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A B S T R A C T   

As the first and most famous cryptocurrency-based blockchain technology, Bitcoin has attracted tremendous 
attention from both academic and industrial communities in the past decade. A Bitcoin network is comprised of 
two interactive parties: individual miners and mining pool managers, each of which strives to maximize its own 
utility. In particular, individual miners choose which mining pool to join and decide on how much mining power 
to commit under limited constraints on the mining budget and mining power capacity; managers of mining pools 
determine how to allocate the mining reward and how to adjust the membership fee. In this work we investigate 
the miners’ and mining pool managers’ decisions in repeated Bitcoin mining competitions by building a Monte- 
Carlo discrete-event simulation model. Our simulation model (i) captures the behavior of these two parties and 
how their decisions affect each other, and (ii) characterizes the system-level dynamics of the blockchain in terms 
of the mining difficulty level and total mining power. In addition, we study the sensitivity of system performance 
metrics with respect to various control parameters. Our analysis may provide useful guidelines to mining activity 
participants in the Bitcoin network.   

1. Introduction 

Blockchain is a digital append-only database that maintains a dy-
namic list of records. At its core, it is a consensus-based distributed 
system across a peer-to-peer network. The ingenuity of blockchain 
technology lies in its decentralized nature which enables the develop-
ment of secured environment against tampering and revision. Since its 
first application to the Bitcoin cryptocurrency proposed by Nakamoto 
et al. (2008), blockchain technology has grown rapidly in the past 
decade and has been applied to supply chain (Sharma et al., 2020), 
finance (Chang et al., 2020), healthcare (Griggs et al., 2018), and energy 
(Li et al., 2017). The backbone of the Bitcoin system is a winner-take-all 
game, in which each participant tries to be the first to solve a highly 
complicated computational problem. Due to the high payoff1 of the 
game, many players (a.k.a., miners) are incentivized to participate in the 
Bitcoin mining competition, despite the fact that miners have to pay for 
the costs of purchasing, operating, and maintaining mining machines. 
Because an individual participant’s winning probability is extremely 
small as the total mining power increases2, mining pools with integrated 

mining power arises. Mining pool provide a platform for individual 
players to cooperate with each other to reduce the mining risk as well as 
share the mining reward. To regulate the operations of a mining pool, 
the pool manager is responsible for the adjustment of membership fees 
and reward sharing policy. 

Motivated by the growing interest in Bitcoin blockchain technology, 
we built a Monte-Carlo simulation model to study the system dynamics 
of the Bitcoin block system. Our work investigates the behavior of in-
dividual miners and pool managers, and how they interact with each 
other. From the perspective of individual miners, we study how to seek 
appropriate mining policy so as to maximize profit with limited mone-
tary budgets and hashing power capacities; they decide which pool to 
join and when to turn on (off) their mining machines. From the 
perspective of pool managers, we examine how they adopt different 
reward share policies and adjust pool membership fees. Before review-
ing relevant literature and presenting our contributions, we first provide 
a brief review of the background of the Bitcoin blockchain. 

E-mail address: kli15@ncsu.edu (K. Li).   
1 The winner is rewarded by 12.5 Bitcoins. There was a bull run of the Bitcoin price in late 2017, which almost reached $20,000. Even though the Bitcoin price is 

highly volatile, it is still around $8,000 in May 2020 (Blockchain.com contributors, 2020).  
2 A miner’s winning probability is proportional to the mining capacity she possesses. 
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1.1. Background of the Bitcoin blockchain 

Blockchain is a digital, append-only, timestamped ledger with the 
following key features: decentralization, immutability, security, and 
transparency. As shown in Fig. 1, each block contains the index, time-
stamp, previous hash, hash, and other information. Hash refers to the 
output of a cryptographic function with other data as input, 

f (index, timestamp, previoushash, etc.) = hash,

which is a mathematical algorithm that maps data of arbitrary size to a 
bit string of a fixed size, and is designed noninvertible.3 The previous 
hash of current block points to the hash of the previous one, constituting 
the single-chain structure. 

Blockchain technology has been widely applied in different in-
dustries, such as cryptocurrencies, banking and payments, supply chain 
management, voting, and online music. Various mechanisms and con-
sensuses are designed depending on the diverse needs of implementa-
tions, which generates different types of blockchains. Based on different 
levels of accessibility and authorization, blockchains could be mainly 
classified into four types: public permissionless, public permissioned, 
private permissionless, and private permissioned (Peters and Panayi, 
2016; Wan, 2020). Specifically, the public and permissionless block-
chain realizes the full decentralization and gets rid of trust, which is used 
by a majority of cryptocurrencies. 

Bitcoin is the most well-known cryptocurrency and has been highly 
discussed since 2017, thanks to its controversiality, e.g., the high valu-
ation and huge energy consumption. In the Bitcoin network, the 
decentralized community of individual participants displaces the trusted 
third party in traditional centralized systems. Contrary to conventional 
distributed systems employing Byzantine fault tolerance consensus 
(Bracha and Toueg, 1985; Correia et al., 2011), the novelty of the Bitcoin 
system comes from that it achieves a consensus of the ordering and 
confirmation of transactions among untrusted distributed participants 
through a mining game, which is referred to as the Nakamoto consensus. 
Specifically, participants of the mining game, also called miners, 
compete with each other to first solve a extremely complex computation 
puzzle: search for an appropriate nonce (one of the inputs) of the SHA- 
256 function4 by brute force, in order to make the output hash value 
below target (a certain threshold given by the system). See Fig. 1. The 
process is called proof of work (PoW). The winner will obtain the 
confirmation right of the next block of transactions, and more impor-
tantly, earn the corresponding payoff. The incentive mechanism of the 
system is designed as follows: winning miners of each mining game are 
rewarded with a certain amount of newly minted Bitcoin (12.5 Bitcoins) 
and transaction fees from general users as compensation. 

Continuous participation in the mining activity incurs a nontrivial 
amount of costs, consisted of hardware procurement, maintenance cost, 
and utility cost. To solve the cryptographic puzzle is excessively energy- 
consuming, so the electricity bill constitutes the majority of all costs. 
Nevertheless, incentivized by the massive reward of the mining 
competition, there have been nearly 10,000 active Bitcoin network 
nodes (participants) on a daily basis in recent years (Yeow, 2020; Coin 
Dance contributors, 2020). These miners conduct the daily operations, 

such as minting new coins and recording transactions, to support the 
system. It is well accepted that solo-mining will no longer be able to 
sustain any profitable mining activities in the current days. In order to 
win mining competitions more steadily, profit-driven individual miners 
have conglomerated to form mining pools. Miners in the same mining 
pool collaborate with each other to compete in the mining contest, and 
more importantly, share the mining reward. Forming mining pools do 
not increase the mean number of competitions that a miner wins, but it 
does reduce the variance (Rosenfeld, 2011). The mining pool collects 
hashing power and provides the infrastructure for this collaboration. In 
return, the mining pool charges a membership fee from each applicant 
and determines the reward allocation policy among miners. This creates 
interplays between individual miners and mining pool managers, which 
we provide more details in later sections. 

1.2. Literature review 

The Bitcoin system and its underneath technology, i.e., blockchain, 
have caught much attention of researchers and scientists in the latest 
years. As powerful analytical tools, game-theoretic approaches are 
widely applied to characterize interactions among different players in 
the Bitcoin/blockchain system. The current related research mainly fo-
cuses on the security (Liao and Katz, 2017; Wu et al., 2019) and mining 
activities (Lewenberg et al., 2015; Tsabary and Eyal, 2018) of the sys-
tem. Meanwhile, the collaboration of blockchain and machine learning 
could be efficient and effective, including supervised learning (Yin and 
Vatrapu, 2017; Dey et al., 2020), unsupervised learning (Akcora et al., 
2018; Abay et al., 2019) and reinforcement learning (Liu et al., 2018; 
Nguyen et al., 2020). Additionally, the operations research (OR) society 
is also getting interested in this emerging technology. Cretarola and 
Figà-Talamanca (2019), Koutmos (2019) and Atsalakis et al. (2019) 
investigated the cryptocurrency price. Kawase and Kasahara (2017) and 
Huberman et al. (2019) employed queuing theory to study transactions 
in the Bitcoin system. Finally, considering the core of our work is the 
simulation-based sequential mining decision making to optimize 
players’ utilities, in this subsection, we mainly review recent blockchain 
research from the point of simulation’s view. Two main simulation 
methodologies are employed: agent-based and discrete-event models. 

Agent-based simulation. Kaligotla and Macal (2018) provided a 
generalized framework of modeling blockchain simulation by illus-
trating the essential agents and functioning of the system. Cocco and 
Marchesi (2016) reproduced the economy of the mining process with 
heterogeneous agents by presenting a complex artificial cryptocurrency 
market model with the Bitcoin transactions and price series. Later, 
Cocco et al. (2019) studied the trading of the currency pair BTC/USD by 
applying a genetic algorithm in this artificial market, where there are two 
types of agents called Chartists and Random Traders. Rosa et al. (2019) 
developed a security attack testing platform with extended scalability by 
taking advantage of parallel and distributed simulation techniques. Inti-
mated by the design of algorithmic trading and reinforcement learning 
systems, Chitra et al. (2019) built a multi-agent simulator to model 
censorship properties in parallelized PoW chains. They showed how 
endogenous design choices affect practical protocol performance and 
how simulations can interact with exogenous data. Brousmichc et al. 
(2018) built an agent-based framework to simulate the local energy 
marketplace by integrating realistic consumption/production behaviors 
and interacting with a private blockchain network. Bottone et al. (2018) 
developed an extendable agent-based simulation model for a block-free 
and fee-less distributed ledger, in which they exploited NetLogo to 
provide a 3D visualization of the Tangle (Popov, 2016). With the inte-
gration of inverse reinforcement learning, Lee et al. (2018) proposed a 
novel agent-based model to predict the movement of Bitcoin price. Using 
agent-based modeling and simulation technique, Wei et al. (2020) 
compare different consensus protocols and trade network topologies 
quantitatively. 

Discrete-event simulation. To investigate the large-scale 

Fig. 1. A demonstration of blockchain: the Bitcoin blockchain.  

3 Even a tiny alteration of the input will generate a totally different hash 
output.  

4 From the secure hash algorithm (SHA) family, its output is 256-bit. 
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blockchain networks, Wang et al. (2018) collected and defined a number 
of performance metrics to quantify the quality of blockchain. A queuing 
theory-based model is built by Memon et al. (2019) to characterize the 
realistic behaviors of both a memory and a mining pool for any block-
chain system. Utilizing a generalized representation of consensus pro-
tocols, Foytik et al. (2020) presented a blockchain simulator to provide 
insights into the performance of the consensus protocols under different 
networking conditions. Alharby and van Moorsel (2019) proposed a 
discrete-event simulation with transactions and emphasized on the 
generation of block via PoW. Aoki et al. (2019) involved the events of 
block creation, block propagation, and message communication. Miller 
and Jansen (2015) enabled the scalable execution of thousands of Bit-
coin nodes on a single machine in their work and included the denial-of- 
service attack to demonstrate the proposed simulator. Göbel et al. (2016) 
used an event-driven model to study the selfish-mining attack under a 
network with communication delay among miners. Gervais et al. (2016) 
studied optimal countermeasures for double-spending and selfish mining 
attacks based on Markov decision processes. They constructed a Bitcoin 
blockchain simulator to analyze the security and performance of 
different configurations. 

1.3. Contributions and organizations 

Our contributions. In this paper, we develop a practical discrete- 
event simulation model to study the dynamics of the Bitcoin block-
chain. One realistic feature of our model is the inclusion of the indi-
vidual budget constraint during the Bitcoin mining competition. In 
addition, we embed more details of the process of block production 
through share submissions within mining pools. Meanwhile, different 
share-based pool reward policies are also considered. To investigate the 
miner behavior, two crucial decisions are involved, i.e., mining and pool 
selection (Fig. 2). Aiming to provide a platform with comprehensive 
functionalities and configurations of the Bitcoin system, the proposed 
model also includes the membership fee adjustment and the adaptive 
difficulty mechanism. Furthermore, an alternative mining policy for the 
miner with insufficient mining budget is proposed and tested, and the 
emergence and behavior of the monopolist of the Bitcoin mining market 
are studied when eliminating the limitation of pool capacity. 

Some interesting results and conclusions are generated from the 
simulation.  

• For individual miners, our result shows that the Bitcoins gained by 
them are proportional to their mining capacities and budget volumes 

restrict mining behaviors. By applying different pool reward alloca-
tion policies, it validates that pay per share (PPS) policy could bring 
the most steady incomes, pay per last N shares (PPLNS) policy the 
second, and proportional system (PROP) policy the least.  

• For mining pools, we find that an initial oligopolistically distributed 
mining market does not eventually develop into a monopoly in the 
course of time. On the other hand, it develops into an oligopoly with 
identically initialized pools. We also observe that medium-size 
mining pools can attract more individual miners than both small- 
size and large-size ones; this may provide some guidelines to the 
manager/operator of the emerging Bitcoin mining pool.  

• From the point of view of the system, we validate that the dynamic 
adjustment of the mining difficulty is effective in terms of main-
taining a stable block generation rate. Moreover, we reveal an 
interesting relationship between the overall hashing power imple-
mentation and difficulty level; such a relationship may help an in-
dividual miner to predict the dynamics of the total hashing rate of a 
new campaign by observing the change of difficulty level, in order to 
optimize her mining strategy. Furthermore, we find that more indi-
vidual miners introduce higher stochasticity to the system.  

• By extending the simulation model, we provide conditions for the 
alternative policy to be effective and observe the herd behavior 
introduced by the policy. Additionally, the factors affecting the 
monopolist of the mining market are investigated. 

Organization of the paper. The remainder of this paper is organized 
as follows. Model settings, assumptions and detailed algorithms are 
presented in Section 2. Section 3 gives input data and parameters, pre-
sents experiment results, and explores extensions of the simulation. 
Finally, we give concluding remarks and discuss future research op-
portunities in Section 4. 

2. Simulation model 

2.1. Multi-layer model scope 

Our simulation model aims to explore what influences the collective 
and heterogeneous behaviors of miners and mining pools. 

Layer 1: individual miner. The first and most fundamental layer of 
decision is individual miners. Because they participate in mining to gain 
profits, miners will make their mining decisions based on their expected 
profit. That is, miners continue to stay in the contest if they can sustain a 
positive gain, and leave if otherwise. For each block appended to the 

Fig. 2. An illustration of the two-layer miner and mining pool decision model.  
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main chain, the reward of the winner is composed of two parts: trans-
action fees (roughly 1 ∼ 2 Bitcoins) and the Coinbase reward (currently 
12.5 Bitcoins). The costs of mining include hardware costs and utility 
costs. The fixed cost of mining hardware ranges from $50 to $10,500 in 
the market. According to Morgan Stanley 2017 data, the total energy 
consumption of the Bitcoin network is equivalent to the total electricity 
supporting 2 million U.S. homes. 

In addition to the mining decision (i.e., to mine or not to mine), miners 
will also decide which mining pool to join. Although the mining was first 
visioned to be performed by personal computers, over the years, indi-
vidual and group miners have conglomerated to form mining pools, 
because mining pools provide a more steady income stream. On the 
other hand, mining pools charge membership fees, which is around 1% 
∼ 3% of the total reward for the main-stream ones. Furthermore, 
depending on the reward-sharing policy, joining a mining pool affects 
the reward and cost structure for individual miners. 

Layer 2: mining pool. Mining pool managers form the second layer 
in the Bitcoin blockchain network. We consider the case where the 
mining pool only serves as a centralized collaboration platform for 
miners, which is the direct opposite of the original Bitcoin design as a 
decentralized network. The primary objective in managing a mining 
pool is to make a profit, which consequently requires the manager to 
balance the incoming of new miners and the departure of old ones. New 
miners bring along hashing capacities, which increase the winning 
probabilities. However, should there exist any mining pool whose total 
hashing power is large enough to dominate the mining competition, 
Bitcoin participants will inevitably question the credibility of the sys-
tem, which may result in the abandonment of network supporters and 
eventually the collapse of the entire network. This would deprive the 
purpose and economic opportunities of a mining pool. Given Bitcoin 
system states and available hashing power, pool managers aim to set the 
proper membership fees and reward policies. 

Metrics of the Bitcoin system. We monitor the system-level dy-
namics, such as difficulty level and average block generation times, 
while individual miners and mining pool managers are making decisions 
on different levels. At the beginning of each 2-week period, the hashing 
difficulty level will be automatically adjusted; the goal of this is to keep 
the block generation rate steady. 

2.2. Model assumptions 

In our simulation model, players (i.e., individual miners and pool 
managers) participate in a campaign-repeated tournament. We set the 
maximum of campaigns to be w and the counter of campaigns to be W. 

Within each campaign, there are exactly n = 2,016 valid blocks gener-
ated. We denote by XN the time to first generate the Nth valid block in a 
single campaign. By Satoshi’s design, mining difficulty5 is updated at the 
end of the Wth campaign by 

DW+1 = DW 600n
∑n

N=1
XN

(1)  

with DW representing the difficulty of the Wth campaign. The scaling is to 
maintain a nearly constant block generating rate (1 per 600 s on 
average), so the time length of each campaign is roughly 2 weeks 
(Narayanan et al., 2016). The residual time of the current campaign is 
estimated by T̂(N) = 600(n − N). Let I and J denote the sets of miners 
and pools. Furthermore, we denote by I ∘ the set of “idle” miners, I p 

the set of passive miners, and I a = I ⧹I p the set of active miners, 
which will be explained later. 

Assumptions on miner behavior. From the perspective of miner 
i ∈ I , she is characterized by a type vector θi = (bi, ci, γi,pi):  

• bi: the mining budget ($) within a campaign (correspondingly, Bi is 
her residual budget ($) in the campaign);  

• ci: the mining cost ($/hash);  
• γi: the individual valuation parameter of Bitcoin;  
• pi: the maximal mining power (hash/s). 

An individual miner’s first decision is to mine or not to mine. Let qi 
be binary variable, we write hi = qipi as the mining power (hash/s) an 
individual miner invests in mining. The “idle” miner set is formally 
defined as I ∘ = {i ∈ I |qi = 0}. We denote by T̂ i = Bi/(cihi) the esti-
mated residual time until exhausting the budget under the mining policy 
hi, T̂ = mini{T̂ i}, and I∘ = argmini{T̂ i}. When a miner is making a de-
cision, she may face the following two scenarios. 

(i) When a block is mined and broadcast to the whole network, each 
miner will decide to turn on her mining machine if it is profitable to 
participate in the mining of the next block in expectation. 
(ii) In addition to Scenario (i), each “idle” miner i ∈ I ∘ will peri-
odically check if a new block is released (this occurs once every Δ 
seconds). After l consecutive attempts with “negative” outcomes, the 

Fig. 3. The two-stage individual mining policy.  

5 A measure of how difficult it is to find a hash value below a given target. 
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minor will, with probability η(l), decide whether to run her mining 
machine. We assume η(l) is increasing in l. 

This monitoring mechanism mentioned in Scenario (ii) above can (a) 
maintain an acceptable fraction of open mining machines at all times, 
and (b) help an “idle” miner to closely track the trend of the overall 
hashing rate (regardless of other factors, such as Bitcoin market price, it 
can be a promising opportunity to participate in mining when the overall 
hashing rate is low). If a miner decides to participate in mining the next 
block, she will execute the mining decision with probability 

βi = min

{
Bi

T̂
(

N
)

cipi

, 1

}

.

A miner turns on the machine if her residual budget can cover the 
estimated mining expenditure (i.e., T̂(N)cipi) until the end of the 
campaign. Because all budgets will be refilled at the beginning of a new 
campaign, miners can be more aggressive in executing mining decisions 
towards the end of the current campaign. We summarize the whole 
process of individual mining to a two-stage policy in Fig. 3. For a miner i, 
the time to generate the Nth block (i.e., XN

i ) after updating difficulty is 
exponentially distributed (Narayanan et al., 2016) with rate 

μi =
hi

DW
/

D∘
,

where D∘ is the minimal difficulty. Since we also include the pool hop-
ping decision in the model, we use Pi ∈ J for miner i’s pool index. 
Moreover, we assume that miner i’s valuation of a Bitcoin Vi follows a 
continuous distribution FV(⋅; Γ, γi), parameterized by the exogenous 
market valuation Γ and her own valuation factor γi. In particular, Vi =

Ṽi1
{Ṽi⩾0}

and Ṽi ∼ N (Γ, γ2
i ), where Γ and γi are estimated by the his-

torical data of Bitcoin market price (see Table 3). 
Following Salimitari et al. (2017), we apply prospect theory (Kahne-

man and Tversky, 1979; Liu et al., 2014) to model the loss and risk 
aversion nature of miners during the pool hopping process. Suppose a 
miner with expected profit x joins a pool with mining power share y, her 
utility is given by 

U(x, y; λi, ϕi, ωi, ρi) = V(x; λi, ϕi)⋅W(x, y; ωi, ρi). (2) 

The value function V(x; λ, ϕ) characterizes the reflection effect6. In 
particular, it has the form of 

V
(

x; λi, ϕi

)

:=

{
xϕi if x⩾0

− λi( − x)ϕi otherwise  

with parameters λi > 1 and 0 < ϕi < 1. Moreover, to include the effect of 
the mining power distribution among pools, the weight function W(x,
y; ωi, ρi) is used to account for the certainty effect7. In particular, 

W
(

x, y; ωi, ρi

)

:=

{
yρi [yρi + (1 − y)ρi ]

− 1/ρi if x⩾0
yωi [yωi + (1 − y)ωi ]

− 1/ωi otherwise  

with parameters 0.5⩽ωi < ρi < 1. 
Assumptions on pool policies. We denote by FW

j the membership 
fee of the Wth campaign for the jth mining pool from set J (i.e., a pro-
portion of the total reward set by the pool manager). We will update the 
membership fee based on shares8. The submitted shares can be used to 
statistically measure the computational power a miner/pool controls 

(Liu and Liu, 2019). We assume that F1
j = F2

j ∼ U (a, b), and 

FW+1
j = FW

j + αj1{SW
j /SW− 1

j >1+∊} − αj1{SW
j /SW− 1

j <1− ∊}, W⩾2, (3)  

where SW
j counts the total shares produced by the jth pool within the Wth 

campaign, the constant ∊ ∈ (0,1) controls the sensitivity in the change 
of share numbers, and αj is the step size for the membership fee 
adjustment. If the production of shares in a specific pool changes 
significantly, which leads to a notable fluctuation of its mining power, 
the manager will take action to adjust the membership fee. A variety of 
mining pool reward policies has been proposed (Rosenfeld, 2011; Cong 
et al., 2019; Bitcoin Wiki contributors, 2020). In this simulation, we 
apply the following three share-based schemes most commonly adopted 
in practise (Qin et al., 2018; Qin et al., 2019).  

• PROP: at the end of every round9, the pool manager will distribute 
the block reward among miners, in direct proportion to the number 
of shares they submitted during this round.  

• PPLNS: instead of using the total number of shares in a round, the 
pool manager focuses on the last “N” shares, regardless of round 
boundaries.  

• PPS: unlike the above two polices, a miner will get instant 
compensation according to the expected value of a submitted share’s 
contribution. 

To implement these two policies, we introduce the following addi-
tional parameters: the difficulty discount factor of the jth pool δj; the 
current difficulty to generate a valid share for the miners in the jth pool 
DW

j =DW/δj; the number of shares the ith miner needs to get a valid block 

Sb
i , which is a geometric random variable with parameter 1/δPi ; the 

miner’s inter-share times {Xs
ik}k=1,⋯,Sb

i
, which are independent expo-

nential random variables with rate 

νi =
hi

DW
Pi

/
D∘

= δPi μi.

System level metrics. On the system level, we record the following 
metrics:  

• XN: the time first generating the Nth valid block in a campaign, XN =

mini{XN
i };  

• IN: the index of the miner first finds the Nth valid block in a campaign, 
IN = argmini{XN

i };  
• JN: the index of the mining pool that the miner IN comes from, JN =

PIN ;  
• bdW

j : the proportion of blocks of the jth pool in the Wth campaign;  

• mdW
j : the proportion of miners of the jth pool in the Wth campaign;  

• pdW
j : the proportion of mining power capacity of the jth pool in the 

Wth campaign;  
• hdj(τ): the proportion of mining power committed in the jth pool at 

system time τ. 

Other assumptions. Furthermore, we list other assumptions as 
follows.  

• The individual valuation of Bitcoin Vi is independent.  
• Considering a significant portion of hashing power belongs to the 

pool manager herself in practice, we introduce the passive miner set 
I p (Cong et al., 2019): passive miners stick to the same mining pool 

6 People are risk-averse over gains; people are risk-seeking over losses.  
7 In practise, people tend to over-react to lower probabilities (resp. smaller 

pools) and under-react to higher probabilities (resp. larger pools).  
8 A share is a partial solution to the original puzzle of generating a valid 

block, which is corresponding to a lower difficulty. 

9 The time elapsed between two valid blocks successfully mined by the same 
pool. 
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instead of hopping periodically. We assume that a miner is passive 
with probability πp.  

• Pool hopping with probability: at the end of each campaign, a miner 
prioritizes pools and joins the kth one with probability hpk.  

• Miners pool-hop at the end of each campaign, and the hopping time 
window is negligible.  

• To avoid the collapse of the trustworthiness of the Bitcoin system 
caused by the over-centralization of the hashing power, each mining 
pool sets an upper threshold UB of pool capacity. 

• We ignore transaction fees included in each block, which are negli-
gible compared with the Coinbase reward.  

• We ignore the fixed cost of purchasing mining machines and the 
depreciation of hardware. 

2.3. Simulation algorithms 

We present detailed simulation algorithms in this subsection. The 
framework of the simulation is illustrated in Fig. 4. We describe the 
following event list:  

• tA: the time point of the next block generation;  
• tB: the time point of the next block check;  
• tC: the time point of the next miner to run out her budget. 

The system state is updated by the next-event time advance approach 
in Algorithm 1.  

Algorithm1 Subroutine: update system status 

1: switch t←min{tA, tB , tC}
2: case tA = t (The next event is block generation.)  
3: Reset l←0, update N←N + 1.  
4: if N = n then reset Bi←bi, i ∈ I ; else update Bi←Bi − cihi(tA − τ), i ∈ I . end if  

5: Update βi←min

{
Bi

T̂(N)cipi
, 1

}

, i ∈ I ;  τ←tA.  

6: Distribute block reward within pool JN.  
7: Update Pi by (4), E[Ri]←12.5(1 − FPi )ViPi − 600cipi, i ∈ I .  
8: if E[Ri] > 0 then update qi←1 w.p. βi; qi←0 w.p. (1 − βi).end if  

9: Update νi←
qipi

Dc
Pi
/Dm, i ∈ I .  

10: Update T̂i←
Bi

cihi
, i ∈ I ; T̂←mini

{
T̂i

}
, I∘←argmini

{
T̂i

}
.  

11: Update XN+1
i , i ∈ I . (See details in Algorithm 2.)  

12: Update XN+1←min
i:XN+1

i ⩽T̂ i
{XN+1

i }, IN+1←argmin
i:XN+1

i ⩽T̂ i
{XN+1

i },JN+1←PIN+1 .  

13: Update tA←τ + XN+1, tB←τ + Δ.  
14: end case 
15: case tB = t (The next event is block check.)  
16: Update l←l + 1,I ∘←{i ∈ I |qi = 0}.  

17: Update Bi←Bi − cihi(tB − τ),βi←min

{
Bi

T̂(N)cipi
, 1

}

, i ∈ I ;  τ←tB.  

(continued on next column)  

(continued ) 

18: Update qi←1 w.p. βiη(l); qi←0 w.p. (1 − βiη(l)), i ∈ I ∘. Update νi←
qipi

Dc
Pi
/Dm,

i ∈ I ∘.  

19: Update T̂i←
Bi

cihi
, i ∈ I ;  T̂←mini

{
T̂i

}
, I∘←argmini

{
T̂i

}
.  

20: Update XN+1
i , i ∈ I ∘.  (See details in Algorithm 2.)  

21: Update XN+1←min
i:XN+1

i ⩽T̂ i
{XN+1

i }, IN+1←argmin
i:XN+1

i ⩽T̂ i
{XN+1

i },JN+1←PIN+1 .  

22: Update tA←τ + XN+1, tB←τ + Δ.  
23: end case 
24: case tC = t (The next event is one miner runs out her budget.)  

25: Update Bi←Bi − cihi(tC − τ),βi←min

{
Bi

T̂(N)cipi
, 1

}

, i ∈ I ;  τ←tC.  

26: Update qI∘ ←0,νI∘ ←0.  

27: Update T̂i←
Bi

cihi
, i ∈ I ; T̂←mini

{
T̂i

}
, I∘←argmini

{
T̂i

}
.  

28: end case 
29: Update tC←τ + T̂.  
30: end switch  

Suppose miner i turns on her machine, the individual winning 
probability is estimated by 

Pi =
μ̃i

μ̃i + μ̂ , where μ̃i =
pi

DW
/

D∘
and μ̂ =

N
∑N

k=1
Xk

(4)  

are the individual exponential rate when turning on her machine and the 
estimated overall mining rate, respectively. Then we can use Pi to up-
date the expected profit of the miner in Step 7 of Algorithm 1. 

We next show how miner i produces a valid block through submitting 
shares via Algorithm 2.  

Algorithm2 Subroutine: generate individual inter-block time via inter-share time 

1: Generate Sb
i ∼ Geo(1/δPi ).  

2: Generate {Xs
ik}k=1,⋯,Sb

i
∼ exp(νi).  

3: Update the first inter-share time Xs
i1←Xs

i1 + lΔ.  

4: Update XN+1
i ←

∑Sb
i

k=1Xs
ik.   

We finally discuss the pool hopping decision in Algorithm 3. Suppose 
the ith miner joins the jth pool and a new valid block is found by the 
specific pool, the average Coinbase reward share of the miner is esti-
mated by 

Pij = SW
i

/

SW
j 1{j=Pi} +

SW
i

/
SW

Pi
bdW

Pi

bdW
j + SW

i

/
SW

Pi
bdW

Pi

1{j∕=Pi}, (5)  

where SW
i is the counter of shares generated by the ith miner in the Wth 

campaign (the definition is similar to SW
j ). The proportion of shares 

yielded by the miner in the current pool is SW
i /SW

Pi
, approximating the 

Fig. 4. Main routine of simulation.  
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ratio of hashing power she owns within the pool. The proportion of 
blocks produced by the jth pool during the Wth campaign is bdW

j , 
approximating the ratio of hashing power occupied by the pool. Then we 
can use Pij to update the expected profit of miner i to join pool j in Step 1 
of Algorithm 3.  

Algorithm3 Subroutine: pool hopping 

1: Update Pij by (5), E[Rij ]←12.5(1 − FPi )ViPij − 600cipi, i ∈ I a, j ∈ J .  

2: Update uij←U
(

E[Rij], bdW
j ; λi, ϕi, ωi, ρi

)
by (2), i ∈ I a, j ∈ J .  

3: Order 
{

uij
}

j∈J 
to get the hopping priority {ji1, j

i
2,⋯, jik,⋯, jiK} such that 

uiji1
⩾uiji2

⩾⋯⩾uijik
⩾⋯⩾uijiK

, where K = |J |, i ∈ I a.  

4: Update Pi←jik w.p. hpk, i ∈ I a.   

3. Numerical experiments 

3.1. Input data and parameters 

Mining machines. Rauchs (2020) collects the information of more 
than 80 different SHA-256 mining equipments, among which, we list 5 
popular application-specific integrated circuits (ASICs)10 with distinct 
hashing power in Table 1. The mining cost of each machine is calculated 
based on the electricity price of 0.05$/kWh. For details, see Rauchs 
(2020) and references therein. To initialize the mining capacity in the 
simulation, we assume a miner purchases her mining machine from 
Table 1 with equal probabilities (see Table 3). 

Mining power distribution. From February 2016 to January 2019, 
there are in total 156,695 valid blocks generated. Wang et al. (2019) 
summarizes the distribution of valid blocks generated from top Bitcoin 
mining pools, which is the estimator of the mining power distribution 
over the network. We consider the top 9 pools and group all other minor 
pools and solo miners into the 10th category, see details in Table 2. This 
shows that oligopoly indeed exists in the Bitcoin mining system: several 

players control a large proportion of the hashing power (Cong et al., 
2019), but none of them can dominate the entire mining market solely 
(i.e., exceed the 50% threshold). Our model assumes that the ith miner’s 
pool index Pi is initialized by a discrete probability distribution esti-
mated by the proportions in Table 2. 

Input parameters are listed in Table 3. 

Table 3 
Summary of input parameter design.   

Parameter Description 

System r = 40  Number of simulation 
replications 

w = 15  Number of campaigns in each 
replication 

n = 2,016  Number of blocks in each 
campaign 

Δ = 600  Period of block check 

η(l) = 0.356− l1{1⩽l⩽6} + 1{l>6} Probability of deciding to mine 
after l “negative” checks in a 

row  
Γ = $8,807.71  Market valuation parameter of 

Bitcoin   

Miner |I | = 300  Number of miners 
πp = 20%  Initialization probability to 

generate the passive set I p  

γi = γ = $1,490.16  Homogeneous individual 
valuation parameter of Bitcoin 

(pi, ci) generated by U {1, 5} Maximal mining power and the 
corresponding mining cost 

ξi = 200%,100%,50% equally likely  Scaling factor of budget 
bi = 2,016⋅600⋅pi⋅ci⋅ξi  Mining budget of a single 

campaign 
λi generated by U (1, 2) Loss aversion parameter of 

value function in prospect 
theory 

ϕi generated by U (0, 1) Risk aversion parameter of 
value function in prospect 

theory 
ωi generated by U (0.5, 1) Parameter of weight function 

for loss in prospect theory 
ρi generated by U (ωi, 1) Parameter of weight function 

for gain in prospect theory  

Pool |J | = 10  Number of mining pools 
a = 0.01  Lower boundary of the uniform 

distribution to initialize the 
membership fee 

b = 0.03  Upper boundary of the uniform 
distribution to initialize the 

membership fee 
αj = α = 0.002  Step size of the membership fee 

adjustment 
∊ = 0.002  Sensitivity parameter of the 

membership fee adjustment 
δj = δ = 1,000  Homogeneous difficulty 

discount factor  
sδj = 2δj  Window size parameter “N” of 

PPLNS policy  

hpk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.8 if k = 1

0.8(1 −
∑k− 1

g=1
hpg) if 2⩽k⩽K − 1

1 −
∑k− 1

g=1
hpg if k = K  

Hopping probability to the kth 

most profitable pool   

UB = 0.40  Upper threshold of pool 
capacity  

Table 2 
An overview of top 9 Bitcoin mining pools and others.   

Mining pool # of blocks Percent 

1 AntPool 27,026  17.2%  
2 F2Pool 19,282  12.3%  
3 BTC.com 17,488  11.2%  
4 ViaBTC 12,100  7.7%  
5 SlushPool 12,002  7.7%  
6 BTC.TOP 11,256  7.2%  
7 BTCC 10,586  6.8%  
8 BitFury 8,754  5.6%  
9 BW.COM 7,315  4.7%  
10 Others 30,886  19.7%   

Table 1 
Typical ASICs in mining market.   

SHA-256 Mining 
Equipment 

Hashing power 
(Th/s) 

Efficiency (J/ 
Gh) 

Cost 
($/Th)   

1 MicroBT Whatsminer 
10S 

55  0.064  8.84E − 07   

2 Bitfily Snow Panther 
B1+

25  0.086  1.19E − 06   

3 Bitmain Antminer T9 13  0.126  1.75E − 06   
4 Canaan AvalonMiner 

741 
7  0.158  2.19E − 06   

5 Bitmain Antminer S7 5  0.273  3.80E − 06    

10 ASICs were the next step of development after CPUs, GPUs and FPGAs in 
Bitcoin mining hardware. 
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3.2. Experiment results 

We now presents our simulation results and discuss how they can be 
used to generate useful insights. The preliminary results are reported in 
the proceedings of the 2020 Winter Simulation Conference. Figs. 5 and 6 
depict the dynamics of shares and membership fees from three repre-
sentative pools11, having large, medium and small mining capacities. 
Fig. 7 illustrates the dynamics of mining difficulty and the histogram of 
inter-block times. Fig. 8 shows the dynamics of the total hashing rate of 

the whole system. 

3.2.1. Individual miners 
We calculate the mean squared error (MSE) between the average 

proportions of Bitcoins gained by individual miners over replications 
and their corresponding shares of maximal mining power, and the 
average variance of Bitcoins earned of all miners in Table 4. The 
extremely small value of MSE indicates that the Bitcoins gained by 
miners are proportional to their mining capacities, even though they 
turn on machines probabilistically. The average variance under PPS 
policy has the smallest value. Considering a miner is immediately 
rewarded once upon the submission of a valid share in the PPS system, 

Fig. 5. Simulation of 3 types of pools: large, medium and small.  

Fig. 6. Simulation of identically initialized pools (illustrate the first three pools).  

11 Full results of all mining pools are presented in A. 
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the pool manager needs to absorb the risk associated with finding full 
solutions. In other words, PPS offers zero variance in the reward per 
share, but there is still some variance in the number of shares found by 
the miner in unit time (Rosenfeld, 2011). The average variance with 
PPLNS policy is less than the one with PROP, which validates the 
argument by Rosenfeld (2011). Additionally, we pick 15 typical miners 
with distinct hashing capacities (pi’s) and budget scaling factors (ξi’s), 
and compute their time proportions when running mining machines. 
From Table 5, we can see, regardless of mining capacities, that miners’ 
mining behaviors are restricted by their budget sizes in the simulation. 

3.2.2. Mining pools 
Given that pool managers apply the simple policy as in (3) for 

membership fee adjustment, it is not surprising to see that the mem-
bership fees and the number of shares are coping with each other 
(Fig. 5a). Furthermore, in the real Bitcoin mining competition, the 
mining power implementation is unobservable among players. Even in 
the same pool, the hashing rate is not transparent to the pool manager or 
individual miners. The number of valid shares submitted can be an 
effective estimator to measure the true hashing rate within the pool (Liu 
and Liu, 2019). So we conclude that the mining power dynamics in a 
pool could be inferred by the membership fee change. Because mining 
power is not equally distributed over the pools (Table 2), pools 1 and 2 
own larger proportions of mining power, who yield the majority pro-
duction of shares. Nevertheless, as time evolves, we do not observe any 

Fig. 7. Bitcoin mining difficulty level and inter-block time.  

Fig. 8. The dynamics of overall hashing rate (100-point moving average, a single replication).  

Table 5 
Proportions of time when running mining machines for 15 typical individual 
miners.     

ξi     

50% 100% 200% 

pi  55 Mean 48.39% 92.41% 100.00% 
Std. 0.36% 1.52% 0.00% 

25 Mean 48.40% 92.41% 100.00% 
Std. 0.36% 1.52% 0.00% 

13 Mean 48.39% 92.41% 100.00% 
Std. 0.37% 1.52% 0.00% 

7 Mean 48.42% 92.41% 100.00% 
Std. 0.36% 1.52% 0.00% 

5 Mean 48.41% 92.41% 100.00% 
Std. 0.36% 1.52% 0.00%  

Table 4 
Descriptive statistics of individual mining rewards.   

MSE Average variance 

PPS 1.44E − 06  306.29  
PPLNS 1.44E − 06  881.14  
PROP 1.46E − 06  1039.17   
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monopolistic structure. Contributing factors of this result are the 
finiteness of the pool capacity and the existence of passive miners. 

From Fig. 5b, we can observe three different membership fee dy-
namics: (i) a steady curve in large-size pools (e.g., pool 1), (ii) an 
increasing trend in medium-size pools (e.g., pool 2), and (iii) a 
decreasing trend in small-size pools (e.g., pool 3). As mentioned before, 
the increase and decrease of the mining power occupied by each pool 
can be related to the corresponding changes of the membership fee. We 
give some explanations: the expansion of the large size pool is limited by 
the capacity threshold as well as the under-reaction of miners (modeled 
by prospect theory) during the pool selection process; on the other hand, 
the medium-size pool has a higher potential to attract individual miners. 
This observation may be able to provide guidelines for some consortium 
interested in setting up a new mining pool: sufficient initial mining 
power is essential to attract individual miners; however, the pool size 
cannot be too large, which prevents the system’s mining power from 
being over-centralized and the blockchain network from collapsing due 
to miners’ loss of trust. 

Besides initializing pools based on the proportions of Table 2, we 
simulate the case that all pools have identically initial states: same miner 
compositions and same membership fees. In a single replication, 
although all pools are the same at the beginning, Fig. 6a reveals that 
several oligopolists (i.e., pools 1 and 2) are formed as time goes, since 
they generate most of the shares. By observing the dynamics of average 
membership fees over replications in Fig. 6b, they are all more un-
varying than those with different initialized pools in Fig. 5b. 

3.2.3. System metrics 
Fig. 7a shows the convergence of the Bitcoin mining difficulty level 

as campaigns evolve. It validates the effectiveness of the adaptive dif-
ficulty mechanism designed by Satoshi. The block mining rate depends 
on the difficulty level and mining power committed by miners, which 
are updated every 2,016 blocks and fluctuated according to individual 
mining decisions in real time, respectively. As a result, new valid blocks 
occur according to a nonhomogeneous Poisson process (Bowden et al., 
2018). Nevertheless, the histogram reported in Fig. 7b is similar to an 
exponential distribution. Hence, the new block arrival rate function μ(t)
is steady thanks to the bi-weekly difficulty adjustment mechanism. On 
the other hand, we recognize that the estimated mean of inter-block time 
is 616.61 with standard deviation 643.49, which is slightly greater than 
600, the idealistic value designed by Satoshi. This may be attributed to 
the delay in updating the difficulty, see Kraft (2016), Meshkov et al. 
(2017), Garay et al. (2017). 

From Fig. 8, we observe an interesting relationship between the 
mining power allocation rule and the difficulty level dynamics: (i) if the 
current difficulty decreases significantly from the previous one, the 
overall hashing rate exhibits an upward spike when approaching the end 
of the current campaign; (ii) conversely, there is a downward spike to-
wards the end of the current campaign. The reason for the first scenario 
is that the current difficulty level is too high for miners with respect to 
their mining capacities and budgets. Even though the mining activity is 

profitable, some miners have already exhausted their budgets. On the 
other hand, the current difficulty level in the second scenario is rela-
tively low so that miners will be more risk-seeking (i.e., increasing βi’s) 
to execute mining decisions, in order to spend all residual budgets by the 
end of the campaign. This finding may help miners to predict the future 
allocation of the overall mining power by taking advantage of the dy-
namics of the mining difficulty, and to select the optimal timing to begin 
mining. For example, if a miner has a lower budget, she choose to apply 
an alternative policy: she could mine more actively at the beginning of a 
new campaign in Scenario (i); she should not turn on her machine idle 
until the end of a new campaign in Scenario (ii). We will discuss the 
alternative policy with more details in SubSection 3.3. 

To supplement the case that the number of miners |I | = 300, we 
also conduct experiments with |I | = 600 and 900, and obtain similar 
results to those as illustrated in Figs. 5, 7 and 8. The standard deviation 
of Bitcoin mining difficulty level increases as the number of miners in-
creases (see Fig. 9). To see this, note that an increased number of miners 
leads to higher system stochasticity, which in turn increases the vacil-
lation of overall hashing rate and difficulty level. 

3.3. Extensions 

In this subsection, we discuss the alternative mining policy for the 
miner with insufficient mining budget and investigate the emergence 
and behavior of the monopolist when eliminating the limitation of pool 
capacity. 

3.3.1. Alternative mining policy 
Except for the “default” individual mining policy used in the simu-

lation model (Fig. 3), we also introduce an alternative policy for some 
low-budget miners with ξi = 50% (Table 6): they start to turn on ma-
chines from the beginning until depleting budgets, if a campaign’s dif-
ficulty level is lower than the previous; they only mine the blocks of the 
second half of the campaign, otherwise. To test the alternative policy, 
we need some new notations: the set of miners applying the alternative 
mining policy I ap; the proportion of mining power for miners applying 
the alternative policy Pap; the relative increase of the Bitcoins gained by 
miner i from scenario S0 ζi; the relative increase of the Bitcoins gained 
by the miners applying the alternative policy from scenario S0 ζs; the 

Fig. 9. Standard deviations of DW over 40 replications with different numbers of total miners.  

Table 6 
Typical lower-budget miners with ξi = 50%.  

pi (Th/s)  i  

(I 1) (I 2) (I 3) (I 4)

5 1 4 10 20 
7 19 21 25 31 
13 84 90 98 164 
25 33 38 51 58 
55 3 6 35 45  
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average relative increase of the Bitcoins gained by each miner applying 
the alternative policy from scenario S0 ζ. Meanwhile, we define mining 
scenarios in Table 7. 

The related results under different mining scenarios are shown in 
Table 8. We can see that the alternative policy indeed helps most of 
“testing” miners improve their payoff. Moreover, for a specific miner 
with an insufficient budget, her relative increase of Bitcoins has a trend 
of raising first and then dropping (e.g., the 6th and 7th rows of Table 8). 
The changes of ζs and ζ also reflect similar trends. In other words, if 

more miners adopt the alternative policy, the marginal mining payoff 
will shrink. Recall that the alternative policy is designed according to the 
relationship between the mining power allocation rule and the difficulty 
level dynamics (Fig. 8). Combined with Fig. 10, the shrinkage of the 
marginal payoff is due to that the increasing value of Pap changes the 
relationship. In addition, compared with Fig. 8, Figs. 10a and 10b pre-
sent significantly different time series of overall hashing rate, even 
though the Pap’s (4.95% and 6.59%, respectively) are comparatively 
small, which may be explained by the herd mentality of miners. In 
conclusion, when the overall hashing rate keeps the pattern in Fig. 8, the 
alternative mining policy might increase the advantage of a “poor” 
miner with sufficient hashing power (on the contrary, the miner with 
smaller hashing power will probably have less reward, see the 3rd row of 
Table 8). 

3.3.2. Monopolist of the Bitcoin mining system 
In our simulation model, the distribution of the overall mining power 

may potentially be influenced by  

• the pool membership fee (Fj) adjustment mechanism,  
• the upper threshold (UB) of pool capacity,  
• the certainty effect of prospect theory (under-react to larger pools 

and over-react to smaller pools),  
• and passive miners. 

Fig. 10. The dynamics of overall hashing rate in different mining scenarios (100-point moving average, a single replication).  

Table 8 
Relative increases of Bitcoins gained by typical lower-budget miners from scenario S0.  

Scenario S1_1 S1_2 S1_3 S1_4 S1_5 S2 S3 S4 S5 
Pap  0.08% 0.11% 0.20% 0.39% 0.86% 1.65% 3.30% 4.95% 6.59% 

ζ1  − 0.53% – – – – − 0.24% 0.05% − 1.05% − 1.10% 
ζ19  – 0.42% – – – 0.85% 0.11% 0.55% − 0.03% 
ζ84  – – 0.78% – – 0.59% 0.29% 0.50% 0.30% 
ζ33  – – – 0.97% – 0.71% 1.06% 0.08% 0.08% 
ζ3  – – – – 1.17% 1.13% 1.19% 0.09% 0.27%  

ζs  − 0.53% 0.42% 0.78% 0.97% 1.17% 0.88% 0.92% 0.60% 0.44% 

ζ  − 0.53% 0.42% 0.78% 0.97% 1.17% 0.61% 0.76% 0.50% 0.22%  

Table 7 
Mining scenarios.  

Scenario I ap  Pap  

S0 ∅  0.00%  
S1_1 {1} 0.08%  
S1_2 {19} 0.11%  
S1_3 {84} 0.20%  
S1_4 {30} 0.39%  
S1_5 {3} 0.86%  
S2 I 1  1.65%  
S3 I 1 ∪ I 2  3.30%  
S4 I 1 ∪ I 2 ∪ I 3  4.95%  
S5 I 1 ∪ I 2 ∪ I 3 ∪ I 4  6.59%   
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The first two factors above are regarding mining pools. Recall Eq. (3), 
the dynamics of Fj could indicate the change of the corresponding pool’s 
mining capacity. Nevertheless, Fj makes less impact on the overall 
mining power of the network than UB, because it fluctuates within the 
range of 0% ∼ 4% (see Fig. 5b), which is close to zero. In other words, 
the increasing membership with a fixed step size will not discourage 
miners from joining the pool effectively. 

Suppose pool managers do not care about the credit collapse of the 
Bitcoin system and remove UB, pool 1 will quickly arise as a monopolist 
which occupies the majority (more than 50%) of the system’s overall 
mining capacity. Afterward, its mining capacity becomes steady, so does 
its membership fee (Fig. 11). In our experiment, the monopolist pos-
sesses around 60% ∼ 70% of the total mining capacity. In other words, it 
attracts most, but not all, of the active miners. Because miners over-react 
to smaller pools and under-react to larger pools (the certainty effect of 
prospect theory). 

In order to analyze the monopoly of the Bitcoin mining system, extra 

experiments are performed without the pool capacity’s upper limitation. 
First, we find that the size of the monopolist’s pool increases as the 
number of mining pools decreases (Fig. 12). Similarly, by reducing the 
proportion of passive miners, the monopolist will attract more active 
miners (Fig. 13). In conclusion, keeping the number of competitors as 
well as the ratio of passive miners could impose restrictions on mo-
nopoly, and the latter has more impact than the former. Additionally, we 
have an interesting observation: independent of the number of pools and 
the proportion of passive miners, the average (maximal) ratio of active 
mining capacity controlled by the monopolistic pool stays invariant, 
which is around 63% (72%). 

4. Conclusion and future work 

Summary. We develop a discrete-event Monte-Carlo simulation 
model to study the behavior of individual miners and mining pool 
managers, with the objective of testing different mining and pool 
managing policies. Compared with previous works, our model is more 
flexible and practical, because it involves realistic features including 
hashing rate, mining cost, monetary budget, Bitcoin market price, 
mining pool reward policies, and membership fees. Our simulation re-
sults may provide useful insights for individual miners and pool man-
agers in the realistic mining system. First, for an individual miner 
participating in pool mining, the Bitcoin income stability of three pop-
ular remuneration schemes is as follows: PPS > PPLNS > PROP. Next, to 
approach the ideal block generation rate designed by Satoshi, the cur-
rent adaptive difficulty recalculation algorithm is demonstrated to be 
efficient. Another interesting finding here is that medium pools may 
have a greater growth potential than small and large ones. Moreover, the 
stochasticity of the system will be higher if we involve more individual 
miners in our simulation. Furthermore, the relationship between the 
mining power allocation rule and the real-time difficulty level may help 
individual miners to make more profitable mining decisions by choosing 
the appropriate timing to mine. Based on this, we introduce an alter-
native mining policy and validate its effectiveness under certain condi-
tions. Finally, we provide the factors influencing the Bitcoin mining 

Fig. 11. The dynamics of membership fees without UB (average and 95% C.I. of 40 replications).  

Fig. 13. The monopolist’s proportions of (active) mining capacity with different πp’s when removing UB.  

Fig. 12. The monopolist’s proportions of (active) mining capacity with 
different pool numbers when removing UB. 
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monopoly in the simulation model. 
Future works. Since security issues, e.g., selfish-mining attack (Eyal 

and Sirer, 2014), block withholding attack (Wu et al., 2019), and fork 
after withholding attack (Kwon et al., 2017), are critical in the Bitcoin 
network, we next plan to extend our simulation model to include various 
attacks and coping strategies. Furthermore, as an increasing number of 
Bitcoin/blockchain research from the OR community (Pun et al., 2018; 
Roşu and Saleh, 2020; Gan et al., 2021), we also consider taking more 
advantage of OR methodologies in the future. Meanwhile, we may 
involve Black Swan events, such as the skyrocket or plummet of Bitcoin 
price and the outbreak of epidemic diseases. 

CRediT authorship contribution statement 

Kejun Li: Writing - original draft, Formal analysis, Data curation, 
Visualization. Yunan Liu: Writing - review & editing, Methodology, 
Supervision. Hong Wan: Writing - review & editing, Conceptualization, 
Supervision. Yining Huang: Resources. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

The authors are grateful for Ling Zhang’s suggestions in the early 
stage of the model building. 

Appendix A. Additional numerical experiment results 

The dynamics of shares and membership fees of all mining pools are 
illustrated in Fig. A.14. Moreover, Fig. A.15 is regarding the case of all 
pools with the same initial states; Fig. A.16 shows the results without the 
upper limitation of pool capacity UB. 

Fig. A.14. Simulation of 10 pools.  
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Fig. A.15. Simulation of 10 pools (identically initialized pools).  

K. Li et al.                                                                                                                                                                                                                                        



Computers and Operations Research 134 (2021) 105365

15

References 

Abay, N.C., Akcora, C.G., Gel, Y.R., Islambekov, U.D., Kantarcioglu, M., Tian, Y., 
Thuraisingham, B., 2019. Chainnet: Learning on blockchain graphs with topological 
features. arXiv preprint arXiv:1908.06971. 

Akcora, C.G., Dey, A.K., Gel, Y.R., Kantarcioglu, M., 2018. Forecasting bitcoin price with 
graph chainlets. Pacific-Asia conference on knowledge discovery and data mining, 
Springer 765–776. 

Alharby, M., van Moorsel, A., 2019. Blocksim: A simulation framework for blockchain 
systems. ACM SIGMETRICS Performance Evaluation Review 46, 135–138. 

Aoki, Y., Otsuki, K., Kaneko, T., Banno, R., Shudo, K., 2019. Simblock: A blockchain 
network simulator. In: IEEE INFOCOM 2019-IEEE Conference on Computer 
Communications Workshops (INFOCOM WKSHPS). Institute of Electrical and 
Electronics Engineers Inc, Piscataway, New Jersey, pp. 325–329. 

Atsalakis, G.S., Atsalaki, I.G., Pasiouras, F., Zopounidis, C., 2019. Bitcoin price 
forecasting with neuro-fuzzy techniques. Eur. J. Oper. Res. 276, 770–780. 

Bitcoin Wiki contributors, 2020. Comparison of mining pools - Bitcoin Wiki. url:https:// 
en.bitcoin.it/wiki/Comparison_of_mining_pools, accessed 30th May. 

Blockchain.com contributors, 2020. BTC to USD: Bitcoin to US Dollar Market Price - 
Blockchain. URL: https://www.blockchain.com/charts/market-price, accessed 30th 
May. 

Bottone, M., Raimondi, F., Primiero, G., 2018. Multi-agent based simulations of block- 
free distributed ledgers. In: 2018 32nd International Conference on Advanced 
Information Networking and Applications Workshops (WAINA). Institute of 
Electrical and Electronics Engineers Inc, Piscataway, New Jersey, pp. 585–590. 

Bowden, R., Keeler, H.P., Krzesinski, A.E., Taylor, P.G., 2018. Block arrivals in the 
bitcoin blockchain. arXiv preprint arXiv:1801.07447. 

Bracha, G., Toueg, S., 1985. Asynchronous consensus and broadcast protocols. J. ACM 
(JACM) 32, 824–840. 

Brousmichc, K.L., Anoaica, A., Dib, O., Abdellatif, T., Deleuze, G., 2018. Blockchain 
energy market place evaluation: An agent-based approach. In: 2018 IEEE 9th Annual 
Information Technology, Electronics and Mobile Communication Conference 
(IEMCON). Institute of Electrical and Electronics Engineers Inc, Piscataway, New 
Jersey, pp. 321–327. 

Chang, S.E., Luo, H.L., Chen, Y., 2020. Blockchain-enabled trade finance innovation: A 
potential paradigm shift on using letter of credit. Sustainability 12, 188. 

Chitra, T., Quaintance, M., Haber, S., Martino, W., 2019. Agent-based simulations of 
blockchain protocols illustrated via kadena’s chainweb. In: 2019 IEEE European 
Symposium on Security and Privacy Workshops (EuroS&PW). Institute of Electrical 
and Electronics Engineers Inc, Piscataway, New Jersey, pp. 386–395. 

Cocco, L., Marchesi, M., 2016. Modeling and simulation of the economics of mining in 
the bitcoin market. PloS one 11. 

Fig. A.16. Simulation of 10 pools (without UB).  

K. Li et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0305-0548(21)00140-4/h0010
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0010
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0010
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0015
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0015
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0020
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0020
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0020
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0020
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0025
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0025
https://www.blockchain.com/charts/market-price
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0040
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0040
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0040
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0040
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0050
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0050
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0055
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0055
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0055
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0055
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0055
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0060
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0060
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0065
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0065
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0065
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0065
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0070
http://refhub.elsevier.com/S0305-0548(21)00140-4/h0070


Computers and Operations Research 134 (2021) 105365

16

Cocco, L., Tonelli, R., Marchesi, M., 2019. An agent-based artificial market model for 
studying the bitcoin trading. IEEE Access 7, 42908–42920. 

Coin Dance contributors, 2020. Coin Dance — Bitcoin Nodes Summary. url: https 
://coin.dance/nodes, accessed 30th May. 

Cong, L.W., He, Z., Li, J., 2019. Decentralized mining in centralized pools. Rev. Financ. 
Stud. 

Correia, M., Veronese, G.S., Neves, N.F., Verissimo, P., 2011. Byzantine consensus in 
asynchronous message-passing systems: a survey. IJCCBS 2, 141–161. 
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Göbel, J., Keeler, H.P., Krzesinski, A.E., Taylor, P.G., 2016. Bitcoin blockchain dynamics: 
The selfish-mine strategy in the presence of propagation delay. Performance Eval. 
104, 23–41. 

Griggs, K.N., Ossipova, O., Kohlios, C.P., Baccarini, A.N., Howson, E.A., Hayajneh, T., 
2018. Healthcare blockchain system using smart contracts for secure automated 
remote patient monitoring. J. Med. Syst. 42, 1–7. 

Huberman, G., Leshno, J.D., Moallemi, C., 2019. An economist’s perspective on the 
bitcoin payment system. AEA Papers and Proceedings 93–96. 

Kahneman, D., Tversky, A., 1979. Prospect theory: An analysis of decision under risk. 
Econometrica 47, 363–391. 

Kaligotla, C., Macal, C.M., 2018. A generalized agent based framework for modeling a 
blockchain system, in: Rabe, M., Juan, A.A., Mustafee, N., A. Skoogh, S.J., 
Johansson, B. (Eds.), Proceedings of the 2018 Winter Simulation Conference, 
Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey. pp. 
1001–1012. 

Kawase, Y., Kasahara, S., 2017. Transaction-confirmation time for bitcoin: A queueing 
analytical approach to blockchain mechanism. International Conference on 
Queueing Theory and Network Applications, Springer 75–88. 

Koutmos, D., 2019. Market risk and bitcoin returns. Ann. Oper. Res. 1–25. 
Kraft, D., 2016. Difficulty control for blockchain-based consensus systems. Peer-to-Peer 

Networking Appl. 9, 397–413. 
Kwon, Y., Kim, D., Son, Y., Vasserman, E., Kim, Y., 2017. Be selfish and avoid dilemmas: 

Fork after withholding (faw) attacks on bitcoin, in. In: Proceedings of the 2017 ACM 
SIGSAC Conference on Computer and Communications Security, pp. 195–209. 

Lee, K., Ulkuatam, S., Beling, P., Scherer, W., 2018. Generating synthetic bitcoin 
transactions and predicting market price movement via inverse reinforcement 
learning and agent-based modeling. J. Artif. Soc. Soc. Simul. 21. 

Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S., 2015. Bitcoin 
mining pools: A cooperative game theoretic analysis, in. In: Proceedings of the 2015 
International Conference on Autonomous Agents and Multiagent Systems, 
pp. 919–927. 

Li, Z., Kang, J., Yu, R., Ye, D., Deng, Q., Zhang, Y., 2017. Consortium blockchain for 
secure energy trading in industrial internet of things. IEEE Trans. Ind. Inf. 14, 
3690–3700. 

Liao, K., Katz, J., 2017. Incentivizing blockchain forks via whale transactions. 
International Conference on Financial Cryptography and Data Security, Springer 
264–279. 

Liu, C.H., Lin, Q., Wen, S., 2018. Blockchain-enabled data collection and sharing for 
industrial iot with deep reinforcement learning. IEEE Trans. Industr. Inf. 15, 
3516–3526. 

Liu, J., Liu, Z., 2019. A survey on security verification of blockchain smart contracts. 
IEEE Access 7, 77894–77904. 

Liu, Y., Fan, Z.P., Zhang, Y., 2014. Risk decision analysis in emergency response: A 
method based on cumulative prospect theory. Comput. Oper. Res. 42, 75–82. 

Memon, R.A., Li, J.P., Ahmed, J., 2019. Simulation model for blockchain systems using 
queuing theory. Electronics 8, 234. 

Meshkov, D., Chepurnoy, A., Jansen, M., 2017. Short paper: revisiting difficulty control 
for blockchain systems, in: Data Privacy Management, Cryptocurrencies and 
Blockchain Technology. Springer, pp. 429–436. 

Miller, A., Jansen, R., 2015. Shadow-bitcoin: Scalable simulation via direct execution of 
multi-threaded applications, in: 8th Workshop on Cyber Security Experimentation 
and Test ({CSET} 15), USENIX Association, Washington, D.C. 

Nakamoto, S., et al., 2008. Bitcoin: A peer-to-peer electronic cash system. 
Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S., 2016. Bitcoin and 

Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University 
Press, Princeton, New Jersey.  

Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A., 2020. Privacy-preserved task 
offloading in mobile blockchain with deep reinforcement learning. IEEE Trans. 
Netw. Serv. Manage. 17, 2536–2549. 

Peters, G.W., Panayi, E., 2016. Understanding modern banking ledgers through 
blockchain technologies: Future of transaction processing and smart contracts on the 
internet of money. Banking beyond banks and money. Springer 239–278. 

Popov, S., 2016. The tangle. url:http://www.descryptions.com/Iota.pdf, accessed 30th 
May. 

Pun, H., Swaminathan, J.M., Hou, P., 2018. Blockchain adoption for combating 
deceptive counterfeits. Kenan Institute of Private Enterprise Research Paper. 

Qin, R., Yuan, Y., Wang, F.Y., 2019. A novel hybrid share reporting strategy for 
blockchain miners in pplns pools. Decis. Support Syst. 118, 91–101. 

Qin, R., Yuan, Y., Wang, S., Wang, F.Y., 2018. Economic issues in bitcoin mining and 
blockchain research. In: 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE, 
pp. 268–273. 

Rauchs, M., 2020. Cambridge Bitcoin Electricity Consumption Index (CBECI). url: htt 
ps://www.cbeci.org/, accessed 30th May. 

Rosa, E., D’Angelo, G., Ferretti, S., 2019. Agent-based simulation of blockchains. In: 
Tan, G. (Ed.), Methods and Applications for Modeling and Simulation of Complex 
Systems. Springer Singapore, Singapore, pp. 115–126. 

Rosenfeld, M., 2011. Analysis of bitcoin pooled mining reward systems. arXiv preprint 
arXiv:1112.4980. 
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