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E-Companion

This e-companion provides supplementary materials to the main paper. In Section EC.1,

we give all the technical proofs omitted from the main paper. In Section EC.2, we test the

robustness of GOLiQ with respect to key algorithmic hyperparameters. In Section EC.3,

we compare GOLiQ to the online learning method in Huh et al. (2009). In Section EC.4,

we report additional numerical studies. To facilitate readability, we formally summarize

all notations in Table EC.1 including all model parameters and functions, algorithmic

hyperparameters, and constants in the regret analysis.

EC.1. Proofs

EC.1.1. Proof of Lemma 1

Let Qk
n be the queue length when customer n − 1 in cycle k leaves the system. Then

Qk =Qk−1
Dk−1

+1. The proof follows a stochastic ordering argument for GI/GI/1 models. Let

Ŵ k
n , X̂

k
n and Q̂k

n be the waiting times, observed busy periods, and queue length process in

a GI/GI/1 queue with stationary control parameter µk ≡ µ and pk ≡ p, and with steady-

state initial state, i.e., Ŵ 1
0

d
=W∞(µ,p), X̂1

0
d
=X∞(µ,p) and Q̂1

0
d
=Q∞(µ,p). Let’s call this

system the dominating system. Then, for all k,

Uk
n

λk
n

≥ Uk
n

λ(p)
, for n= 1,2, ...,Qk, and

Uk
n

λk

≥ Uk
n

λ(p)
, for n=Qk +1,2, ...,Dk,

i.e., the arrival process in the dominating queue is the upper envelope process (UEP) for

all possible arrival processes corresponding to any control sequence (µk, pk). Similarly, the

service process in the dominating queue is the lower envelope process (LEP) for all possible

service processes corresponding to any control sequence. As a consequence, since W 1
0 = 0

and Q1
0 = 0,

W k
n ≤st Ŵ

k
n , X

k
n ≤st

λ(p)

λ(p̄)
· X̂k

n, Q
k
n ≤st Q̂

k
n.

Under Assumption 2, the moment generating function of the random variable Vn/µ −

Un/λ(p) exists around the origin. Following Blanchet and Chen (2015), under Assump-

tion 1, this condition can further imply that there exists a constant η̄ > 0 such that

E[exp
(
η̄(Vn/µ−Un/λ(p))

)
] = 1. (See the Remark on p.3222 in Blanchet and Chen (2015))

Then, following Theorem 1 of Abate et al. (1995), there exists a constant α> 0 such that

P(Ŵ k
n >x)≤ α exp(−η̄x), for all x> 0. As a consequence, E[exp(ηŴ k

n )] is finite for η < η̄,



ec2 e-companion to Chen, Liu and Hong: Gradient-based online learning in queue

and so are E[(Ŵ k
n )

m] for all m≥ 1. Given that the moments of waiting times are finite, we

can conclude that E[(Q̂k
n)

m] and E[exp(ηQ̂k
n)] are finite for all m ≥ 1, applying Theorem

10.4.3 in Asmussen (2003). Finally, the moments of the observed busy period E[(X̂k
n)

m] are

finite following Proposition 4.2 in Nakayama et al. (2004). Therefore, we choose

M = max
1≤m≤4

{
E[(Ŵ k

n )
m],

λ(p)m

λ(p̄)m
E[(X̂k

n)
m], E[(Q̂k

n+1)m], E[exp(ηŴ k
n )], E[exp(η(Qk

n+1))]

}
,

and this closes our proof. □

EC.1.2. Proof of Lemma 2

For i ∈ {1,2}, define stopping times Γi =min{n :W i
n = 0}. For a fixed pair of inter-arrival

and service time sequences, the consequent waiting time sequence Wk in a single-server

queue is monotone in its initial state W0. Without loss of generality, assume W 1
0 ≥W 2

0 .

Then, W 1
n ≥W 2

n for all n≥ 1 and therefore, W 1
Γ1

=W 2
Γ1

= 0. As the two queues are coupled

with the same arrival and service time sequences, we will have W 1
n =W 2

n for all n ≥ Γ1.

Therefore, we can concludeW 1
n =W 2

n for all n≥max(Γ1,Γ2). For n≤max(Γ1,Γ2), we have

|W 1
n −W 2

n | ≤ |W 1
0 −W 2

0 | following Kella and Ramasubramanian (2012).

For simplicity of notation, we write λ= λ(p). For i∈ {1,2}, define a random walk Ri
n+1 =

Ri
n+Sn− τn with Ri

0 =W i
0. (Recall that Sn and τn are the sequences of service and inter-

arrival times.) By Lindley recursion, Γi =min{n :Ri
n ≤ 0}. Then, for any n≥ 1,

P(Γi ≤ n)≥ P

(
n∑

k=1

(Sk− τk)<−W i
0

)

≥ P

(
λ

n∑
k=1

τk ≥ n(1− a), µ
n∑

k=1

Sk ≤ n(1+ a)−µW i
0

)
,

where the second inequality holds as (1 − a)/λ > (1 + a)/µ given that 0 < a < (µ −
λ(p))/(µ+λ(p)) and that λ/µ≤ λ(p)/µ. Recall that τk =Uk/λ and Sk = Vk/µ. Therefore,

P(Γi >n)≤ P

(
n∑

k=1

Uk <n(1− a)

)
+P

(
n∑

k=1

Vk >n(1+ a)−µW i
0

)
.

Following Chebyshev’s Inequality, we have

P

(
n∑

k=1

Vk >n(1+ a)−µW i
0

)
≤ E[exp(θ

∑n
k=1 Vk)]

exp(nθ(1+ a)−µθW i
0)

= exp(n(ϕV (θ)− (1+ a)θ)) exp(µθW i
0)

≤ exp(−nγ) exp(µθW i
0),
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where the last inequality follows from Assumption 2. On the other hand, let Q be an

exponentially tilted probability measure with respect to U , such that the likelihood ratio
dQ
dP

(U) = exp(−θU −ϕU(−θ)). Then,

P

(
n∑

k=1

Uk <n(1− a)

)
=EQ

[
exp

(
θ

n∑
k=1

Uk +nϕU(−θ)

)
1{∑n

k=1Uk<n(1−a)}

]
≤ exp(n(1− a)θ+nϕU(−θ)) = exp(n((1− a)θ+ϕU(−θ)))≤ exp(−nγ).

In summary, we have P(Γi >n)≤ exp(−nγ) (1+ exp(µθW i
0)), i= 1,2. So, we can conclude

E[|W 1
n −W 2

n |m]≤ P(max(Γ1,Γ2)>n)|W 1
0 −W 2

0 |m

≤ e−γn
(
2+ eµθW

1
0 + eµθW

2
0

)
|W 1

0 −W 2
0 |m. □

EC.1.3. Proof of Lemma 3

Define two auxiliary random walks:

Yn =W0+
n∑

i=1

(
Vi

µi

− Ui

λi

)
, Ỹn = W̃0+

n∑
i=1

(
Vi

µ̃i

− Ui

λ̃i

)
.

Then, for any n≥ 1, we could express Wn and W̃n as

Wn = Yn− min
1≤m≤n

Ym ∧ 0, W̃n = Ỹn− min
1≤m≤n

Ỹm ∧ 0.

Let τ = argmin1≤m≤n Ym and τ̃ = argmin1≤m≤n Ỹm. Note that following the above notation,

for each n, Wn is the waiting time of customer n and as a consequence, Un

λn
should be

understood as the inter-arrival time between customers n− 1 and n, and Vn

µn
as the service

time of customer n− 1.

Case 1: If Yτ ≤ 0 and Ỹτ̃ ≤ 0, i.e., both Wt and W̃t hit zero before n, we have

Yn−Yτ̃ − (Ỹn− Ỹτ̃ )≤Wn− W̃n = Yn−Yτ − (Ỹn− Ỹτ̃ )≤ Yn−Yτ − (Ỹn− Ỹτ ).

So, in this case

|Wn− W̃n| ≤
n∑

i=τ∧τ̃+1

∣∣∣∣ 1µi

− 1

µ̃i

∣∣∣∣Vi+

n∑
i=τ∧τ̃+1

∣∣∣∣ 1λi

− 1

λ̃i

∣∣∣∣Ui.

Recall that Xn (and X̃n) is the age of the server’s busy time observed by customer n upon

arrival. By definition, Wτ = 0 and therefore,

Xn =

n∑
i=τ+1

Ui

λi

, Xn+Wn =
n∑

i=τ+1

Vi

µi

.
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The second equation holds as the server has just served n− τ customers (indexed from τ

to n− 1) in the current busy cycle when customer n enters service. Then,

n∑
i=τ+1

∣∣∣∣ 1µi

− 1

µ̃i

∣∣∣∣Vi +

n∑
i=τ+1

∣∣∣∣ 1λi

− 1

λ̃i

∣∣∣∣Ui ≤
cµ
µ
(Xn+Wn)+

cλ
λ
Xn.

Following a similar argument, we have

n∑
i=τ̃+1

∣∣∣∣ 1µi

− 1

µ̃i

∣∣∣∣Vi +
n∑

i=τ̃+1

∣∣∣∣ 1λi

− 1

λ̃i

∣∣∣∣Ui ≤
cµ
µ
(X̃n+ W̃n)+

cλ
λ
X̃n.

Therefore, in this case, we have

|Wn− W̃n| ≤
(
cµ
µ

+
cλ
λ

)
max(Xn, X̃n)+

cµ
µ
max(Wn, W̃n).

Case 2: If Yτ > 0 or Ỹτ̃ > 0, we can inductively derive that

|Wn− W̃n| ≤ |W0− W̃0|+
n∑

i=1

∣∣∣∣ 1µi

− 1

µ̃i

∣∣∣∣Vi +
n∑

i=1

∣∣∣∣ 1λi

− 1

λ̃i

∣∣∣∣Ui.

In detail, it suffices to show that, for all 1≤m≤ n,

|Wm− W̃m| ≤ |Wm−1− W̃m−1|+
∣∣∣∣ 1µm

− 1

µ̃m

∣∣∣∣Vm +

∣∣∣∣ 1λm

− 1

λ̃m

∣∣∣∣Um. (EC.1)

Without loss of generality, we assume Yτ > 0. By definition, Yτ = min1≤l≤n Yl and hence

Wl = Yl > 0 for all 1≤ l≤ n. Then,

|Wm− W̃m|=

∣∣∣∣∣Wm−1−
Um

λm

+
Vm

µm

−
(
W̃m−1−

Um

λ̃m

+
Vm

µ̃m

)+
∣∣∣∣∣ .

If W̃m > 0, we have

|Wm− W̃m|=
∣∣∣∣Wm−1−

Um

λm

+
Vm

µm

−
(
W̃m−1−

Um

λ̃m

+
Vm

µ̃m

)∣∣∣∣
≤ |Wm−1− W̃m−1|+

∣∣∣∣ 1µm

− 1

µ̃m

∣∣∣∣Vm +

∣∣∣∣ 1λm

− 1

λ̃m

∣∣∣∣Um.

On the other hand, if W̃m = 0, we have W̃m−1− Um

λ̃m
+ Vm

µ̃m
≤ 0. So,

|Wm− W̃m|=Wm− 0≤Wm−
(
W̃m−1−

Um

λ̃m

+
Vm

µ̃m

)
=

∣∣∣∣Wm−1−
Um

λm

+
Vm

µm

−
(
W̃m−1−

Um

λ̃m

+
Vm

µ̃m

)∣∣∣∣
≤ |Wm−1− W̃m−1|+

∣∣∣∣ 1µm

− 1

µ̃m

∣∣∣∣Vm +

∣∣∣∣ 1λm

− 1

λ̃m

∣∣∣∣Um.
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This closes the proof of (EC.1).

As a result of (EC.1), if Yτ > 0, we can conclude the system (associated with (µn, λn))

was kept busy from time 0 until customer n enters service. As a consequence, as X0 ≥ 0,

we have

Xn ≥
n∑

i=1

Ui

λi

, Xn+Wn ≥
n∑

i=1

Vi

µi

.

Therefore,

n∑
i=1

∣∣∣∣ 1µi

− 1

µ̃i

∣∣∣∣Vi +

n∑
i=1

∣∣∣∣ 1λi

− 1

λ̃i

∣∣∣∣Ui ≤
cµ
µ
(max(Xn, X̃n)+max(Wn, W̃n))+

cλ
λ
max(Xn, X̃n),

and hence we can also conclude

|Wn− W̃n| ≤ |W0− W̃0|+
(
cµ
µ

+
cλ
λ

)
max(Xn, X̃n)+

cµ
µ
max(Wn, W̃n).

□

EC.1.4. Proof of Lemma 4

By the inequality that (a+ b)m ≤ 2m−1(am + bm) for m≥ 1, we have

E[|W∞(µ1, p1)−W∞(µ2, p2)|m]

≤ 2m−1 (E[|W∞(µ1, p1)−W∞(µ2, p1)|m + |W∞(µ2, p1)−W∞(µ2, p2)|m]) .

It suffices to prove that there exist two constant B1,B2 > 0 such that for 1≤m≤ 4,

E[|W∞(µ1, p1)−W∞(µ2, p1)|m]≤B1|µ1−µ2|m,

E[|W∞(µ2, p1)−W∞(µ2, p2)|m]≤B2|p1− p2|m.

Without loss of generality, assume µ1 < µ2. We now construct two stationary sequences

{(W µi
n : n ≤ 0), i = 1,2} that are coupled “from the past”. Let Vj and Uj be two i.i.d

sequences corresponding to the service and inter-arrival times. For each i, we define a

random walk:

Y µi
0 = 0, Y µi

n =

n∑
j=1

(
Vj

µi

− Uj

λ(p1)

)
, ∀n≥ 1.

It is clear that Y µi
n is a random walk with negative drift for i= 1,2. Define

W µi
−n =max

j≥n
Y µi

j −Y µi
n , n≥ 0.
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It is known in literature (see, for example, Blanchet and Chen (2015)) that W µi
−n is a

stationary waiting time process of a GI/GI/1 queue, starting from −∞, with parameter

(µi, p1). In particular, the dynamics of W µi
−n satisfies that

W µi
−n+1 =

(
W µi

−n+
Vn

µi

− Un

λ(p1)

)+

, for n≥ 1,

with Vn/µi being the service time of customer −n and Un/λ(p1) being the inter-arrival

time between customer −n and −n+1. For a fixed sequence of (Vn,Un), we have

W µ1

0 =max
j≥0

Y µ1

j , and W µ2

0 =max
j≥0

Y µ2

j .

As Y µ1

j ≥ Y
µ2

j , we have W µ1

0 ≥W
µ2

0 . Besides, let τ = argmaxj≥0 Y
µ1

j , we have

W µ1

0 −W
µ2

0 =max
j≥0

Y µ1

j −max
j≥0

Y µ2

j = Y µ1
τ −max

j≥0
Y µ2

j ≤ Y µ1
τ −Y µ2

τ .

As a consequence, we have

|W µ1

0 −W
µ2

0 | ≤
τ∑

n=1

(
Vn

µ1

− Vn

µ2

)
≤ µ2−µ1

µ1

τ∑
n=1

Vn

µ1

, with τ = inf{n :W−n = 0}.

Note that Vn/µ1 is the service time of customer −n in the system with parameter (p1, µ1).

By the definition of τ , customer −τ enters service immediately upon the arrival and the

queue remains busy by arrival of customer 0. Therefore, the summation of service times on

the right hand side equals to the time between the arrival of customer −τ and the departure

of customer −1, which equals to the observed busy period at the arrival of customer 0 plus

its waiting time, i.e.,

|W µ1

0 −W
µ2

0 | ≤
µ2−µ1

µ1

τ∑
n=1

Vn

µ1

=
µ2−µ1

µ1

(Xµ1

0 +W µ1

0 ).

Therefore, for each n,

E[|W µ1

0 −W
µ2

0 |m]≤
(µ2−µ1)

m

µm
1

E[(Xµ1

0 +W µ1

0 )m]≤ (µ2−µ1)
m

µm
E[(Xµ1

0 +W µ1

0 )m].

Following Lemma 1, E[(Xµ1

0 +W µ1

0 )m]≤ 2mM . Let B1 =max1≤m≤4 2
mM/µm and we con-

clude, for 1≤m≤ 4,

E[|W µ1

0 −W
µ2

0 |m]≤B1|µ1−µ2|m.

The bound for E[|W∞(µ2, p1)−W∞(µ2, p2)|m] follows a similar argument and therefore

we only provide a sketch of the proof. Without loss of generality, we assume p1 < p2 and
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consider two stationary waiting time process {(W pi
n : n ≤ 0), λi = λ(pi), i = 1,2} that are

coupled from past with the same sequence (Vn,Un) in a similar way as we introduced

previously. Then, we have |W p1
0 −W

p2
0 | ≤ (λ1−λ2)X

p1
0 /λ2, and therefore,

E[|W p1
0 −W

p2
0 |m]≤B2|p1− p2|m, with B2 = max

1≤m≤4,p≤p≤p̄
(M |λ′(p)|m/λ(p̄)m).

As a consequence, we can take

B = 8 · max
1≤m≤4

(2mM/µm)∨ max
1≤m≤4,p≤p≤p̄

(M |λ′(p)|m/λ(p̄)m). (EC.2)

EC.1.5. Full Proof of Theorem 1

We first give the proofs of Corollaries 1–3.

Proof of Corollary 1 For any n≥ dk,

E[|W k
n − W̄ k

n |] =E[|W k
n − W̄ k

n |1(Qk <dk)] +E[|W k
n − W̄ k

n |1(Qk ≥ dk)].

Given that Qk < dk, by definition, W k
n is synchronously coupled with W̄ k

n for n≥ dk + 1.

Note that given Qk <dk, U
k
n and V k

n are independent of Qk for n≥ dk+1. As a consequence,

by Lemma 2, the conditional expectation

E
[
|W k

n − W̄ k
n |
∣∣∣ Qk <dk,W

k
dk
, W̄ k

dk

]
≤ e−γ(n−dk)(2+ e

µ̄θWk
dk + e

µ̄θW̄k
dk )
∣∣W k

dk
− W̄ k

dk

∣∣ .
Therefore,

E[|W k
n − W̄ k

n |1(Qk <dk)]≤ e−γ(n−dk)E
[
(2+ e

µ̄θWk
dk + e

µ̄θW̄k
dk )
∣∣W k

dk
− W̄ k

dk

∣∣1(Qk <dk)
]

≤ e−γ(n−dk)E
[
(2+ e

µ̄θWk
dk + e

µ̄θW̄k
dk )
∣∣W k

dk
− W̄ k

dk

∣∣]
≤ e−γ(n−dk)

(
2+E

[(
e
µ̄θWk

dk + e
µ̄θW̄k

dk

)2]1/2)
E
[∣∣W k

dk
− W̄ k

dk

∣∣2]1/2 .
By Lemma 1 and Assumption 2, we have

E
[(
e
µ̄θWk

dk + e
µ̄θW̄k

dk

)2]
≤ 2

(
E[e2µ̄θW

k
dk ] +E[e2µ̄θW̄

k
dk ]
)
≤ 4M,

E
[
|W k

dk
− W̄ k

dk
|2
]
≤ 2

(
E[(W k

dk
)2] +E[(W̄ k

dk
)2]
)
≤ 4M.

As a consequence, we have

E[|W k
n − W̄ k

n |1(Qk <dk)]≤ e−γ(n−dk)A,with A= 4
√
M +4M.



ec8 e-companion to Chen, Liu and Hong: Gradient-based online learning in queue

On the other hand,

E[|W k
n − W̄ k

n |1(Qk ≥ dk)]≤E
[
|W k

n − W̄ k
n |2
]1/2P(Qk ≥ dk)1/2.

Again, by Lemma 1, E
[
|W k

n − W̄ k
n |2
]
≤ 4M. As dk = ⌈4 log(k)/min(γ, η)⌉,

P(Qk ≥ dk)≤ e−ηdkE
[
eηQk

]
≤ k−4M.

In summary, we have, for n≥ dk +1,

E[|W k
n − W̄ k

n |]≤ e−γ(n−dk)A+2Mk−2.

As a direct consequence,

|I1|=

∣∣∣∣∣∣E
 Dk∑

n=d̃k+1

W k
n −w(µk, pk)

∣∣∣∣∣∣≤
Dk∑

n=d̃k+1

E[|W k
n − W̄ k

n |]

≤
∞∑

n=d̃k+1

e−γ(n−dk)A+2Mk−2Dk ≤
A

1− e−γ
k−1+2MK2k

−α =O(k−α).

Proof of Corollary 2 Recall that by (6), for each cycle k,

W k
n =


(
W k

n−1+
V k
n

µk
− Uk

n

λk
n

)+
for 1≤ n≤Qk∧Dk;(

W k
n−1+

V k
n

µk
− Uk

n

λk

)+
for (Qk +1)∧(Dk +1)≤ n≤Dk.

, W k
0 =W k−1

Dk−1
.

Define

W̃ k
n =


(
W̃ k

n−1+
V k
n

µk
− Uk

n

λk−1

)+
for 1≤ n≤Qk∧Dk;(

W̃ k
n−1+

V k
n

µk
− Uk

n

λk

)+
for (Qk +1)∧(Dk +1)≤ n≤Dk.

, W̃ k
0 =W k−1

Dk−1
.

Then, in the case Qk−1 <Dk−1, we have W k
n = W̃ k

n for all 1≤ n≤Dk. As a consequence,

we have

|W k
n − W̄ k−1

Dk−1+n| ≤ |W̃
k
n − W̄ k−1

Dk−1+n|+ |W
k
n − W̄ k−1

Dk−1+n| · 1(Qk−1 ≥Dk−1).

For the second term, by Lemma 1, we have, for k≥ 2,

E[|W k
n − W̄ k−1

Dk−1+n| · 1(Qk−1 ≥Dk−1)]≤E[(W k
n − W̄ k−1

Dk−1+n)
2]1/2P(Qk−1 ≥Dk−1)

1/2

≤ (2E[(W k
n )

2] + 2E[(W̄ k−1
Dk−1+n)

2])1/2 (exp(−ηDk−1)E[exp(ηQk−1])
1/2

≤ 2M(k− 1)−3 ≤ 16Mk−3
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For the first term, by definition, W̄ k−1
Dk−1+n is a waiting time sequence with service and

arrival rates (µk−1, λ(pk−1)) and W̃ k
n is a sequence with rates (µk, λ(pk)) or (µk, λ(pk−1)).

As a consequence, by applying Lemma 3, we have

|W̃ k
n − W̄ k−1

Dk−1+n| ≤|W̃
k
0 − W̄ k−1

Dk−1
|+
(
|µk−µk−1|

µ
+
|λ(pk)−λ(pk−1)|

λ(p̄)

)
max(X̃k

n, X̄
k−1
Dk−1+n)

+
|µk−µk−1|

µ
max(W̃ k

n , W̄
k−1
Dk−1+n).

By Lemma 1, we have that max(X̃k
n, X̄

k−1
Dk−1+n) ≤

λ(p)

λ(p̄)
X̂k

n and max(W̃ k
n , W̄

k−1
Dk−1+n) ≤ Ŵ k

n ,

where X̂k
n and Ŵ k

n are the observed busy period and waiting time in a stationary GI/GI/1

queue with rate (µ,p) as defined in Lemma 1. On the other hand, under Condition (b) of

Theorem 1,

E[|µk−µk−1|2]≤E[∥xk−xk+1∥2]≤K2k
−2α

E[|λk−λk−1|2]≤K2

(
max

p
λ′(p)

)2

k−2α ≡K6k
−2α.

Therefore,

E
[
|µk−µk−1|max(X̃k

n, X̄
k−1
Dk−1+n)

]
≤E[(µk−µk−1)

2]1/2
λ(p)

λ(p̄)
E[(X̂k

n)
2]1/2 ≤

√
K2

√
Mk−α;

E[|λ(pk)−λ(pk−1)|max(X̃k
n, X̄

k−1
Dk−1+n)]≤E[(λk−λk−1)

2]1/2
λ(p)

λ(p̄)
E[(X̂k

n)
2]1/2 ≤

√
K6

√
Mk−α;

E
[
|µk−µk−1|max(W̃ k

n , W̄
k−1
Dk−1+n)

]
≤E[(µk−µk−1)

2]1/2E[(Ŵ k
n )

2]1/2 ≤
√
K2

√
Mk−α.

Finally, by Corollary 1, we have

E[|W̃ k
0 −W̄ k−1

Dk−1
|] =E[|W̄ k−1

Dk−1
−W k

0 |] =E[|W̄ k−1
Dk−1
−W k−1

Dk−1
|]≤ (A+2M)(k−1)−2 ≤ (4A+8M)k−2.

In summary, we can conclude

|E[W k
n −w(µk, pk)]| ≤E[|w(µk−1, pk−1)−w(µk, pk)|] +E[|W k

n − W̄ k−1
Dk−1+n|]

≤BE[|µk−µk−1|+ |λ(pk)−λ(pk−1)|] +
(
2
√
K2

µ
+

√
K6

λ(p̄)

)√
Mk−α +O(k−2)

≤B(
√
K2+

√
K6)k

−α +

(
2
√
K2

µ
+

√
K6

λ(p̄)

)√
Mk−α +O(k−2)

=O(k−α),

where the second inequality follows from Lemma 4. As a direct consequence, |I2| =
O(k−α log(k)) as d̃k =O(log(k)). □
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Proof of Corollary 3 Note that by Lemma 1,∣∣∣∣h0E[W∞(µk, pk)] +
h0
µk

− pk
∣∣∣∣≤ h0M +h0µ

−1+ p̄=O(1).

So it suffices to show that

E[|Dk−λ(pk)Tk|] =O(k−α), E

[
Qk∧Dk∑
n=1

|pk− pkn|

]
=O(k−α).

Given µk and pk, Tk is the time for the Dk-th customer to enter service. Let F k
n be the inter-

service time between the (n−1)-th and the n-th customers in cycle k. Then, Tk =
∑Dk

n=1F
k
n

and for each n,

F k
n =


Uk
n

λk
n
+W k

n −W k
n−1 for 1≤ n≤Qk

Uk
n

λk
+W k

n −W k
n−1 Qk +1≤ n≤Dk.

Therefore,

Tk =

Dk∑
k=1

F k
n =

Qk∧Dk∑
n=1

Uk
n

λk
n

+
1

λk

Dk∑
n=Qk+1

Uk
n +W k

Dk
−W k

0

=
1

λk

Dk∑
n=1

Uk
n +W k

Dk
−W k

0 +

Qk∧Dk∑
n=1

Uk
n

(
1

λk
n

− 1

λk

)
.

As a consequence,

|E [(Dk−λkTk)] | ≤ λk|E[W k
Dk

]−E[W k
0 ]|+E

[
Qk∧Dk∑
k=1

Uk
n

∣∣∣λk

λk
n

− 1
∣∣∣] .

Following Corollary 1 and Lemma 4, for k≥ 2, the first term

|E[W k
Dk

]−E[W k
0 ]| ≤E|W k

Dk
− W̄ k

Dk
|+E|W k−1

Dk−1
− W̄ k−1

Dk−1
|+ |E[W̄ k

Dk
]−E[W̄ k−1

Dk−1
]|

= (A+2M)
(
k−2+(k− 1)−2

)
+B

√
K2k

−α =O(k−α).

As to the second term, by definition, the customers 1 to Qk− 1 arrive to the system while

customer 0 is waiting in the system, and therefore,

0≤
(Qk−1)∧Dk∑

i=1

Uk
i

λ̄
≤

(Qk−1)∧Dk∑
i=1

Uk
i

λk
i

≤W k
0 ⇒ E

(Qk∧Dk∑
i=1

Uk
i

)2
≤E

[
(λ̄W k

0 +Uk
Qk
)2
]
≤ 4λ̄2M.
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Here, E[(Uk
Qk
)2] is bounded since we assume that U is light-tailed (Assumption 2). For the

simplicity of notation, we just assume that E
[(

U2
i

λ̄

)2]
<M for the same M in Lemma 1.

Then,

E

[
Qk∧Dk∑
k=1

Uk
n

∣∣∣λk

λk
n

− 1
∣∣∣]≤E

[
Qk∧Dk∑
k=1

Uk
n

∣∣∣ λk

λk−1

− 1
∣∣∣]+E

[
Qk∧Dk∑
k=1

Uk
n ·
λ̄

λ
· 1(Qk−1 ≥Dk−1)

]

≤ 2λ̄
√
ME

[∣∣∣ λk

λk−1

− 1
∣∣∣2]1/2+ 2λ̄2

λ

√
MP(Qk−1 ≥Dk−1)

1/2

≤ 2λ̄
√
MK

1/2
6

λ
k−α+

16λ̄2

λ
Mk−3 =O(k−α).

Finally,

E

[
Qk∧Dk∑
n=1

|pk− pkn|

]
≤E

[
Qk∧Dk∑
n=1

|pk− pkn| · 1(Qk−1 <Dk−1)

]

+E

[
Qk∧Dk∑
n=1

|pk− pkn| · 1(Qk−1 ≥Dk−1)

]
≤E

[
Q2

k−1

]1/2E [|pk− pk−1|2
]1/2

+E
[
p̄2Q2

k

]1/2P(Qk−1 ≥Dk−1)
1/2

≤
√
MK2k

−α +8p̄Mk−3 =O(k−α)

Therefore, I3 =O(k−α). □

Finishing the proof of Theorem 1 First, by Corollary 1, we have

|I1| ≤
A

1− e−γ
k−1+2MK2k

−α =O(k−α).

By Corollary 2,

|I2| ≤
5

min(γ, η)

(
B(
√
K2+

√
K6)+

(
2
√
K2

µ
+

√
K6

λ

)√
M +(4A+8M)

)
k−α log(k) =O(k−α log(k)).

Following the proof of Corollary 3, we have

I3 ≤ (h0M +h0µ
−1+ p̄)

(
2λ̄
√
MK

1/2
6

λ
+

16λ̄2

λ
M

)
k−α+(

√
MK2+8p̄M)k−α =O(k−α).

Therefore, we can conclude that ∀k≥ 2, R1,k ≤K ′ · k−α log(k) with

K ′ =
Ah0

1− e−γ
+2h0MK2+

5h0
min(γ, η)

(
B(
√
K2+

√
K6)+

(
2
√
K2

µ
+

√
K6

λ

)√
M +(4A+8M)

)
+(h0M +h0µ

−1+ p̄)

(
2λ̄
√
MK

1/2
6

λ
+

16λ̄2

λ
M

)
+
√
MK2+8p̄M. (EC.3)
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Let M0 > 0 be the upper bound of the regret in the first cycle. Here the constant M0 <∞

since the decision region B is bounded and by condition (a), D1 ≤ K2 is also bounded.

Finally, we conclude that

R1(L)≤M0+K ′
L∑

k=2

k−α log(k)≤K
L∑

k=1

k−α log(k).

with K =K ′ + 2M0

log(2)
. □

EC.1.6. Convergence Rate of Observed Busy Period

As an analogue of Lemma 2, we prove a uniform convergence rate for the observed busy

period Xn, which will be used to bound Bk and Vk of the gradient estimator (18) that

involves terms of Xk
n.

Lemma EC.1. Let X1
n and X2

n be the observed busy period of the two queueing systems

coupled as in Lemma 2, with X1
0 ,X

2
0 ≤st

λ(p)

λ(p̄)
X̂0 and W 1

0 ,W
2
0 ≤st Ŵ0.

1. |X1
n−X2

n| ≤ 1{max(Γ1,Γ2)>n} (
∑n

k=1 τk +X1
0 +X2

0 ).

2. There exists a constant K4 > 0 such that |E[X1
n −X2

n]|m ≤K4e
−0.5γnn2 for all n ≥ 1

and m≤ 2.

Proof of Lemma EC.1 1. Following the argument in Lemma 2, if W 1
0 ≥W 2

0 , we will

have W 1
Γ1

= W 2
Γ1

= 0 and hence X1
Γ1

= X2
Γ1

= 0. Since the two systems share the same

sequence of arrivals and service times, X1
n =X2

n for all n≥ Γ1. Therefore,

|X1
n−X2

n| ≤ 1{max(Γ1,Γ2)>n}|X1
n−X2

n| ≤ 1{max(Γ1,Γ2)>n}

(
n∑

k=1

τk +X1
0 +X2

0

)
.

The last inequality follows from 0≤X i
n ≤X i

0+
∑n

k=1 τk for i= 1,2.

2. Following 1 and part 2 of Lemma 2, for m= 1,2,

E[|X1
n−X2

n|m]≤E

[
1{max(Γ1,Γ2)>n}

(
n∑

k=1

τk +X1
0 +X2

0

)m]

≤ P(max(Γ1,Γ2)>n)
1/2E

( n∑
k=1

τk +X1
0 +X2

0

)2m
1/2

where

P(max(Γ1,Γ2)>n)≤ e−nγE[2+ eµθW
1
0 + eµθW

2
0 ]≤ e−nγ(2+2M),
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and

E

( n∑
k=1

τk +X1
0 +X2

0

)2m
≤ 32m−1

(
n2mE

[
U 2m

1

λ(p)2m

]
+E[(X1

0 )
2m] +E[(X2

0 )
2m]

)
.

Therefore,

E[|X1
n−X2

n|m]≤K4e
−0.5nγn2,

with K4 = 3m
(
max1≤m≤2E[U 2m

1 ]/λ(p̄)2m +2
λ(p)2m

λ(p̄)2m
M
)1/2

(2+2M)1/2. □

EC.1.7. Proof of Theorem 2

The proof follows an induction-based approach similar to Broadie et al. (2011). For sim-

plicity of notation, we write ∆k = k−β. Let Fk be the filtration up to cycle k, i.e. including

all events in the first k− 1 cycles. Since xk+1 = πB(xk− ηkHk),

E
[
∥xk+1−x∗∥2] =E[∥xk−x∗− ηkHk∥2

]
= E

[
∥xk−x∗∥2− 2ηkHk · (xk−x∗)+ η2kH

2
k

]
= E

[
∥xk−x∗∥2− 2ηk∇f(xk) · (xk−x∗)

]
−E[2ηk(Hk− f(xk)) · (xk−x∗)] +E[η2kH2

k ]

= (1− 2ηkK0)E
[
∥xk−x∗∥2

]
+E[2ηk(Hk− f(xk)) · (x∗−xk)] + η2kE[H2

k ].

Note that

E[2ηk(Hk−∇f(xk)) · (x∗−xk)] = E[E[2ηk(Hk−∇f(xk)) · (x∗−xk)|Fk]]

= 2ηkE[E[Hk−∇f(xk)|Fk] · (x∗−xk)]≤ 2ηkE[∥E[Hk−∇f(xk)|Fk]∥2]1/2E[∥x∗−xk∥2]1/2

≤ ηkE[∥E[Hk−∇f(xk)|Fk]∥2]1/2(1+E[∥xk−x∗∥2]).

The second last inequality follows from ab+cd≤
√
a2+ c2

√
b2+ d2 and the Holder Inequal-

ity, the last inequality follows from 2a≤ 1+ a2.

Let bk = E[∥xk − x∗∥2] and recall that Bk = E[∥E[Hk −∇f(xk)|Fk]∥2]1/2, Vk = E[H2
k ].

Then, we obtain the recursion

bk+1 ≤ (1− 2K0ηk + ηkBk)bk + ηkBk + η2kVk.

By Condition (b) and (c), we have

bk+1 ≤ (1−2K0ηk+ηkBk)bk+ηkBk+η
2
kVk ≤

(
1− 2K0ηk +

K0

8
ηk∆k

)
bk+

K0

8
ηk∆k+K3ηk∆k.
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Because step size ηk → 0, for k large enough, ηkK0 ≤ 1/2. Let k0 = max{k : 2ηkK0 > 1}.

Then, for k > k0, 1−2K0ηk+
K0

8
ηk∆k > 0. By Condition (a), ∆k/∆k+1 = (1+ 1

k
)β ≤ 1+ 1

k
≤

1+ K0

2
ηk, and by the induction assumption bk ≤C∆k, for k > k0, we have

bk+1 ≤
(
1− 2K0ηk +

K0

8
ηk∆k

)(
1+

K0ηk
2

)
C∆k+1+

K0

8
ηk∆k +K3ηk∆k

≤C∆k+1− ηk∆k

(
3K0C

2
− K0C

8
∆k−

K2
0C

16
ηk∆k−

K0

8
−K3

)
Then, we have bk+1 ≤C∆k+1 as long as

3K0C

2
− K0C

8
∆k−

K2
0C

16
ηk∆k−

K0

8
−K3 ≥ 0. (EC.4)

To check (EC.4), note that, ∆k,K0 ≤ 1 and C ≥ 8K3/K0. Besides, ηkK0 ≤ 1/2 < 1 for

k > k0. Then, for k≥ k0,

3K0C

2
−K0C

8
∆k−

K2
0C

16
ηk∆k−

K0

8
−K3 ≥

3K0C

2
−K0C

8
−K0C

16
−K0C

8
−K0C

8
=

17K0C

16
> 0.

Let

C =max
(
kβ0 (|µ̄−µ|2+ |p̄− p|2),8K3/K0

)
. (EC.5)

Then we have ∥xk − x∗∥2 ≤C∆k for all 1≤ k ≤ k0, and we can conclude by induction, for

all k≥ k0,

E[∥xk−x∗∥2]≤Ck−β.

By Assumption 3, there exists θ0 ∈ [0,1] such that

|f(xk)− f(x∗)|= |∇f(θ0(xk−x∗)+x∗)T (xk−x∗)| ≤K1∥xk−x∗∥2.

As a consequence,

R2(L)≤
L∑

k=1

E[Tk]K1Ck
−β.

Note that Tk equals to the arrival time of customer Dk plus its waiting time. Therefore,

E[Tk]≤E
[
Dk

λk

]
+E[W k

Dk
]≤ Dk

λ(p̄)
+M =O(Dk),

and we can conclude

R2(L) =O

(
L∑

k=1

Dkk
−β

)
.

□
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EC.1.8. Proof of Theorem 3

(i) For each k, note that xk ∈Fk, let’s denote by

h1k =−λ(pk)− pkλ′(pk)+h0λ
′(pk)

[
1

⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
E[Xk

n|Fk] +E[W k
n |Fk]

)
+

1

µ

]
,

h2k = c′(µk)−h0
λ(pk)

µk

[
1

⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
E[Xk

n|Fk] +E[W k
n |Fk]

)
+

1

µ

]
.

Then,

∥E[Hk−∇f(xk)|Fk]∥2 =
∣∣∣∣h1k− ∂

∂p
f(µk, pk)

∣∣∣∣2+ ∣∣∣∣h2k− ∂

∂µ
f(µk, pk)

∣∣∣∣2 .
Following (18),

|h1k−
∂

∂p
f(µk, pk)|2 ≤

h20λ
′(pk)

2

⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
|E[Xk

n −xk|Fk]|+ |E[W k
n −wk|Fk]|

)2
,

|h2k−
∂

∂µ
f(µk, pk)|2 ≤

h20λ(pk)
2

µ2
k⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
|E[Xk

n −xk|Fk]|+ |E[W k
n −wk|Fk]|

)2
,

where wk =E[W∞(µk, pk)] and xk =E[X∞(µk, pk)]. Note that λ(p), λ
′(p) and µ are bounded.

Let C0 =max(µ,p)∈B{h0λ′(pk), h0λ(p)/µ}, then

∥E[Hk−∇f(xk)|Fk]∥2 ≤
2C2

0

⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
|E[Xk

n −xk|Fk]|+ |E[W k
n −wk|Fk]|

)2
≤ 4C2

0

⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
|E[Xk

n −xk|Fk]|2+ |E[W k
n −wk|Fk]|2

)
=

4C2
0

⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
|E[Xk

n − X̄n
k |Fk]|2+ |E[W k

n − W̄ n
k |Fk]|2

)
where the last equality follows from E[W̄ n

k |Fk] =wk and E[X̄n
k |Fk] = xk and W̄

n
k and X̄n

k are

stationary versions of the waiting times and observed busy periods that are synchronously

coupled with W n
k and Xn

k respectively. Therefore, the bias

B2
k =E[∥E[Hk−∇f(xk)|Fk]∥2]

≤E

[
4C2

0

⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
|E[Xk

n − X̄n
k |Fk]|2+ |E[Xk

n − X̄n
k |Fk]|2

)]

≤ 4C2
0

⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
|E[(Xk

n − X̄n
k )

2] +E[(W k
n − W̄ n

k )
2]
)
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Following a similar argument as in the proof of Corollary 1, we have, for n≥ ⌈0.5ξDk⌉,

E[(W k
n − W̄ n

k )
2]≤E[(W k

n − W̄ n
k )

2 · 1(Qk < 0.5ξDk)] +E[(W k
n − W̄ n

k )
2 · 1(Qk ≥ 0.5ξDk)]

≤A exp(−γ · (n− 0.5ξDk))+ 2M exp(−η · 0.25ξDk))

≤ (A+2M) exp(−min(γ, η) · 0.25ξDk).

For the observed busy period Xk
n, following a similar analysis and Lemma EC.1, we have

E[(Xk
n − X̄k

n)
2]

≤ K4e
−0.5γξDkD2

k +(2E[(Xk
n)

4] + 2E[(X̄n
k )

4])1/2P(Qk ≥ 0.5ξDk)
1/2

≤ exp(−min(γ, η) · 0.25ξDk)(2M +K4D
2
k)≤ exp(−min(γ, η) · 0.125ξDk)(2M +K4K5),

where

K5 =max
D>0

exp(−min(γ, η) · 0.125ξD)D2 =

(
16

min(γ, η) · ξ

)2

e−2. (EC.6)

If we choose

Dk = aD + bD log(k), for aD ≥
CD

min(γ, η)ξ
and bD ≥

8

min(γ, η)ξ
,

with

CD =max(8(log((16A+32M)C0/K0),16 log((32M +16K4K5)C0/K0)), (EC.7)

then

E[(W k
n − W̄ k

n )
2]≤ K2

0

256C2
0k

2
, E[(Xk

n − X̄k
n)

2]≤ K2
0

256C0k2
.

As a consequence,

E[∥E[Hk−∇f(xk)|Fk]∥2]≤
4C2

0

⌈Dk(1− ξ)⌉

Dk∑
n>ξDk

(
|E[(Xk

n − X̄n
k )

2] +E[(W k
n − W̄ n

k )
2]
)
≤ K2

0

64k2
.

Therefore, we can conclude that

Bk =E[∥E[Hk−∇f(xk)|Fk]∥2]1/2 ≤
K0

8k
.

On the other hand, as λ(p), λ′(p) and µ are bounded, C1 ≜ maxµ,p∈B{|λ(p) +

pλ′(p)|, |c′(µ)|}<∞. Recall that C0 =max(µ,p)∈B{h0λ′(pk), h0λ(p)/µ}. Then,

E[∥Hk∥2]≤ 8(C1+C0/µ)
2+8C2

0E

 1

⌈(1− ξ)Dk⌉2

(
Dk∑

n>ξDk

(
Xk

n +W k
n

))2
 .
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By Lemma 1, we have

E

 1

⌈(1− ξ)Dk⌉2

(
Dk∑

n>ξDk

(
Xk

n +W k
n

))2
≤ E

 1

⌈(1− ξ)Dk⌉2

(
Dk∑

n>ξDk

(
λ(p)

λ(p̄)
X̂k

n + Ŵ k
n

))2
 ,

where Ŵ k
n and X̂k

n are defined as in Lemma 1. Note that by definition, Ŵ k
n and X̂k

n are

stationary, we have

E

 1

⌈(1− ξ)Dk⌉2

(
Dk∑

n>ξDk

(
λ(p)

λ(p̄)
X̂k

n + Ŵ k
n

))2


≤ 2

⌈(1− ξ)Dk⌉2
E

( Dk∑
n>ξDk

λ(p)

λ(p̄)
X̂k

n

)2
+

2

⌈(1− ξ)Dk⌉2
E

( Dk∑
n>ξDk

Ŵ k
n

)2


≤2(1− ξ)−2E

[(
λ(p)

λ(p̄)
X̂k

0

)2
]
+2(1− ξ)−2E[(Ŵ k

0 )
2]≤ 4(1− ξ)−2M.

Therefore, Vk is uniformly bounded. Given that ηk = cηk
−1, we have ηkVk ≤ K3

k
with

K3 = (8(C1+C0/µ)
2+32C2

0(1− ξ)−2M)cη. (EC.8)

(ii) According to the update rule, we immediately got

E[∥xk−xk+1∥2]≤ η2kE[∥Hk∥2]≤ 2k−2K3/K0 ≡K2k
−2, with K2 = 2K3/K0.

(iii) We have just proved that the conditions of Theorem 1 are satisfied with α= 1. There-

fore, R1(L) ≤ K
∑L

k=1 k
−1 log(k) ≤ K log(L)2 with the expression of K given in (EC.3).

Besides, conditions of Theorem 2 are satisfied with β = 1 andDk =O(log(k)). In particular,

∆k/∆k+1 = 1+ 1
k
≤ 1+ K0

2ηk
given that ηk = cηk

−1 with cη ≥ 2/K0. Therefore,

R2(L)≤CK1

L∑
k=1

(
Dk

λ(p̄)
+M

)
k−1 =O(log(L)2).

As a consequence, the total regret

R(L) =R1(L)+R2(L)≤Kalg log(L)
2 ≤Kalg log(ML)

2,with ML =

L∑
k=1

Dk.

The last inequality uses log(L)2 ≤ log(ML)
2. Since ML =O(L log(L)), the relaxation from

L to ML will not change the order of the regret bound. In addition, we can find a closed-

expression for Kalg as

Kalg =K +CK1 ·
(

CD +8

λ(p̄)min(γ, η)ξ
+M

)
, (EC.9)

where K is defined by (EC.3), C by (EC.5) and CD by (EC.7). □
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EC.1.9. Details in the Proof of Lemma 5

We first give a rigorous proof of (19) in derivation of the partial derivation ∂
∂p
E[W∞(p,µ)].

To better explain the proof, we adopt the notions in Glasserman (1992). We will take

derivative with respective to the parameter θ= r= 1/λ(p). With a slight abuse of notation,

we redefine Wn(θ) =Wn(µ,p) and Ũn(θ) =
Vn

µ
− θUn so that Ũ ′

n(θ) =−Un. And then, the

Lindley recursion becomes

Wn+1(θ) = ϕ(Wn(θ), Ũn(θ)), with ϕ(w,u) = (w+u)+.

Note that the function ϕ is increasing and convex in w and u. In addition, the derivative

process is denote as Vn(θ) =Zn. Define ψw(w,u) =ψu(w,u) = 1(w+u> 0), such that

Vn+1(θ) =ψw(Wn(θ), Ũn(θ))Vn(θ)+ψu(Wn(θ), Ũn(θ))Ũ
′
n(θ).

The stationary versions of the waiting time and derivative process are denoted as W̃0(θ)

and Ṽ0(θ). Then we can check Conditions (B1) to (B3) on page 377 of Glasserman (1992):

(B1) For each θ ∈ [1/λ(p),1/λ(p̄)], the sequence

{(Ũn(θ), Ũ
′
n(θ)),−∞<n<∞ }=

{(Vn

µ
− rUn,−Un

)
,−∞<n<∞︸ ︷︷ ︸

in our notation

}

is stationary and ergodic, as we can extend the i.i.d. sequences Vn and Un to −∞<

n≤ 0.

(B2) For each θ ∈ [1/λ(p),1/λ(p̄)], the Lindley recursion has a stationary solution W̃0(θ),

which is guaranteed by Assumption 1. Besides, following Lemma 2, for any initial state

W0(θ), the transient process Wn(θ) will converge to the stationary version in finite

time almost surely.

(B3) For all θ ∈ [1/λ(p),1/λ(p̄)],

P(ψw(W̃0(θ), Ũ0(θ)) = 0) = P

((
W∞(µ,p)+

V0

µ
− rU0

)+

= 0

)
︸ ︷︷ ︸

(in our notation)

= P(W∞(µ,p) = 0)> 0.

According to the discussion on p.379 of Glasserman (1992), Condition (B3) holds for

GI/GI/1 queues under the usual stability condition that µ > λ(p). Below, we give a

detailed verification of this condition under our model setting.
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Recall that Ũ0(r) =
V0

µ
−rU0 and by Assumption 1, E[Ũ0(r)]< 0, ∀r ∈ [1/λ(p),1/λ(p̄)].

So there exists a constant b > 0, such that P(Ũ0(r)<−b)> 0 for all r ∈ [1/λ(p),1/λ(p̄)].

Let S denote the support of W∞(µ,p) and let A= inf S ≥ 0. We first show by contra-

diction that A= 0. Since A is the infimum of the support,

P (W∞(µ,p)∈ [A,A+ ε))> 0, for any ε > 0.

Besides, if A> 0,

P(W∞(µ,p)≥A) = P
((

W∞(µ,p)+ Ũ0(r)
)+
≥A

)
= P

(
W∞(µ,p)+ Ũ0(r)≥A

)
= 1,

On the other hand, we have

P
(
W∞(µ,p)+ Ũ0(r)<A

)
≥ P

(
W∞(µ,p)∈

[
A,A+

b

2

)
, Ũ0(r)<−b

)
> 0,

where the last inequality follows from the fact thatW∞(µ,p) and Ũ0(r) are independent

in the GI/GI/1 queue. This is a contradiction, so we can conclude that A= 0. Next,

we show that P(W∞(µ,p) = 0)> 0. Following a similar derivation, we can conclude

P(W∞(µ,p) = 0) = P
((

W∞(µ,p)+ Ũ0(r)
)+

= 0

)
≥ P

(
W∞(µ,p)∈

[
0,
b

2

)
, Ũ0(r)<−b

)
> 0.

In addition, we have E[W̃0(θ)] ≤M and E[Ṽ0(θ)] = E[Z̃∞] = E[X∞(µ,p)] ≤M following

Lemma 1. As a consequence, we can prove (19) using the following Corollary 5.3 in Glasser-

man (1992):

Lemma EC.2 (Corollary 5.3 in Glasserman (1992)). Suppose that ϕ is increasing

and (jointly) convex, and that W0 and U0 are almost surely convex. Suppose (B1)-(B3)

hold, E[W̃0(θ)],E[Ṽ0(θ)]<∞ for all θ in its range. Then, E[Ṽ0(θ)] =E[W̃0(θ)]
′ and

lim
n→∞

1

n

n∑
i=1

Vi(θ) =E[W̃ (θ)]′, a.s.

almost everywhere in the range of θ.

The derivation of ∂
∂µ
E[W∞(p,µ)] follows a similar argument with Ũ(θ)≡ Vn− θUn/λ(p).
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EC.2. Relaxing Theoretical Bounds of Hyperparameters

In this section, we conduct numerical experiments to investigate the robustness of GOLiQ’s

performance to the two main hyperparameters: (i) cycle length Dk, and (ii) step size ηk.

We follow two steps:

• First, we calculate the theoretical bounds of these hyperparameters according to (20)

and (21).

• Next, we test the algorithm’s performance while varying these hyperparameters; we

especially consider values that violate their corresponding theoretical bounds.

EC.2.1. Theoretical bounds for ηk and Dk

We follow Section 6.2 by considering the M/M/1 example having the objective function

in (26) and demand function in (24), with a = 4.1, size n = 10 and c0 = 0.1. In order to

obtain the theoretic bounds for hyper-parameters, we set the region B= [6.7,10]× [3.7,5]

so that f(µ,p) is strongly convex on B.

Theoretical bound for ηk. According to the conditions in Assumption 3, we note

that the Hessian matrix of the objective f(µ,p) has a smallest eigenvalue 0.1231 in the

specific region B, which implies that K0 = 0.1231 (and the strong convexity of the objective

function on B). Hence, following from (20), the theoretical lower bound for ηk is cη ≥ c̃η =

2/K0 = 16.24.

Theoretical bound for Dk. To calculate the lower bounds of aD and bD specified in

(21), we first estimate C and (γ, η). We set ξ = 1. First, according to the expression (EC.7)

and K0 = 0.1231, we see that C ≥ 8. Next, following (3), we select min(γ, η) = 0.011 which

gives the smallest theoretical lower bound.

Hence, (21) requires that aD ≥ ãD = 8/0.011 = 727 and bD ≥ b̃D = 8/0.011 = 727, which

leads to a bound for the cycle length Dk ≥ 727+727 log(k).

EC.2.2. Robustness to the Theoretical Bounds

Recall that the theoretical bounds in (20) and (21) require that aD ≥ ãD, bD ≥ b̃D

and cη ≥ c̃η. We hereby test the criticality of these lower bounds ãD, b̃D and c̃η by

implementing GOLiQ with (aD, bD, cη) < (ãD, b̃D, c̃η). Specifically, in our first experi-

ments, we consider cη = {2,1,0.5,0.1}c̃η for the step-size ηk, with Dk = 10 + 10 log(k)

(see left-hand panels of Figure EC.1); in our second experiment, we consider (aD, bD) =
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Figure EC.1 Simulated regret curves with relaxed bounds on (i) step size ηk robustness (top left panel), (ii) cycle

length Dk (top right panel), and their logarithmic scales in sample size ML (two bottom panels).

All regret curves are estimated by averaging 500 independent simulation runs.

{0.028,0.021,0.014,0.007,0.0014}(ãD, b̃D) for the sample-size Dk, with ηk = 3/k (see right-

hand panels of Figure EC.1). In both experiments, we plot the average regret curves

estimated by 500 independent runs.

Figure EC.1 reveals that GOLiQ continues to perform effectively even when the hyperpa-

rameters are chosen to be much smaller than their corresponding theoretical lower bounds.

For ηk, our algorithm generates a logarithm regret even when cη = 0.1c̃η. (However, we

discover that GOLiQ will fail to converge and yield a linear regret if we keep reduc-

ing cη (e.g., to 0.01c̃η). For Dk, all regret curves exhibit a logarithmic order (even when

(aD, bD) = 0.0014(ãD, b̃D)). In summary, our numerical experiments show that the theoret-

ical bounds for our hyperparameters do not seem to be too restrictive. In addition, the

experiment in Section 6.3 serves as another piece of evidence supporting the robustness of

GOLiQ. In Section 6.3, we apply GOLiQ with the same hyperparameters ηk = 5k−1 and
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Dk = 10+10 log(k) for different settings with various c, c2s and n (see Figure 7), and GOLiQ

exhibits stable performance with similar logarithm regrets. Of course, we acknowledge that

the specific selection of these hyperparameters in a practical setting will require further

tuning in order to make the most efficient use of GOLiQ.

Remark EC.1 (Requirement of information: online learning vs. heavy traffic).

We provide our view on how online learning relies on the system information, and we

treat heavy-traffic methods as a benchmark. First, online learning in general requires

less prior information of the distributions than heavy-traffic methods do. For example,

to solve the problem in the present study, the diffusion limit in Lee and Ward (2014)

requires the knowledge of the exact values of the second moments of arrival and service

times. On the other hand, even though the efficiency of GOLiQ is subject to constraints

in terms of certain model parameters, the bounds of these constraints may be relaxed

without needing to sacrifice much of the algorithm’s performance. Second, the required

information (e.g., moments) serves as crucial input parameters for the heavy-traffic

models, whereas the design and implementation of online learning algorithms do not

immediately require the aforementioned information (even though it is still relevant to the

tuning of hyperparameters). All that we require is that the constants in (20) and (21) are

not too small. So as long as we follow the structure specified in (20)–(21), it will not be

too difficult to find reasonably sound hyperparameters (e.g., by a trial-and-error search)

even without precise information of parameters η and γ as in Assumption 2. However,

trial-and-error will be ineffective for heavy-traffic methods because precise information is

needed (e.g., σ2). In this sense, online learning depends on the system information to a

lesser extent.

EC.3. Selecting Hyperparameters according to Huh et al. (2009)

Huh et al. (2009) develops an online learning algorithm with the objective of finding the

optimal base-stock policy for an inventory system with a non-zero replenishment lead time.

At a glance, Huh et al. (2009) does not seem to be relevant to the present paper at all.

Indeed, results in Huh et al. (2009) are by no means directly comparable to GOLiQ, because

the two articles consider two different systems. Nevertheless, the fundamental idea in the

regret analysis by Huh et al. (2009) may be used as a basis to devise a queueing-version

algorithm. We give some specific reasons: First, Huh et al. (2009) analyzes the transient
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regret bound of an inventory system operated under a stationary base-stock policy, of

which the main framework is analogous to that in the present work. Second, the heart of

the online learning algorithm in Huh et al. (2009) is an SGD method. Last, the regret in

Huh et al. (2009) is also defined using the steady-state performance as the benchmark.

According to their regret analysis, Huh et al. (2009) propose to choose the hyperparam-

eters ηk = O(k−1/2) and Dk = O(
√
k) which yield a regret bound in the order O(M

2/3
L ).

However, we point out that the objective function in Huh et al. (2009) is convex while

GOLiQ in the present paper is designed assuming a strongly convex objective function

(Assumption 3). Therefore, to make a fair comparison between GOLiQ and the online

learning algorithm proposed in Huh et al. (2009), we need to redo the regret analysis in

Huh et al. (2009) under the strong convexity. This change, as we will show below, will yield

a different set of hyperparameters.

Suppose we select Dk = O(kα) and ηk = O(k−β). Then, following Lemma 11 of Huh

et al. (2009), R1(L) = O(L) (compared to R1(L) = o(L) in our analysis). Given that the

objective function is strongly convex, Theorem 2 yields that R2(L) =O
(∑L

k=1 k
α · k−β

)
=

O
(
Lα−β+1

)
for β ∈ (0,1]. As a result, the overall regret is

R(L) =R1(L)+R2(L) =O(L(α−β+1)∨1), and R(ML) =O

(
M

(α−β+1)∨1
α+1

L

)
,

with ML =O(Lα+1). Consequently, the order of R(ML) is minimized by setting

ηk =O(k−1), and Dk =O(k), (EC.10)

which yields an improved regret bound O(M
1
2
L ) (as opposed to the previous regret O(M

2
3
L )

under regular convexity).

We refer to Algorithm 1 with ηk and Dk selected according to (EC.10) as GOLiQ-H.

To compare GOLiQ with GOLiQ-H, we follow the setting in Section 6.2 by considering an

M/M/1 queue, with c(µ) = 0.1µ2 and λ(p) = 10λ0(p).

In Figure EC.2, we plot the average regret curves (estimated by averaging 500 inde-

pendent paths) for both GOLiQ and GOLiQ-H. The hyperparameters are ηk = 2k−1 and

Dk = 10+10 log(k) for GOLiQ, and ηk = {2,4}k−1 and Dk = 10+k for GOLiQ-H. Unsur-

prisingly, Figure EC.2 confirms that GOLiQ is more effective than GOLiQ-H. This is

consistent with our theoretical analysis because GOLiQ yields a logarithmic regret while

GOLi-H has a regret bound of O(M
1
2
L ).
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Figure EC.2 Comparing GOLiQ and GOLiQ-H: (i) regret curves (top panel), (ii) trajectory of price pk (middle

panel), and (iii) trajectory of service rate µk (bottom panel). Hyperparameters are ηk = {2,4}k−1

and Dk = 10+ k for GOLiQ-H, and are ηk = 2k−1 and Dk = 10+ 10 log(k) for GOLiQ. All regret

curves are estimated by averaging 500 independent simulation runs.
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Figure EC.3 Joint pricing and staffing for the M/M/1 model in Section 6.2 without uniform stability.

EC.4. Additional Numerical Examples

In this section we conduct additional numerical experiments to confirm the practical effec-

tiveness of our algorithm. In what follows, we first test the case where the uniform stability

condition is relaxed; we next report the algorithm performance for GI/GI/1 queueing

models with phase-type and lognormal distributions.

EC.4.1. Violation of Uniform Stability

We extend the M/M/1 example considered in Section 6.2 with the uniform stability con-

dition relaxed. Specifically, we begin with an initial setting of (p0, µ0) such that ρ0 ≡

λ(p0)/µ0 = 2.55, which violates the stability condition. As shown in Figure EC.3, the pric-

ing and staffing policies (pk, µk) remain convergent to (p∗, µ∗). Consistently, the resulting

traffic intensity ρk ≡ λ(pk)/µk is quickly controlled to fall below 1; that is, the workload is

kept in check despite of the unstable performance in the initial cycle.

EC.4.2. M/G/1 with Phase-Type Service

To test the performance of our online learning algorithm for queues with non-exponential

service times, we consider phase-type distributions: hyperexponential with n phases (Hn)

and Erlang with n phases (En). In Figure EC.4 we report the convergent sequence (pk, µk)
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with H2 service with service-time SCV c2s = 8 (top panel), M service with c2s = 1 (middle

panel), and E8 service with c2s = 1/8 (bottom panel). Other parameters include the step

size ηk = 4/k, cycle length Dk = 20 + 10 log(k) and initial condition p0 = 4 and µ0 = 12

(λ0 = 5.249).
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Figure EC.4 Joint pricing and staffing for an M/G/1 queue having (a) H2 service with c2s = 8 (top panel), (b)

M service (middle panel), and (c) Erlang service with c2s = 1/8 (bottom panel). Other parameters

are step length ηk = 4/k, cycle length Dk = 20 + 10 log(k), initial condition p0 = 4, µ0 = 12. The

optimal pricing and staffing solutions are: (i) (p∗, µ∗) = (3.44,16.86); (ii) (p∗, µ∗) = 3.40,12.48); (iii)

(p∗, µ∗) = 3.38,11.34).
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Figure EC.4 confirms that our algorithm remains effective. In addition, the convergence

is faster as the CSV c2s decreases. This is intuitive because a less variable service-time

distribution yields a smaller Vk for the gradient estimator.

EC.4.3. GI/GI/1 Examples

We consider an LN/LN/1 queue with service and interarrival times following lognormal

(LN) distributions. Our consideration here follows from the recent empirical confirmations

of LN distributed service times in real service systems.

We let c2s = c2a = 2 with c2a being the SCV of the LN -distributed interarrival times.

The other parameters remain the same as in Section EC.4.2. Because the exact optimal

solutions (p∗, µ∗) are unavailable for this model, we are unable to provide an estimate of

the regret as done in Figure 6, nor can we confirm the convex structure of the problem.

Nevertheless, Figure EC.5 shows that our online algorithm continues to work well, despite

the fact that LN is no longer a light-tail distribution (Assumption 2 does not hold in this

case).
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Figure EC.5 Joint online pricing and staffing for an LN/LN/1 having lognormal service and interarrival times

with CSVs c2s = c2a = 2. Other parameters are ηk = 4/k, Dk = 20+10 log(k), p0 = 4, µ0 = 14.
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EC.4.4. Extended Comparison of GOLiQ and Heavy-traffic Methods

Supplementing our investigations in Section 6.3, we provide additional numerical results.

Recall that the heavy-traffic results in Lee and Ward (2014) are obtained by constructing

a sequence of GI/GI/1 models indexed by n, where the nth model has scaled arrival rate

λn(p) = nλ(p) and service rate µn = nµ, so that both λn and µn grow to ∞ as n increases.

Lee and Ward (2014) develop asymptotic staffing and pricing solutions for the GI/GI/1

queue; they show that, as the scaling factor n→∞, the optimal price p∗n→ p∞ and service

capacity µ∗
n/n→ µ∞, with ρ∞ ≡ λ(p∞)/µ∞ = 1.

We repeat our experiment in Section 6.2 with the scaling parameter n ∈

{10,50,100,500,1000,2000} for the arrival rate function (24). But we now focus on the

optimal traffic intensity as n varies. In Figure EC.6 we plot the optimal price and service

rate as n increases. In each experiment, we compute the optimal pn and µn using their

average value in cycles 300–500 of Algorithm 1. Consistent with Lee and Ward (2014),

Figure EC.6 shows that pn, µn/n and ρn approach p∞, µ∞ and ρ∞ = 1. On the other hand,

when the scale n is not very large, the heavy-traffic solutions can become inaccurate. For

instance, when n= 100 the optimal traffic ρ100 is around 0.8, which is not close to 1.

EC.4.5. Alternative Definition of Regret

In this subsection, we attempt to rationalize our regret definition in (9). We consider

a potential alternative to (9) which benchmarks the system revenue under GOLiQ with

the nonstationary revenue under (µ∗, p∗). Because the nonstationary queue length is

intractable, we conduct additional numerical experiments to estimate the expected non-

stationary regret via Monte-Carlo simulations.

Specifically, we simulate the regret in (10) under (p∗, µ∗) with the queueing system

starting empty (of which the dynamics is nonstationary). We use the M/M/1 model in

Section 6 having a logit demand function (24) with n= 10 and a quadratic staffing cost in

(25) with c= 0.1.

In Figure EC.7 we graph both versions of the regret under GOLiQ under the same

experimental setting, with hyperparameters ηk = 3k−1 and Dk = 10 + 10 log(k). Figure

EC.7 confirms that the these two versions of regret appear to be nearly indistinguishable.

This is due to the geometric ergodicity of G/G/1 queue.
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Figure EC.6 Comparison of (i) online optimization solutions (pn, µn, ρn); (ii) exact solutions (p∗n, µ
∗
n, ρ

∗
n); and

(iii) heavy-traffic solutions (p∞, µ∞, ρ∞) = (3.282,6.932,1) in Lee and Ward (2014), as the system

scale n=M0 increases, with parameters Dk = n(10+10 log(k)) and ηk = 3k−1.

EC.5. Additional discussion on Assumption 3

In this section, we first provide some sufficient conditions for strong convexity in the

M/GI/1 case.

Lemma EC.3. For M/GI/1 queues, if c(µ) is convex, λ(p)/µ < 1, λ′′(p) is continuous,

and in addition,

λ′(p)2

2λ(p)
<λ′′(p)<

−2λ′(p)

p
, and

λ(p̄)

µ̄
> 1− 1/

√
2≈ 0.29, (EC.11)

then f(µ,p) is strongly convex in B.

Proof of Lemma EC.3 Recall that f(µ,p) = −pλ(p) + h0E[Q∞(µ,p)] + c(µ), and

(−pλ(p))′′ =−pλ′′−2λ′. Under condition (EC.11), we have −pλ′′−2λ′ > 0. Therefore, both
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Figure EC.7 Comparing two versions of regret: (i) “stationary regret” that benchmarks with the steady-state

performance under (µ∗, p∗) (defined in (9)), and (ii) “nonstationary regret” that benchmarks with

the nonstationary performance under (µ∗, p∗). Hyperparameters are ηk = 3k−1, Dk = 10+10 log(k).

Both regret curves are estimated by 1,000 independent runs.

−pλ(p) and c(µ) are convex, and it suffices to show that E[Q∞(µ,p)] is strongly convex in

µ and p. For M/GI/1 queues, Pollaczek-Khinchine formula yields that

q(µ,p)≡E[Q∞(µ,p)] =C
λ(p)

µ−λ(p)
+ (1−C)λ(p)

µ
,

with C ≡ 1+c2s
2

. For any given pair of (µ,p), let Hq be the Hessian matrix of q(µ,p). We

next verify that Hq is positively definite. By direct calculation, we have

∂2
pq=C

µ

(µ−λ)3
(
2(λ′)2+(µ−λ)λ′′)+(1−C)λ

′′

µ
,

∂2
µq=C

2λ

(µ−λ)3
+(1−C)2λ

µ3
, ∂p∂µq=−C

λ+µ

(µ−λ)3
λ′− (1−C) λ

′

µ2
,

with λ′, λ′′ being the first and second order derivatives of λ(p). As a result, the determinant

of Hessian matrix of Hq is

|Hq|=
C2

(µ−λ)5
(
2µλλ′′− (µ−λ)(λ′)2

)
+

(1−C)2

µ4

(
2λλ′′− (λ′)2

)
+

2C(1−C)
µ2(µ−λ)3

(
(2µ−λ)λλ′′− (µ−λ)(λ′)2

)
.

To show that Hq is positively definite, it suffices to show that ∂2
µq, ∂

2
pq and |Hq| are all

positive. First, it is clear that

∂2
µq= 2λC

(
1

(µ−λ)3
− 1

µ3

)
+

2λ

µ3
> 0.
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Next, we compute

∂2
pq=C

µ

(µ−λ)3
(
2(λ′)2+(µ−λ)λ′′)+(1−C)λ

′′

µ

=
2Cµ

(µ−λ)3
(λ′)2+

Cµ

(µ−λ)2
λ′′+(1−C)λ

′′

µ
(a)
>

Cµ

(µ−λ)2
λ′′+(1−C)λ

′′

µ

=Cλ′′
( µ

µ−λ︸ ︷︷ ︸
>1

· 1

µ−λ
− 1

µ

)
+
λ′′

µ

(b)
> Cλ′′

(
1

µ−λ
− 1

µ

)
+
λ′′

µ
> 0.

Here, inequality (a) follows from that 2Cµ
(µ−λ)3

(λ′)2 > 0. Inequality (b) holds due to the facts

that µ
µ−λ

> 1 and that λ′′ > (λ′)2

2λ
≥ 0. The last inequality holds because 1

µ−λ
> 1

µ
. As a result,

we have ∂2
pq, ∂

2
µq > 0. Next, we verify that |Hq|> 0. Because 2λλ′′− (λ′)2 > 0, we have

2µλλ′′ > (µ−λ)(λ′)2, and (2µ−λ)λλ′′ > (µ−λ)(λ′)2.

Therefore,

|Hq|=
C2

(µ−λ)5
(
2µλλ′′− (µ−λ)(λ′)2

)
+

(1−C)2

µ4

(
2λλ′′− (λ′)2

)
+

2C(1−C)
µ2(µ−λ)3

(
(2µ−λ)λλ′′− (µ−λ)(λ′)2

)
(c)
>

C2

(µ−λ)5
(
2µλλ′′− (µ−λ)(λ′)2

)
+

2C(1−C)
µ2(µ−λ)3

(
(2µ−λ)λλ′′− (µ−λ)(λ′)2

)
>

C2

(µ−λ)5
(

2µλλ′′︸ ︷︷ ︸
>(2µ−λ)λλ′′

−(µ−λ)(λ′)2
)
− 2C2

µ2(µ−λ)3
(
(2µ−λ)λλ′′− (µ−λ)(λ′)2

)
>

C2

(µ−λ)5
(
(2µ−λ)λλ′′− (µ−λ)(λ′)2

)
− 2C2

µ2(µ−λ)3
(
(2µ−λ)λλ′′− (µ−λ)(λ′)2

)
=

C2 ((2µ−λ)λλ′′− (µ−λ)(λ′)2)

(µ−λ)3

(
1

(µ−λ)2
− 2

µ2

)
> 0.

Inequality (c) holds because (1−C)2

µ4 (2λλ′′− (λ′)2) is positive by (EC.11). The last inequality

follows from λ(p)
µ
> 1 − 1/

√
2. Therefore, we have, for any pair (µ,p) ∈ B, ∇2f(µ,p) is

positive-definite. Because each component of ∇2f(µ,p) is continuous with respect to (µ,p),

and hence the smallest eigenvalue of ∇2f(µ,p) is also continuous with respect to (µ,p)

(See Appendix D of Horn and Johnson (2012)). Consequently, given that B is a compact

region, there exists an ε > 0 such that ∇2f(µ,p)− εI is positive-definite. This shows that

f(µ,p) is strongly convex in B (See Appendix B.5 in Bertsekas (1997)). □
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Notation Description

Model
parameters

and
functions

B= [p, p̄]× [µ, µ̄] Feasible action space

c(µ) Staffing cost function
f(µ,p) Objective (loss) function
h0 Customer holding cost
λ(p) Demand function
µ Service rate/capacity
n Market size/ System scale in Section 6
p Service fee
Q∞(µ,p) Stationary queue length under (p,µ)
Sk

n Service time of the (n− 1)th customer in cycle k
τn Interarrival time between (n− 1)th and nth customers
θ, γ, η Parameters of light-tail assumptions (Assumption 2)
Un, Vn Unscaled random “seeds” of interarrival and service times
x∗ = (p∗, µ∗) Optimal decision fee and service rate

Algorithmic
hyperparameters

Dk Sample size (number of customers served) in cycle k
ηk Step size or learning rate in cycle k
Hk Gradient estimator in cycle k
ML Cumulative number of customers served by cycle L
Qk Queue content leftover from cycle k− 1
W k

n Delay of the nth customer in cycle k
ξ Warm up rate
Xk

n (Xn) Server’s busy time observed by customer n in cycle k

Constants and
bounds in
regret analysis

aD, bD Constants for Dk in equation (21)

A= 4
√
M +4M Constant in Corollary 1

B Constant of stationary waiting times in Lemma 4
Bk, Vk Upper bounds for bias and Variance of Hk

cη Constant for ηk in equation (20)
cµ, cλ Constants in Lemma 3
C =max{∥x0 −x∗∥2,8K3/K0} Constant in Theorem 2
C0 =maxx∈B{h0λ′(p), h0λ(p)/µ} Constant in the proof of Theorem 3
C1 =maxx∈B{|λ(p)+ pλ′(p)|, |c′(µ)|} Constant in the proof of Theorem 3
CD Constant for the selection of Dk (Theorem 3)
dk = ⌈4 log(k)/min(θ, γ)⌉ Constant of warm-up time (Theorem 1)

d̃k = ⌈5 log(k)/min(θ, γ)⌉ Constant of warm-up time (Theorem 1)
Γi, i= 1,2 Stopping time of random walks (proof of Lemma 2)
I1, I2, I3 Three terms of the regret of nonstationary
Kalg Bound of the cumulative regret (Theorem 3)
K′ Constant for regret of nonstationary (proof of Theorem 1)
K =K′ +2M0/ log(2) Constant in the proof of Theorem 1
K0,K1 Constants for convexity and smoothness (Assumption 1)
K2 = 2K3/K0 Constant for Dk (Theorem 1)
K3 Constants for variance in Theorem 3 (EC.8)
K4 Constants for convergence rate of busy time in Lemma EC.1
K5 = 32e4/(min(θ, γ)) Bound in the proof of Theorem 3 (EC.6)
K6 =K2 maxp λ′(p) Bound in the proof of Corollary 2
λ̄, λ Upper and lower bounds for λ(p)
M Uniform bound for queueing functions in Lemma 1
M0 Upper bound of the regret in the first cycle
Rk Total regret during cycle k
R1,k,R2,k Regret of nonstationary/suboptimality in cycle k
R(L),R1(L),R2(L) Cumulative/nonstationary/suboptimal regret by cycle L
Tk Length of cycle k

Table EC.1 Glossary of notation.


