cycle k is summarized as follows: 
• Updating the control policy: In cycle k, we adopt 

the pricing and staffing policy (pk,µk). The service time 
of customer n�1 in cycle k is Sk

n � Vk
n=µk for n � 1, 

: : : , Dk. Cycle k ends as soon as a total number of Dk (of 
which the value is to be determined later) customers 
have entered service. So customer Dk receives service in 
cycle k+1 (with service time Sk+1

1 ), and the queue left
over consists of at least one customer, that is, Qk+1 ≥ 1 
for a new cycle k+1, which begins under a new policy 
(pk+1,µk+1) as follows: 

— Service rate: The service rate is updated to 
µk+1 immediately as the new cycle begins so that 
all existing customers undergo service times with 
rate µk+1.

— Service fee: The price remains pk at the begin
ning of cycle k+ 1 and evolves to pk+1 immediately 
after the first new customer arrives in the new 
cycle; we charge this customer with pk (because its 
interarrival time is modulated by pk) and all subse
quent customers in cycle k+1 with pk+1.
• Leftovers from previous cycles: For k ≥ 2, at the 

beginning of cycle k, there are Qk� 1 customers waiting 

in queue indexed by n from 1 to Qk� 1. The customer 
who just enters service is indexed by zero. We update 
the price from pk�1 to pk right after the first new cus
tomer (indexed by Qk) arrives in a new cycle. As a con
sequence, the prices charged to customers 1, 2, : : : , Qk 
are not yet updated to pk. Denote by pk

n and λk
n ≡ λ(pk

n)

as the price and arrival rate for customer n in cycle k, 
respectively, for 1 ≤ n ≤Qk. The corresponding interar
rival time is τk

n �Uk
n=λ

k
n. In case Qk�1 >Dk�1, some 

queueing leftovers are customers from earlier cycles. 
So, here, pk

n ∈ {p1, p2, : : : , pk�1}. In addition, in case 
Qk>Dk, part of Qk continues to remain in cycle k+1 
and we have, for example, pk+1

1 � pk
Dk+1.

• New arrivals: We denote interarrival times for new 
customers in cycle k by τk

n �Uk
n=λk for n �Qk + 1, : : : , Dk 

if Dk ≥Qk + 1. (As soon becomes clear, the case Dk ≤Qk 
is a rare event with a negligible probability under ap
propriate algorithm settings; see Remark 3.)
• Customer delay: Customers’ waiting times in cycle 

k are characterized by the recursions

Wk
n �

Wk
n�1+

Vk
n
µk
�

Uk
n

λk
n

 !+

for 1≤ n≤Qk ∧ Dk;

Wk
n�1+

Vk
n
µk
�

Uk
n
λk

� �+

for (Qk+1) ∧ (Dk+1) ≤ n≤Dk:

,Wk
0 �Wk�1

Dk�1
,

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(6) 

where x+ ≡max{x, 0}.
• Server’s busy time: The age of the server’s busy 

time observed by customer n upon arrival, which is the 
length of time the server has been busy since the last 
idleness, is given by the recursions

Xk
n �

Xk
n�1+

Uk
n

λk
n

 !

1{Wk
n>0}

for 1≤ n≤Qk ∧ Dk;

Xk
n�1+

Uk
n
λk

� �

1{Wk
n>0}

for (Qk+1) ∧ (Dk+1) ≤ n≤Dk:

, Xk
0 �Xk�1

Dk�1
,

8
>>>>>>>>>><

>>>>>>>>>>:

(7) 

where the indicator 1A is one if A occurs and is zero 
otherwise.

We provide explanations for (6) and (7). First, Recur
sion (6) simply follows from Lindley’s equation. Next, 
Recursion (7) follows from the fact that, for customer n, 
if the queue is empty upon its arrival, the observed 
busy time is simply zero by definition; otherwise, the 
server must have been busy since the arrival of the pre
vious customer, and therefore, the observed busy time 
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by customer n should extend that of customer n� 1 by 
an additional interarrival time. As we see later, both the 
delay and busy time observed by customers are impor
tant ingredients (i.e., data) for building the gradient 
estimator of the online learning algorithm.

Remark 3 (Clearance of the Leftover Qk). As explained, 
Qk is random and unbounded, whereas in our algo
rithm design, the cycle length Dk is deterministic. So it 
is indeed possible the remaining queue content may 
not be all cleared in cycle k (i.e., Dk<Qk). We see later 
in the regret analysis that our choice of Dk leads to a 
small probability of uncleared leftovers, and thus, the 
impact of the rare event {Dk <Qk} is negligible.

In Figure 1, we further illustrate how the service 
price and service rate are updated by showing the 
ordering of all relative events as a new cycle begins. 
We emphasize that (i) the service rate µk�1 is updated 
to µk immediately when a new cycle k begins, which is 
triggered as soon as the last one of Dk�1 customers 
enters service, and (ii) the service price pk�1 is updated 
to pk only after the first external arrival occurs in the 
new cycle k (we honor our previous prices for all cus
tomers who arrive in the previous cycle).

We end this section by providing a uniform bound
edness result for all relevant queueing functions. This 
result is used in the next sections to establish desired 
regret bounds. The proof follows from a stochastic 
ordering approach and is given in Online Section 
EC.1.1.

Lemma 1 (Uniform Boundedness of Relevant Queueing 
Functions). Under Assumptions 1 and 2, there exists a 
finite positive constant M > 0 such that, for any sequences 

(µk, pk) ∈ B and Dk ≥ 1, we have, for all k ≥ 1, 1 ≤ n ≤Dk 
and 1 ≤m ≤ 4, and η > 0 as defined in Assumption 2,

E[(Wk
n)

m
], E[(Xk

n)
m
], E[(Qk)

m
], E[exp(ηWk

n)] and

E[exp(ηQk)]

are all bounded by M.

4. Regret Analysis
The online learning approach described in Section 3.2 is 
a data-driven method, and it should continue to gener
ate improved solutions that eventually converge to the 
true optimal solution as the server’s experience accu
mulates (by serving more and more customers). The 
performance of GOLiQ is measured by the so-called 
regret, which can be interpreted as the cost to pay, over 
the time or the number of samples, for the algorithm to 
learn the optimal policy. In this section, we give a for
mal definition of the regret and conduct the regret anal
ysis for our online learning algorithm.

The expected net cost of the queueing system incurred 
in cycle k is

ρk � E

"
XQk∧Dk

n�1
(h0(Wk

n + Sk
n)� pk

n)

+
XDk

n�Qk+1
(h0(Wk

n + Sk
n)� pk) + c(µk)Tk

#

,

(8) 

where the summation 
PDk

n�Qk+1 · is zero in case Dk <

Qk + 1. The total regret accumulated in the first L 

Figure 1. (Color online) On the Timing of the Update of pk and µk Under GOLiQ 
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cycles is

R(L) ≡
XL

k�1
Rk, where Rk ≡ ρk� f (µ∗, p∗)E[Tk] (9) 

is regret in cycle k (the expected system cost in cycle k 
minus the optimal cost).

Remark 4. Following Huh et al. (2009) and Jia et al. 
(2021), our regret defined in (9) is computed by accumu
lating the difference between the steady-state maximum 
profit under (µ∗, p∗) and the expected profit earned under 
GOLiQ. However, one may find such a definition to be 
somewhat too demanding; it appears to be more reason
able if we were to benchmark with the nonstationary 
dynamics under (µ∗, p∗) rather than the steady-state per
formance. Nevertheless, our numerical studies confirm 
that the nuance of the two aforementioned regret defini
tions is negligible. See Online Section EC.4.5.

Separation of regret: To treat the total regret defined 
in (9), we separate it into two parts: regret of nonsta
tionarity, which quantifies the error resulting from the 
system’s transient performance, and regret of subop
timality, which accounts for the suboptimality error 
resulting from the present policy. In detail, we write

Rk � (ρk � E[f (µk, pk)Tk])
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡R1, k

+E[Tk(f (µk, pk)� f (µ∗, p∗))]
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡R2, k

,

(10) 

so that

R(L) �
XL

k�1
R1, k +

XL

k�1
R2, k ≡ R1(L) + R2(L): (11) 

Intuitively, R1, k measures the performance error re
sulting from transient queueing dynamics (regret of 
nonstationarity), whereas R2, k accounts for the subop
timality error of control parameters (µk, pk) (regret of 
suboptimality).

In what follows, we analyze the two terms R1(L) and 
R2(L) separately. To treat R1(L), we develop in Section 
4.1 a new framework to analyze the transient queueing 
behavior using the coupling technique (Theorem 1). 
The development of the theoretical bound for R2(L) is 
given in Section 4.2 (Theorem 2). Results in these sec
tions provide convenient conditions that facilitate the 
convergence and regret bound analysis of our GOLiQ 
algorithm for GI/GI/1 queues (which is given in Sec
tion 5). The road map of the theoretical analysis is de
picted in Figure 2.

4.1. Regret of Nonstationarity
In this part, we analyze the transient queueing dynam
ics, based on which we develop a theoretical upper 
bound for R1(L). As we see later in Section 5, this analy
sis is also essential to bounding the bias Bk and variance 
Vk of the gradient estimators for GOLiQ.

A crude O(L) bound: Roughly speaking, because the 
parameters µ, p and functions λ(·), c(·) are all bounded, 
the regret R1(L) is in the same order as the transient 
bias of the waiting time process, that is,

R1(L) ≈
XL

k�1
O
XDk

n�1
E[Wn(µk, pk)]�E[W∞(µk, pk)]
� �

 !

:

Here, we use W∞(µ, p) to denote the steady-state waiting 
time of the GI=GI=1 queue with parameter (µ, p) ∈ B. 
Under the uniform stability condition (Assumption 1), it 
is not difficult to show that there exist positive constants 
γ > 0 and K>0, independent of k and (µk, pk) such that

|E[Wk
n]�E[W∞(µk, pk)] | ≤ e�γnK:

Then, as a direct consequence, we have
XDk

n�1
(E[Wn(µk, pk)]� E[W∞(µk, pk)])

≤
K

1� e�γ
⇒ R1(L) � O(L):

Figure 2. Road Map of Regret Analysis and Algorithm Design 
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An analogue of this O(L) bound is given by Huh et al. 
(2009, lemma 11) in an inventory model.

An improved o(L) bound: In the rest of this section, 
we conduct a more delicate analysis on the transient 
performance of the queueing system, and our analysis 
renders a (tighter) sublinear bound R1(L) � o(L) (of 
which the exact order depends on the concrete algo
rithm as we see later).

Theorem 1 (Regret of Nonstationarity). Suppose that 
Assumptions 1 and 2 hold. In addition, assume that the fol
lowing conditions are satisfied for some constant K2 > 0 
and 0 < α ≤ 1: 

a. ⌈6 log(k)=min(γ,η)⌉ ≤Dk ≤ K2k2�α.
b. E[‖xk� xk+1‖

2
] ≤ K2k�2α.

Here, the constants η and γ are defined in Assumption 2. 
Then, there exists a positive constant K > 0 such that

R1, k ≤ K · k�α log(k), k ≥ 2 and

R1(L) ≤ K
XL

k�1
k�α log(k), L ≥ 2: (12) 

Remark 5. As becomes clear later in Section 5, we 
obtain a bound R1(L) �O(log(L)2) for Algorithm 1 by 
validating condition (b) in Theorem 1 with α�1, 
which is much tighter than the crude O(L) bound. 
This O(log(L)2) bound for R1(L) is critical to achieving 
an overall logarithmic regret bound in the total num
ber of served customers. An explicit expression of con
stant K is given in (EC.3).

4.1.1. Road Map of the Proof of Theorem 1. Our point 
of departure in proving Theorem 1 is to decompose R1, k 
into three terms. We split each cycle into a warm-up 
period consisting the first d̃k � ⌈5 log(k)=min(γ,η)⌉ <Dk 
customers and the near-stationary period consisting of 
all remaining customers, in which γ,η > 0 are as defined 
in Assumption 2. The three parts are transient error in 
the near-stationary period (I1), transient error in the 
warm-up period (I2), and the remaining error (I3). The 
detailed separation is given as
R1,k � ρk�E[f (µk,pk)Tk]

�E

"
XQk∧Dk

n�1
(h0(Wk

n +Sk
n)� pk

n)

+
XDk

n�Qk+1
(h0(Wk

n +Sk
n)� pk) + c(µk)Tk� f (µk,pk)Tk

#

� h0E

"
XDk

n�d̃k+1

Wk
n�w(µk,pk)

� �
#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡I1

+h0E

"
Xd̃k

n�1
Wk

n�w(µk,pk)
� �

#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡I2

+E (Dk�λkTk)(h0w(µk,pk) +
h0

µk
� pk)

� �

+E

"
XQk∧Dk

n�1
(pk� pk

n)

#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡I3

:

The term w(µ, p) ≡ E[W∞(µ, p)] is a function in (µ, p) and 
equals to the steady-state expected waiting time under 
parameter (µ, p) ∈ B. To prove R1, k �O(k�α log(k)), it 
suffices to show that Ii �O(k�α log(k)) for i�1, 2, 3. We 
explain the main ideas of our treatment to I1, I2, and I3: 
• I1: We first show that, after serving dk ≡ ⌈4 log(k)=

min(γ,η)⌉ < d̃k customers, with a sufficiently high pro
bability, all Qk existing customers have left the system 
and {Wk

n : n � dk, : : : , Dk} follows the dynamic of a GI/ 
GI/1 queue with arrival rate λk and service rate µk. 
Then, we show that Wk

n, for n ≥ dk, converges exponen
tially fast to the steady state (Lemma 2). Hence, Wk

n is 
close to W∞(µk, pk) for n ≥ d̃k, warranting a small tran
sient error I1.
• I2: Note that the d̃k customers in the warm-up 

period include those leftovers from previous periods, 
and their arrival rates λk

n are different from λk. To con
trol the impact of such difference between λk

n and λk, we 
first establish almost sure Lipschitz continuity of wait
ing times (for queues having customer-heterogeneous 
arrival rates) with respect to the arrival rate sequence 
and the initial state (Lemma 3). As a consequence, we 
can prove that |E[Wk

n�w(µk�1, pk�1)] | �O(k�α), taking 
advantage of the fact that the initial state Wk

0 �Wk�1
Dk�1 

is 
close to the steady state W∞(µk�1, pk�1). Then, we show 
that the steady-state distribution is smooth in the para
meter (µ, p) (Lemma 4), that is, E[ |w(µk�1, pk�1)�w(µk, 
pk) | ] �O(E |µk�µk�1 | +E |pk� pk�1 | ) �O(k�α), which 
completes the analysis for I2.
• I3: The term I3 is under control because Wk

Dk 
is 

close to the steady-state (Lemma 2) and Qk is uniformly 
bounded (Lemma 1).

Also see Figure 3 for a graphic illustration.
Following the road map, we next give detailed analy

sis for Ii, i � 1, 2, 3 by establishing three lemmas (Lem
mas 2–4). We believe that these results are not only 
essential to the transient analysis in the present paper, 
but may also be of independent interest for theoretic 
studies of other queueing models.

4.1.1.1. Bounding I1. We first establish the rate at 
which waiting times converge to their steady state dis
tributions. For two given sequences Vn and Un, we say 
two GI=GI=1 queues with the same parameter (µ, p) ∈ B 

are synchronously coupled if their waiting times W1
n 

and W2
n satisfy

Wi
n � Wi

n�1 +
Vn

µ
�

Un

λ(p)

� �+

, for i � 1, 2, and n ≥ 1, 

that is, the two systems share the same sequences of 
service and interarrival times (Blanchet and Chen 
2015). The proof of Lemma 2 is given in Online Sec
tion EC.1.

Lemma 2 (Exponential Loss of Memory of Initial State). 
Suppose two GI=GI=1 queues with parameter (µ, p) ∈ B are 
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synchronously coupled with initial waiting times W1
0 and 

W2
0 , respectively. Then, for the two positive constants γ and 
θ defined in Assumption 2 and any m ≥ 1, we have, condi
tional on W1

0 and W2
0,

E[ |W1
n �W2

n |
m |W1

0, W2
0]

≤ e�γn(2+ eµθW1
0 + eµθW2

0 ) |W1
0 �W2

0 |
m:

In order to bound I1, at the beginning of each cycle 
k, given (µk, pk), we couple Wk

0 with Wk
0 that is inde

pendently drawn from the steady-state waiting time 
distribution W∞(µk, pk). The sequence Wk

n is defined as

Wk
n � Wk

n�1 +
Vk

n
µk
�

Uk
n
λk

� �+

, for all 1 ≤ n ≤Dk:

Then, by definition, conditional on (µk, pk), E[W
k
n] �

w(µk, pk) for all 1 ≤ n ≤Dk, and therefore,

|E[Wk
n�w(µk, pk)] | ≤ E[ |Wk

n�Wk
n | ]:

As we show in the proof of Corollary 1, {Wk
n : n � dk+

1, : : : , Dk} is coupled with Wk
n except on a set of negligi

ble set with dk ≡ ⌈4 log(k)=min(γ,η)⌉ < d̃k. As a result, 
we can use Lemma 2 to construct a bound on E[ |Wk

n�

Wk
n | ] for n � d̃k + 1, : : : , Dk.

Corollary 1. Under the conditions of Theorem 1, there 
exists a constant A ≥ 1 independent of k and (µk, pk) such 
that, for all k ≥ 1 and n ≥ dk ≡ ⌈4 log(k+ 1)=min(γ,η)⌉,

E[ |Wk
n �Wk

n | ] ≤ e�γ(n�dk)A+ 2Mk�2: (13) 

As a direct consequence, we have I1 �O(k�α).

4.1.1.2. Bounding I2. We first show that the waiting 
times Wn of a queueing model having customer- 
heterogeneous arrival rates are Lipschitz continuous 
with respect to the rates (µn,λn) and the initial state 
almost surely.

Lemma 3 (Lipschitz Continuity). Consider two waiting time 
sequences Wn and W̃n for n ≥ 1 with initial values W0 and 
W̃0, respectively. Let (µn,λn) and (µ̃n, λ̃n) ∈ B be the corre
sponding sequences of service and arrival rates, respectively, 

that is,

Wn � Wn�1 +
Vn

µn
�

Un

λn

� �+

and

W̃n � W̃n�1 +
Vn

µ̃n
�

Un

λ̃n

� �+

, for n ≥ 1:

Suppose there exist two constants cµ, cλ > 0 such that

|µn� µ̃n | ≤ cµ and |λn � λ̃n | ≤ cλ, for all n ≥ 1:

Then, we have, for all n ≥ 1,

|Wn � W̃n | ≤ |W0� W̃0 | +
cµ
µ
+

cλ
λ

 !

max(Xn, X̃n)

+
cµ
µ

max(Wn, W̃n), 

where Xn and X̃n are the corresponding observed busy peri
ods. In particular, Xn and X̃n satisfy Recursion (7) defined in 
Section 3.3 with any given initial values of X0 ≥ 0 and 
X̃0 ≥ 0.

As discussed, controlling I2 also involves bounding 
the difference between the mean steady-state waiting 
times in two consecutive cycles. Hence, we next estab
lish a uniform high-order smoothness result for the 
steady-state waiting times with respect to the model 
parameter (µ, p).

Lemma 4 (Smoothness in µ and p). Suppose (µi, pi) ∈ B 

for i � 1, 2. Let W∞(µi, pi) be the steady-state waiting time of 
the GI/GI/1 queue under parameter (µi, pi), respectively. Then, 
the steady-state waiting times (W∞(µ1, p1), W∞(µ2, p2)) can 
be coupled such that there exists a constant B > 0 independent 
of (µi, pi) satisfying that, for all 1 ≤m ≤ 4,

E[ |W∞(µ1, p1)�W∞(µ2, p2) |
m]

≤ B( |µ1�µ2 |
m + |p1� p2 |

m), 

where a closed-form expression of constant B is given in 
(EC.2).

We adopt a “coupling from the past” (CFTP) ap
proach in the proof of Lemma 4 (see Online Section 

Figure 3. (Color online) Road Map of the Analysis of the Regret of Nonstationarity 
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EC.1). Roughly speaking, CFTP is a synchronous cou
pling starting from infinite past. In the proof of Lemma 
4, we explicitly explain how to construct the CFTP.

Now, we are ready to analyze I2. Essentially, we com
pare E[Wk

n] in the warm-up period with w(µk�1, pk�1)

� E[W∞(µk�1, pk�1)]. For each cycle k, recall that we have 
already coupled Wk�1

n with a stationary sequence Wk�1
n 

in cycle k�1, we then extend the sequence Wk�1
n to cycle 

k in the sense that

Wk�1
Dk�1+n � Wk�1

Dk�1+n�1 +
Vk

n
µk�1

�
Uk

n
λk�1

� �+

,

for n � 1, 2, : : : , Dk:

Then, conditional on (µk�1, pk�1), E[W
k�1
Dk�1+n] � w(µk�1, 

pk�1). So we have

|E[Wk
n�w(µk, pk)] | ≤ |E[Wk

n�w(µk�1, pk�1)] |

+E[ |w(µk�1, pk�1)�w(µk, pk) | ]

≤ E[ |Wk
n�Wk�1

Dk�1+n | ]

+E[ |w(µk�1, pk�1)�w(µk, pk) | ]:

Bounding the first term by Lemma 3 and the second 
term by Lemma 4 yields the following bound on I2.

Corollary 2. Under the conditions of Theorem 1, for all 
k ≥ 2 and 1 ≤ n ≤Dk, we have

E[ |Wk
n �w(µk, pk) | ] �O(k�α): (14) 

As a direct consequence, |I2 | �O(k�α log(k)).

4.1.1.3. Bounding I3. We complete our analysis on the 
regret of nonstationarity by showing that I3 �O(k�α). 
The proof of Corollary 3 basically follows from Lem
mas 1 and 2 with some similar argument as used in the 
proof of Corollary 2.

Corollary 3. Under the conditions of Theorem 1, |I3 | �
O(k�α).

Finishing the Proof of Theorem 1. Then, Theorem 1
follows immediately from Corollaries 1–3. A complete 
proof of Theorem 1, including the proofs of Corollar
ies 1–3, is given in Online Section EC.1.5. In particular, 
we provide an explicit expression of the constant K in 
terms of the model parameters in (EC.3).

Remark 6. We advocate that Theorem 1 may apply to 
other queueing models (its scope is beyond the GI=
GI=1 queue) as long as one can verify three conditions 
for the designated model: (i) uniform boundedness for 
the rate of convergence to the steady state, that is, 
Lemma 2; (ii) path-wise Lipschitz continuity, that is, 
Lemma 3; and (iii) smoothness of the stationary distri
butions in the control variables, that is, Lemma 4.

4.2. Regret of Suboptimality
To bound the regret of suboptimality R2(L), we need to 
control the rate at which xk converges to x∗. This 
depends largely on the effectiveness of the estimator Hk 
for ∇f (xk). In our algorithm, such effectiveness is mea
sured by the bias Bk and variance Vk. The following 
result shows that, if Bk and Vk can be appropriately 
bounded, then, xk converges to x∗ rapidly, and hence, 
R2(L) can be properly bounded.

Theorem 2. (Regret of Suboptimality). Suppose Assump
tion 3 holds. If there exists a constant K3 ≥ 1 such that the 
following conditions hold for all k, 

a. 1+ 1
k

� �β
≤ 1+ K0

2 ηk.
b. Bk ≤

K0
8 k�β.

c. ηkVk ≤ K3k�β.
Here, 0 < β ≤ 1 is a constant, and ηk→ 0 is the step size, 
and then, there exists a constant C ≥ 8K3=K0 with an explicit 
expression given in (EC.5) such that, for all k ≥ 1,

E[‖xk� x∗‖2] ≤ Ck�β, (15) 

and as a consequence,

R2(L) ≤ CK1
XL

k�1

Dk
λ(p) +M
� �

k�β �O
XL

k�1
Dkk�β

 !

:

(16) 

Remark 7 (Selecting the “Optimal” Dk). Expression (16) 
indicates a trade-off in the selection of the parameter Dk. 
On the one hand, increasing the sample size Dk reduces 
the bias Bk for the gradient estimator and, hence, leads to 
a smaller value of k�β. On the other hand, a larger Dk 
makes the system operate under a suboptimal decision 
for a longer time. To this end, one may choose an opti
mal order (in k) for Dk by minimizing the order of the 
regret as in (16).

Our proof of Theorem 2 follows an inductive approach 
as used in Broadie et al. (2011). Let bk ≡ E[‖xk� x∗‖2]. 
According to the SGD iteration xk+1 �ΠB(xk� ηkHk), we 
have

E[‖xk+1 � x∗‖2 |xk] ≤ E[‖xk� ηkHk � x∗‖2 |xk]

� ‖xk� x∗‖2� 2ηkE[Hk |xk](xk� x∗)

+ η2
kE[‖Hk‖

2
|xk]:

Then, by Assumption 3 and the definition of Bk,Vk 
by (4), we derive the following recursive inequality 
for bk:

bk+1 ≤ (1�K0ηk + ηkBk)bk + ηkBk + η
2
kVk, k ≥ 1, 

and we prove (15) by induction. The full proof is given 
in Online Section EC.1.7.
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In Section 5, we apply Theorem 2 to treat our online 
learning algorithm (Algorithm 1) by verifying that con
ditions (a)–(c) are satisfied. Because, in Theorem 2, con
ditions (a)–(c) are stated explicitly in terms of the step 
size ηk, bias Bk, and variance Vk of the gradient estima
tor, these conditions may serve as useful building 
blocks for the design and analysis of online learning 
algorithms in other queueing models as well.

5. GOLiQ for the GI=GI=1 Queue
In this section, we provide a concrete GOLiQ algorithm 
that solves the optimal pricing and capacity sizing Prob
lem (1) for a GI=GI=1 queueing system. We show that 
the gradient ∇f (µ, p) can be estimated “directly” from 
past experience (i.e., data of delay and busy times gener
ated under the present policy). Applying the regret anal
ysis developed in Section 4, we provide a theoretic 
upper bound for the overall regret in Theorem 3.

5.1. A Gradient Estimator
Following the algorithm framework outlined in Section 
3.2, we now develop a detailed gradient estimator Hk. 
Regarding the objective function in (5), it suffices to 
construct estimators for the partial derivatives
∂

∂µ
E[W∞(p,µ)] and ∂

∂p
E[W∞(p,µ)]: (17) 

Following the infinitesimal perturbation analysis (IPA) 
approach (see, for example, Glasserman 1992), we next 
show that the partial derivatives in (17) can be expressed 
in terms of the steady-state distributions W∞(p,µ) and 
X∞(p,µ) of the waiting time process Wn and observed 
busy period process Xn, of which the dynamics are char
acterized by (6) and (7).

Lemma 5. Suppose Assumptions 1 and 2 hold. Then, for 
any (µ, p) ∈ B, E[W∞(µ, p)] are differentiable in µ and p. 
Besides,
∂

∂p f (µ, p) ��λ(p)� pλ′(p)

+ h0λ
′(p) E[W∞(µ, p)] +E[X∞(µ, p)] + 1

µ

� �

∂

∂µ
f (µ, p) � c′(µ)

� h0
λ(p)
µ

E[W∞(µ, p)] +E[X∞(µ, p)] + 1
µ

� �

:

(18) 

Proof of Lemma 5. To prove Equation (18), it suffices 
to work with the partial derivatives of the steady-state 
expectation E[W∞(µ, p)]. We follow the IPA analysis 
in Glasserman (1992) and Chen (2014).

Given (µ, p), we define r(p) � 1=λ(p) and rewrite 
Recursion (6) as

Wn(µ, p) � Wn�1(µ, p) +Vn

µ
� r(p)Un

� �+

:

Define the derivative process Zn ≡
∂
∂r Wn(µ, p), and then, 

by the chain rule, we have

Zn �
∂

∂r
Wn(µ, p) � ∂

∂r
Wn�1(µ, p) +Vn

µ
� rUn

� �+

�

∂

∂r
Wn�1�Un � Zn�1�Un if Wn > 0;

0 if Wn � 0:

8
<

:

We obtain a recursion Zn � (Zn�1�Un)1{Wn>0}. Let 
Z̃n ≡�Zn=λ(p). Then, it is straightforward to see that 
Z̃n satisfies the recursion given in (7) as the observed 
busy period Xn, that is,

Z̃n � Z̃n�1 +
Un

λ(p)

� �

1(Wn > 0):

Under the assumption that the queueing system is sta
ble, the limit Z̃∞ should be equal in distribution to 
X∞. Therefore, we formally derive

∂

∂r
E[W∞(µ, p)] � E[Z∞] ��λ(p)E[Z̃∞]

��λ(p)E[X∞(µ, p)]: (19) 

These heuristics can be made rigorous by verifying 
exchanges of limits using the results in Glasserman 
(1992), and we refer the readers to Online Section 
EC.1.9 for detailed explanations. Using (19), we can 
derive the partial derivative of the steady-state wait
ing time with respect to price p as follows:

∂

∂p
E[W∞(µ, p)] � ∂

∂r
E[W∞(µ, p)] ∂r(p)

∂p

� �λ(p)E[X∞(µ, p)] ·� λ
′(p)
λ(p)2

� E[X∞(µ, p)]λ
′(p)
λ(p)

:

Now, we turn to ∂
∂µ
E[W∞(µ, p)]. Let Ẑn ≡ µWn(µ, p); it 

is easy to check that Ẑn � (Ẑn�1 +Vn�µUn=λ(p))+. 
Then, following steps similar to those for (19), we have

∂

∂µ
E[Ẑ∞(µ, p)] ��E[X∞(µ, p)]:

Therefore,

�E[X∞(µ, p)] � ∂

∂µ
E[Ẑ∞(µ, p)] � ∂

∂µ
E[µW∞(µ, p)]

� µ
∂

∂µ
E[W∞(µ, p)] + E[W∞(µ, p)], 
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and hence, ∂E[W∞(µ, p)]=∂µ ��(E[X∞(µ, p)] +E[W∞
(µ, p)])=µ: Finally, plugging the expressions of the two 
partial derivatives into ∇f yields (18). w

5.2. GOLiQ: A G=G=1 Version
Utilizing results in Lemma 5, we are ready to design a 
G=G=1 version of the GOLiQ algorithm, in which we 
estimate the terms E[W∞(µ, p)] and E[X∞(µ, p)]) in the 
partial derivatives (18) using the finite-sample averages 
of Wk

n and Xk
n observed in each cycle k. The formal 

description of the algorithm is given in Algorithm 1.

Algorithm 1 (GOLiQ for GI=GI=1 Queues)
Input: number of cycles L; 

parameters 0 < ξ < 1, Dk, ηk for k � 1, 2, : : : , L; 
initial value x1 � (µ1, p1).

for n � 1, 2, : : : , Dk do
operate the system under xk � (µk, pk) until Dk 
customers enter service;
observe (Wk

n, Xk
n) for n � 1, 2, : : : , Dk;

randomly draw Z ∈ {1, 2};
if Z� 1 then

h←�λ(pk)� pkλ
′(pk)+ h0λ

′(pk)
h

1
⌈Dk(1�ξ)⌉

PDk
n>ξDk 

(Xk
n +Wk

n) +
1
µk

i
;

Hk← (2h, 0);
else

h← c′(µk)� h0
λ(p)
µk

h
1

⌈Dk(1�ξ)⌉
PDk

n>ξDk
(Xk

n +Wk
n)+

1
µk

i
;

Hk← (0, 2h);
end
update: xk+1 �ΠB(xk� ηkHk);

end.

Remark 8 (On the Queueing Leftover). We elaborate 
more on our treatment of Qk, the existing queue content 
at the beginning of cycle k. First, the content of Qk 
includes customer arrivals in cycle k� 1 and possibly 
even earlier cycles. Second, it is also possible to have 
Qk>Dk. Nevertheless, these cases do not affect the im
plementation of Algorithm 1 (note that Algorithm 1
gives a gradient estimator using ⌈(1� ξ)Dk⌉ samples 
without specifying any of the preceding events). Of 
course, the event {Qk >Dk} does play a role in our theo
retic regret analysis, but it is a rare event with a negligi
ble probability (in fact, we show that the probability is 
suppressed to O(k�3)); also see Remark 3.

5.2.1. Selecting the Optimal Hyperparameters. The 
effectiveness of Algorithm 1 largely hinges upon care
fully selecting the three hyperparameters: (i) the warm- 
up time ξ ∈ (0, 1), (ii) the learning step size ηk > 0, and 
(iii) the exploration sample size Dk > 0. Except for ξ, 
which has no bearing on the theoretical order of the 
regret, both the other two parameters Dk and ηk play 
critical roles in our regret analysis. We next give the 

forms of the two parameters. First, The step size ηk 
satisfies

ηk � cη=k, with cη ≥ 2=K0, (20) 

where K0 is the convexity bound specified in Assump
tion 3. Next, the sample size Dk satisfies

Dk � aD + bD log(k), with aD ≥
CD

min(γ,η)ξ and

bD ≥
8

min(γ,η)ξ , (21) 

for any warm-up parameter ξ ∈ (0, 1), where γ and η 
are the constants specified in Assumption 2 and the 
explicit formula of CD is given in (EC.7).

The aforementioned forms of ηk and Dk are obtained 
from our detailed regret analysis in which we show 
that the structure of (20) and (21) “minimizes” the order 
of the overall regret (in the sense of maximizing α and β 
as in Theorems 1 and 2). Although the theoretical 
bounds of parameters aD, bD, and cη are imposed to 
facilitate our regret analysis, our numerical experi
ments show that GOLiQ remains effective even when 
the theoretical bounds are relaxed, confirming the ro
bustness of GOLiQ to these hyperparameters; see 
Online Section EC.2 for details. Next, we show that 
Algorithm 1 has a regret bound of O((log(ML)

2
) with 

ML ≡
PL

k�1 Dk being the cumulative number of custo
mers served by cycle L. We do so by verifying that our 
choices of Dk and ηk (along with the corresponding Bk 
and Vk), satisfy the conditions in Theorems 1 and 2.

Theorem 3. (Regret Bound for Algorithm 1). Suppose 
Assumptions 1–3 hold, and ηk and Dk are selected accord
ing to (20) and (21).

Then, 
i. There exists a positive constant K3 > 0 such that

Bk ≤
K0

8k and ηkVk ≤
K3

k :

ii. There exists a positive constant K2 > 0 such that

E[‖xk� xk+1‖
2
] ≤ K2k�2: (22) 

iii. As a consequence of (i) and (ii), the regret for Algo
rithm 1

R(L) ≤ Kalg log(ML)
2
� O(log(ML)

2
): (23) 

Remark 9 (On the Logarithmic Regret Bound (23)). We 
provide some additional discussions on the regret bound 
(23): 

i. On the constant Kalg: The explicit expression for 
the constant Kalg, although complicated, is given by 
(EC.9). It involves an error bound corresponding to the 
transient behavior of the queueing system, the bias and 
variance of the gradient estimator, moment bounds on 
the queue length and other model parameters. One can 
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verify that Kalg is decreasing in the convergence rate 
coefficient γ and increasing in the moment bounds of 
the queue length M.

ii. On the first logarithmic term: Consider an SGD 
algorithm in that an unbiased gradient estimator Hk 
with a bounded variance can be evaluated using a single 
data point (i.e., Bk� 0, Vk �O(1)); it is proved the scaled 
error k�1=2(xk� x∗) converges in distribution to a non
zero random variable (theorem 2.1 in chapter 10 of 
Kushner and Yin 2003). Hence, the convergence rate for 
‖xk� x∗‖2 that any SGD-based algorithm can achieve is 
at best O(k�1) (yielding a cumulative regret of order 
O(log(k))), which is exactly the rate of convergence 
established by our online algorithm (taking β�1 in The
orem 3). In this sense, GOLiQ is already achieving an 
optimal convergence rate. We point out that, because of 
the nonstationary error of the queueing system, our gra
dient estimator is obtained using an increasing number 
of data points in order to guarantee a reasonably small 
bias.

iii. On the second logarithmic term: In order to con
trol the regret of nonstationarity, the queueing system 
needs to be operated in each cycle for a duration of 
order O(log(k)). Because the queueing performance con
verges to its steady state exponentially fast, this inevita
bly introduces an extra logarithmic term in our regret 
bound (which explains the “square” in log(ML)

2). The 
question that remains open is whether this O(log(ML)

2
)

bound is optimal. We conjecture that the answer is 
“yes” but admit that a rigorous treatment of a lower 
regret bound can be quite challenging. For example, 
establishing a lower regret bound requires a lower 
bound on the convergence rate of a GI=GI=1 queue, 
which, by itself, is an open question. We leave this ques
tion to future research.

Remark 10 (Controlling the Length of Cycle k). We use 
Dk (the number of customers served in cycle k) instead 
of the clock time Tk to control and measure the regret 
bound. The benefit of using Dk (rather than Tk) as the 
cycle length is that it facilitates the technical analysis 
because Dk is directly related to the number of sam
ples used to estimate our gradient estimator. In fact, 
using Dk instead of Tk has no bearing on the order of 
the regret bound. To see this, note that the arrival rate 
is assumed to fall into a compact set [λ(p),λ(p)]. 
Therefore, because TL is the total units of clock time 
elapsed after cycle L, we have ML=λ(p) ≤ E[TL] ≤ML 
=λ(p) for all L.

6. Numerical Experiments
To confirm the practical effectiveness of our online 
learning method, we conduct numerical experiments to 
visualize the algorithm convergence, benchmark the 
outcomes with known exact optimal solutions, estimate 
the true regret, and compare it to the theoretical upper 

bounds. Our base example is an M=M=1 queue, having 
Poisson arrivals with rate λ(p) and exponential service 
times with rate µ. In our optimization, we consider a 
commonly used logistic demand function (Besbes and 
Zeevi 2015)

λ(p) � nλ0(p), λ0(p) �
exp(a� p)

1+ exp(a� p)
, (24) 

where n is the system scale (also referred to as the mar
ket size). We also consider the following convex cost 
function for the service rate:

c(µ) � c0µ
2: (25) 

See the top left panel of Figure 4 for λ(p) in (24). In par
ticular, the optimal pricing and staffing problem in (1) 
now becomes

max
µ,p

pλ(p)� c0µ
2� h0

λ(p)=µ
1�λ(p)=µ

� �

: (26) 

In light of the closed-form steady-state formulas of the 
M=M=1 queue, we can obtain the exact values of the 
optimal solutions (µ∗, p∗) and the corresponding objec
tive value f (µ∗, p∗), with which we are able to benchmark 
the solutions from our online optimization algorithm.

We first consider two one-dimensional online optimi
zation problems in Section 6.1. We next treat the two- 
dimensional pricing and staffing problem in Section 6.2. 
In Section 6.3, we compare our results to previously 
established asymptotic heavy-traffic solutions in Lee and 
Ward (2014). Additional numerical experiments are pro
vided in the e-companion: In Online Section EC.2, we 
investigate the robustness of GOLiQ to the hyperpara
meters. In Online Section EC.3, we benchmark the per
formance of GOLiQ to other online learning methods. 
Online Section EC.4 includes more experiments regard
ing the relaxation of uniform stability and GOLiQ’s 
performance in queues having other interarrival and 
service time distributions.

6.1. One-Dimensional Online Optimizations
Algorithm 1 covers special cases in which there is only 
one decision variable. For example, if the service capac
ity µ (service fee p) is an exogenous parameter and the 
only decision is the service fee p (service capacity µ), 
then one can simply fix Z� 1 (Z� 2) throughout the 
learning process. The theoretical regret bound (as in 
Theorem 3) for these one-dimensional cases remains 
unchanged.

6.1.1. Online Optimal Pricing with a Fixed Service 
Capacity. Motivated by revenue management pro
blems in revenue generating service systems, our first 
example focuses on the one-dimensional optimization of 
price p with service rate µ � µ0 held fixed. In this case, 
we can simply omit the term c0µ

2 in (26). Fixing the 
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other model parameters as a � 4:1, n � 10, h0 � 1, and 
µ0 � 10, we first obtain the exact optimal price p∗ �
3:531 (top right panel of Figure 4). According to Algo
rithm 1 and Theorem 3, we set the step size ηk � 1=k and 
cycle length Dk � 10+ 10 log(k). In Figure 4, we give the 
sample paths of the gradient Hk and price pk as functions 
of the number of cycles k and the mean regret (estimated 
by averaging 500 independent sample paths) as a func
tion of the cumulative number of service completions 
ML. We observe that, although the objective function 
f (µ, p) is not convex in p, the pricing decision pk quickly 
converges to the optimal value p∗, and the regret grows 
as a logarithmic function of ML. In particular, a simple 
linear regression for the pair (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(ML)

p
, log(ML)) (bot

tom right panel) verifies our regret bound given in The
orem 3.

6.1.2. Online Optimal Staffing Problem with an Exoge
nous Arrival Rate. Motivated by conventional service 
systems in which customers are served based on good
will (e.g., hospitals), we next solve an online optimal 

staffing problem, with the objective of minimizing the 
combination of the steady-state queue length (or equiv
alently the delay) and the staffing cost with the arrival 
rate (or, equivalently, the price p) held fixed. Namely, 
we omit the term pλ(p) in (26). Fixing λ � λ0 � 6:385, 
h0 � 1, and c0 � 0:1, we obtain the exact optimal service 
capacity µ∗ � 8:342 (top right panel of Figure 5). Also by 
Algorithm 1 and Theorem 3, we set the step size ηk �

0:4k�1 and cycle length Dk � 10+ 10 log(k) with initial 
service rate µ0 � 10. In Figure 5, we again give sample 
paths of the gradient Hk and service capacity µk and esti
mation of the regret. As the number of cycles k increases, 
our stage-k staffing decision µk quickly converges to µ∗
(bottom right panel), and the regret also grows as a loga
rithmic function of ML (bottom left panel).

6.2. Joint Pricing and Staffing Problem
We next consider a joint staffing and pricing problem 
having the objective function in (26) with the logistic 
demand function in (24) and parameters a� 4.1, n� 10, 
h0 � 1, and c0 � 0:1. The optimal price p∗ � 4:02 and 

Figure 4. (Color online) Online Optimal Pricing for an M=M=1 Queue with Fixed Service Rate with µ0 � 10, a � 4:1, p0 � 6:5, p∗ �
3:531, ηk � 1=k, and Dk � 10+ 10 log(k)

Note. See (i) demand function (top left), (ii) revenue function (top right), (iii) sample path of the gradient (middle left), (iv) sample path of the 
price (middle right), (v) estimated regret (bottom left), (vi) square root of regret versus logarithmic of served customers with c � 0.24, d � 19.04 
(bottom right).
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service rate µ∗ � 7:10 are given as benchmarks (top 
right panel in Figure 6). In Figure 6, we show that µk 
and pk converge quickly to their corresponding optimal 
target levels µ∗ and p∗ (although the objective f (µ, p) is 
not always convex when µ > λ(p)). And similar to the 
one-dimensional cases, the regret grows as a logarith
mic function of ML (bottom left panel).

6.3. Comparison with Heavy-Traffic Methods
In this section, we provide numerical analysis to con
trast the performance of GOLiQ to that of the heavy- 
traffic approach in Lee and Ward (2014). In Lee and 
Ward (2014), the objective is to find the optimal deci
sions p∗ and µ∗ for the GI=GI=1 optimization Problem 
(1) with a linear staffing cost c(µ) � cµ: Because this 
problem is not amenable to analytic treatments (be
cause of the complex GI=GI=1 queueing dynamics), the 
authors resort to the heavy-traffic approximation by 
constructing a sequence of GI=GI=1 queues indexed by 
a scaling factor n, in which the nth model has an arrival 

rate λn(p) ≡ nλ0(p), which grows to infinity as n in
creases. The authors propose an asymptotically optimal 
solution:

(p̃(n), µ̃(n)) � p̂∗, nµ̂∗ + σ
ffiffiffiffiffiffiffi
h0n
2c

r !

, (27) 

where σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var (Ui) +Var(Vi)

p
, Ui and Vi are defined in 

Assumption 2, and (p̂∗, µ̂∗) solves a deterministic static 
planning problem:

min
p,µ f0(p,µ) ��pλ0(p) + cµ: (28) 

We remark that the solution in Lee and Ward (2014) 
requires the precise knowledge of the second moments 
of service and arrival times (e.g., the term σ in (27)), but 
such information is not needed in GOLiQ.

6.3.1. Experimental Settings. We consider an M=GI=1 
model with a phase-type service-time distribution and 

Figure 5. (Color online) Online Optimal Staffing for an M/M/1 Queue with Fixed Price with λ0 � 6:385, M � 10,ηk � 0:4k�1, 
and Dk � 10+ 10 log(k)

Note. See (i) staffing cost (top left), (ii) cost function (top right), (iii) sample path of gradient (middle left), (iv) sample path of service capacity 
(middle right), (v) estimated regret (bottom left), (vi) square root of regret versus logarithmic of served customers with c � 2.76, d ��8:68 (bot
tom right).
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a logit demand λ(p) � nλ0(p) in (24), where the base 
demand rate λ0(p) has a�4.1 and the market size n 
plays the role of the scaling factor. We fix the delay 
cost h0 � 1 throughout this experiment. To quantify 
the regret, we obtain the exact optimal policy using 
the Pollaczek–Khinchine formula for the queue-length 
function

E[Q∞(p,µ)] � ρ+ ρ
2

1� ρ
1+ c2

s
2 , (29) 

where c2
s ≡ Var(Ui)=E[Ui]

2 is the squared coefficient of 
variation (SCV) for the service time. We next describe 
the detailed settings for comparing GOLiQ to heavy- 
traffic solution in Lee and Ward (2014), dubbed LW. 
In order to benchmark the regret of our GOLiQ to that 
of LW, we continue to consider a dynamic environ
ment in which the number of cycles k increases. In the 
kth cycle, 
• The LW policy remains fixed at (p̃(n), µ̃(n)) as in 

(27) (it does not evolve with k).
• Our online learning policy is dynamically updated 

according to GOLiQ (Algorithm 1).
Because the LW policy is an approximation, it yields a 

linear regret as k increases. But LW’s linear regret should 

not be too steep when n is large enough. In contrast, 
although GOLiQ is guaranteed to generate a sublinear 
regret, it is expected to have a larger regret increment at 
the earlier “exploration” stage because it is learning 
without the supervision of the fluid or diffusion limits 
(as in the LW approach). Nevertheless, we expect that 
GOLiQ will eventually outperform the LW method 
(exhibiting a lower regret level) when k is sufficiently 
large. We next numerically study how soon GOLiQ 
surpasses LW and the impact of the following three 
parameters: 

i. Staffing cost c.
ii. Service-time SCV c2

s .
iii. Market size n (i.e., system scale).
We intentionally set the initial decision (µ0, p0) of 

GOLiQ far from the optimal solution (µ∗, p∗) in the 
experiment.

6.3.2. Experiment Results. In Figure 7, we report re
sults of regret for both GOLiQ and LW. For the three 
factors c, c2

s , and n, we change one at a time (with the 
other two held fixed). In panels (a)–(c), we vary the 
staffing cost c from 0.5 to 2. In panels (d)–(f), we vary 
the service-time SCV c2

s from 0.1 to 10. Here, the cases 

Figure 6. (Color online) Joint Pricing and Staffing for an M=M=1 Queue with p0 � 7:5,µ0 � 12,ηk � 1=k, and Dk � 10+ 10 log(k)

Note. See (i) demand function (top left), (ii) revenue function (top right), (iii) sample path of gradient (middle left), (iv) sample path of decision 
parameters (middle right), (v) estimated regret (bottom left), (vi) square root of regret versus logarithmic of served customers with c � 0.186, d �
5.17 (bottom right).
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c2
s � 0:1, 1, and 10 are achieved by considering Erlang, 

exponential, and hyperexponential service-time distri
butions. In panels (g)–(i), we vary the system scale n 
from 1 to 25. In all of the cases, we use hyperparameter 
ηk � 5k�1 and Dk � 10+ 10 log(k). Monte Carlo esti
mates of the regret curves are obtained by averaging 
100 independent runs.

We can see from Figure 7 that, in all cases, GOLiQ 
eventually establishes a lower regret level than the LW 
policy. Varying these three factors clearly has a signifi
cant impact on how soon GOLiQ outperforms LW. Our 
findings are summarized: 
• Staffing cost c: Figure 7 shows that GOLiQ intends 

to outperform LW when c is relatively large. We pro
vide our explanations. First, a larger staffing cost c 
induces a smaller µ∗, which leads to a longer waiting 
queue. On the other hand, note that the LW solution is 
primarily based on solving the deterministic static 
problem (28), and unlike the stochastic revenue optimi
zation Problem (1), the objective function of (28) over
looks the queue-length holding cost. This explains why 
GOLiQ gains its advantage over LW as c increases. See 
panels (a)–(c) of Figure 7.

• Service SCV c2
s : When the service-time SCV is 

smaller, the LW method intends to work better because 
the basic idea of LW stems from solutions of a fluid 
model (in which the service times are assumed deter
ministic). On the other hand, when c2

s is larger, the sys
tem becomes more variable so that our learning-based 
algorithm begins to excel (because GOLiQ takes into 
account real-time information dynamically). See panels 
(d)–(f) of Figure 7.
• Market size n: When n is small, LW loses its 

advantages because it arises from the large-scale limit 
of the GI=GI=1 queue, which requires n to be suffi
ciently large, whereas the performance of our GOLiQ is 
robust to the system scale. See panels (g)–(i).
• Performance in the long run: GOLiQ is a more 

effective approach in the long run because the LW solu
tion remains static, and its error grows linearly as time 
increases.

Remark 11 (Different Philosophies: Online Learning vs. 
Heavy Traffic). We emphasize that online learning and 
heavy-traffic analysis are two methodologies developed 
based on distinct philosophies. First, when the system size 

Figure 7. (Color online) Regret Comparison with Heavy-Traffic Approximation with Varying (i) Staffing Cost c (Panels (a)–(c)), 
(ii) Service Variability c2

s (Panels (d)–(f)), and (iii) Market Size n (Panels (g)–(i)) 

Notes. Hyperparameters are ηk � 5k�1and Dk � 10+ 10 log(k) for all instances. All regret is estimated by averaging 500 independent simulation runs.
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is large, heavy-traffic models are able to produce high- 
fidelity solutions, but they require more prior knowledge 
of the system as inputs. On the other hand, online learn
ing requires less prior understanding of the system be
cause the data-driven nature allows it to dynamically 
evolve and improve (whereas heavy-traffic solutions are 
static). Second, the notions of asymptotic optimality are 
different. As an approximate method, heavy-traffic analy
sis is said to be asymptotically optimal in the sense that, 
as the system size grows large, its solution becomes close 
to the true optimal solution. On the other hand, the solu
tion of the online learning method converges to the true 
optimal solution as the server’s experience accumulates 
(by serving more and more customers).

6.4. A GI=GI=1 Example
So far, our numerical experiments focus on the M=GI=1 
examples. In this section, we test GOLiQ using a 
GI=GI=1 model. Specifically, we consider an E2=H2=1 
queue with Erlang-2 (the E2) interarrival times and 
hyper-exponential (the H2) service times with c2

s � 2, 
for which we solve the optimal price with the service 
rate held fixed (as in Section 6.1.1).

Because there is no closed-form solution for the per
formance function of the E2=H2=1 system, we model the 
queue length process as a quasi–birth-and-death process 
and adopt the matrix-geometric method (Latouche and 
Ramaswami 1999) to numerically solve the optimal solu
tion p∗. Here, we continue to use the logit demand func
tion (24) with M�10, a�4.1, n�1, h0 � 1, and µ �
µ0 � 10. This gives the optimal price p∗ � 3:567 (top right 
panel of Figure 8). The algorithm hyperparameters 
are ηk � 1=k, Dk � 10+ 10 log(k), and p0 � 6:5 (which are 
identical to those as in Section 6.1.1). From Figure 8, we 
observe that, although the objective function remains a 
nonconvex function, GOLiQ continues to perform well 
with fast convergence.

An additional LN=LN=1 example with log-normal 
interarrival times and service times is given in Online 
Section EC.4.3.

7. Conclusion
In this paper, we develop an online learning framework 
designed for dynamic pricing and staffing in queueing 
systems. The ingenuity of this approach lies in its online 

Figure 8. (Color online) Online Optimal Pricing for an E2=H2=1 Queue with Fixed Service Rate with µ0 � 10, a � 4:1, p0 � 6:5, 
p∗ � 3:567, ηk � 1=k, and Dk � 10+ 10 log(k)

Note. See (i) demand function (top left), (ii) revenue function (top right), (iii) sample path of the gradient (middle left), (iv) sample path of the 
price (middle right), (v) estimated regret (bottom left), (vi) square root of regret versus logarithm of served customers with c � 0.43, d � 15.79 (bot
tom right).
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nature, which allows the service provider to continu
ously obtain improved pricing and staffing policies by 
interacting with the environment. The environment 
here is interpreted as everything beyond the service 
provider’s knowledge, which is the composition of the 
random external demand process and the complex 
internal queueing dynamics. The proposed algorithm 
organizes the time horizon into successive operational 
cycles and prescribes an efficient way to update the ser
vice provider’s policy in each cycle using data collected in 
previous cycles. Data include the number of customer 
arrivals, waiting times, and the server’s busy times.

A key appeal of the online learning approach is its 
insensitivity to the scale of the queueing system as 
opposed to the heavy-traffic analysis, which requires 
the system to be in large scale (with the arrival and 
service rates both approaching infinity). Effectiveness 
of our online learning algorithm is substantiated by (i) 
theoretical results, including the algorithm conver
gence and regret analysis, and (ii) engineering confir
mation via simulation experiments of a variety of 
representative GI=GI=1 queues. Theoretical analysis of 
the regret bound in the present paper may shed lights 
on the design of efficient online learning algorithms 
(e.g., bounding gradient estimation error and control
ling proper learning rate) for more general queueing 
systems.

There are several venues for future research. One natu
ral extension would be to develop new regret analyses 
that do not require the uniform stability condition. 
Another interesting and promising direction is to develop 
an online learning method without assuming the knowl
edge of the arrival rate function λ(p), where the learner 
(hereby the service provider), during the interactions 
with the environment, has to resolve the tension between 
obtaining an accurate estimation of the demand function 
and optimizing returns over time. A third dimension is to 
extend the methodology to more general model settings 
(e.g., queues having customer abandonment and multiple 
servers), which make the framework more practical for 
service systems such as call centers and healthcare. In this 
regard, results in the present paper may serve as useful 
foundations; in particular, Theorems 1 and 2 help con
struct desired regret bounds as long as their associated 
conditions can be verified. Doing so usually requires two 
main steps in a new queueing model: (i) proving a new 
ergodicity (or rate of convergence to stationarity) result 
that can be used to bound the regret of nonstationarity 
and (ii) designing a new gradient estimator, which is eas
ily computed from data (here, a good gradient estimator 
should have small bias and variance subject to conditions 
in Theorem 2).
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