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To Pool or Not to Pool: Queueing Design for Large-Scale
Service Systems (E-Companion)

We provide the proofs of all theorems and propositions in this e-companion, along with addi-

tional numerical examples. In particular, the proof of Theorem 5 is given in Section EC.5, where

performance formulas for all ρ> 1 under the two queue structures are provided.

Before presenting the proofs, let us introduce the following notions to be used in the analysis of

the fluid model: For a function f : [0,∞)→R, we say t≥ 0 is regular if f is differentiable at t. In

the proofs below, we implicitly assume t to be a regular point of f when we write f ′(t). We say f

converges to a∈R at rate θ > 0, if there exists some c > 0 such that |f(t)−a| ≤ c · e−θt for all t≥ 0.

EC.1. Proof of Theorem 1

Existence. We prove the existence of a solution by construction. Let us consider the following

dynamical system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̄i(t) = P̄i(0)− V̄i−1(t)+ V̄i(t)− (μ+ θ(i− 1))

∫ t

0

(P̄i(s)− P̄i+1(s))ds, (EC.1)

P̄i(t)≥ 0, (EC.2)

P̄N(t) = 1, (EC.3)

V̄0(t) = ρμt, (EC.4)

V̄i is non-decreasing with V̄i(0) = 0, (EC.5)∫ ∞

0

1{P̄i(t−)>0} dV̄i(t) = 0, (EC.6)

for i= 1, . . . ,N − 1. Write P̄N(t) := (P̄i(t) : i= 1, . . . ,N − 1) and V̄N(t) = (V̄i(t) : i= 1, . . . ,N − 1).

Equation (EC.1) can be written into a vector form:

P̄N(t) = P̄N(0)+ ĒN(t)−
∫ t

0

HNP̄N(s)ds+RNV̄N(t),

where ĒN(t) := (ĒN
i (t) : i= 1, . . . ,N − 1) is given by

ĒN
i (t) :=

⎧⎪⎨
⎪⎩
−ρμt, i= 1,

0, i= 2, . . . ,N − 2,

(μ+ θ(N − 2))t, i=N − 1,

HN is an (N − 1)× (N − 1) matrix with the (i, j)th entry given by

Hij :=

⎧⎪⎨
⎪⎩
μ+ θ(i− 1), i= j,

−(μ+ θ(i− 1)), i= 1, . . . ,N − 2, j = i+1,

0, otherwise,
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and RN is an (N − 1)× (N − 1) matrix with the (i, j)th entry given by

Rij :=

⎧⎪⎨
⎪⎩
1, i= j,

−1, i= 2, . . . ,N − 1, j = i− 1,

0, otherwise.

Since the inverse of RN is a lower triangular matrix with all nonzero entries being one, it follows

from Proposition 2 in Reed and Ward (2004) that the above dynamical system has a unique

solution, with both P̄N(t) and V̄N(t) being continuous in t. We may also write (EC.1) as

P̄i(t) = P̄i(0)+ V̄i(t)+ (μ+ θ(i− 1))

∫ t

0

P̄i+1(s)ds− V̄i−1(t)− (μ+ θ(i− 1))

∫ t

0

P̄i(s)ds,

where P̄i is the difference of two nondecreasing continuous functions. Then, P̄i is of bounded

variation, thus differentiable almost everywhere. Hence, V̄i is differentiable almost everywhere too.

Let us prove V̄ ′
i+1(t)≤ V̄ ′

i (t) for i= 0, . . . ,N − 2. If P̄i+1(t)> 0, it is true because V̄ ′
i+1(t) = 0. If

P̄i+1(t) = 0, then P̄ ′
i+1(t) = 0, so that V̄ ′

i (t)− V̄ ′
i+1(t) = (μ+ iθ)P̄i+2(t)≥ 0.

Next, we prove that P̄N−1(t) 
= 0 almost everywhere. If t is a regular point of P̄N−1 such that

P̄N−1(t) = 0, we must have P̄ ′
N−1(t) = 0. However, by (EC.1) and the fact that V̄ ′

N−2(t)≤ V̄ ′
0(t) = ρμ,

P̄ ′
N−1(t) =−V̄ ′

N−2(t)+ V̄ ′
N−1(t)+ (μ+ θ(N − 2))≥ (μ+ θ(N − 2))− ρμ≥ (μ+ θq̄)− ρμ> 0.

This contradiction implies that P̄N−1(t) 
= 0 if t is regular. Therefore, V̄N−1(t) = 0 for t≥ 0.

We construct a solution to (11)–(16) as follows:

1. For i= 1, . . . ,N − 1, let Q̄i(t) := 1− P̄i(t) and Ūi(t) := V̄i(t) for t≥ 0.

2. For i≥N , let Q̄i(t) := 0 and Ūi(t) := 0 for t≥ 0.

Clearly, (Q̄, Ū) satisfies (11)–(14) and (16), and Q̄i(t)≤ 1 for all i.

Let us prove Q̄i+1(t) ≤ Q̄i(t) for t ≥ 0, by which we can deduce that Q̄i(t) ≥ 0 for all i. We

use backward induction, assuming that Q̄j+1(t)≤ Q̄j(t) for some j ∈ N and all t≥ 0. Clearly, the

assumption holds for j ≥ N . Suppose that there exists some t0 ≥ 0 such that Q̄j(t0) > Q̄j−1(t0).

Because Q̄j−1(0)− Q̄j(0)≥ 0 and Q̄j−1(t)− Q̄j(t) is continuous in t, we may find a regular point

t1 ∈ (0, t0] such that Q̄′
j−1(t1)− Q̄′

j(t1)< 0 and Q̄j−1(t1)− Q̄j(t1)< 0. Then by (11) and (16),

Q̄′
j−1(t1) = Ū ′

j−2(t1)− Ū ′
j−1(t1)− (μ+ θ(j− 2))(Q̄j−1(t1)− Q̄j(t1))> 0.

Similarly,

Q̄′
j(t1) = Ū ′

j−1(t1)− Ū ′
j(t1)− (μ+ θ(j− 1))(Q̄j(t1)− Q̄j+1(t1)).

Since Q̄j−1(t1)< 1, we have Ū ′
j−1(t1) = 0 by (14), which implies that Q̄′

j(t1)≤ 0. Then, we deduce

that Q̄′
j−1(t1)− Q̄′

j(t1)> 0, a contradiction.

The Lipschitz continuity of the solution follows from (11)–(12) and (15)–(16).



e-companion to Cao, He, Huang and Liu: Queueing Design for Large-Scale Service Systems ec3

Uniqueness. Suppose that there is another solution (Q̌, Ǔ) different from (Q̄, Ū), where Q̌(t) :=

(Q̌i(t) : i∈N) and Ǔ(t) := (Ǔi(t) : i∈N0). Then, we may find some τ0 > 0 such that (Q̌(τ0), Ǔ(τ0)) 
=
(Q̄(τ0), Ū(τ0)). Let τ1 := inf{t ≥ 0 : Q̌N(t) ≥ 1/2} and τ2 := sup{t ∈ [0, τ0 ∧ τ1] : (Q̌(t), Ǔ(t)) =

(Q̄(t), Ū(t))}. Since (Q̌(0), Ǔ(0)) = (Q̄(0), Ū(0)), we have τ2 <∞.

Using the fact that Q̌(τ2) = Q̄(τ2), we obtain Q̌i(τ2) = 0 for i≥N . Because Q̌N is right contin-

uous, we may find some ε0 > 0 such that Q̌N(t)< 1 for 0≤ t≤ τ2 + ε0. Then, Ǔi(t) = 0 for i≥N

and 0≤ t≤ τ2 + ε0. It follows from (11) and (15) that Q̌i(t) = 0 for i≥N +1 and 0≤ t≤ τ2 + ε0.

Put

P̌N+1(t) := (1− Q̌i(t) : i= 1, . . . ,N), V̌N+1(t) := (Ǔi(t) : i= 1, . . . ,N),

P̄N+1(t) := (1− Q̄i(t) : i= 1, . . . ,N), V̄N+1(t) := (Ūi(t) : i= 1, . . . ,N).

Both (P̌N+1, V̌N+1) and (P̄N+1, V̄N+1) satisfy (EC.1)–(EC.6) for i= 1, . . . ,N and 0≤ t≤ τ2 + ε0.

Then, they must be identical because this dynamical system has a unique solution. This implies

that (Q̌(t), Ǔ(t)) = (Q̄(t), Ū(t)) for 0≤ t≤ τ2 + ε0, which contradicts the definition of τ2.

EC.2. Proof of Theorem 2

We first prove (20). For k≤ q̄− 1, let us write Ȳk(t) :=
∑k

i=1 Q̄i(t). Then,

Ȳk(t) = Ȳk(0)+ ρμt− Ūk(t)−
∫ t

0

(
μQ̄1(s)+ θ(Ȳk(s)− Q̄1(s))

)
ds+(μ+ θ(k− 1))

∫ t

0

Q̄k+1(s)ds.

If Ȳk(t) < k for some t ≥ 0, we have Q̄k(t) < 1, and thus Ū ′
k(t) = 0 by (14). Because μQ̄1(t) +

θ(Ȳk(t)− Q̄1(t))≤ μ+ θ(k− 1), then Ȳ ′
k(t)≥ (ρ− 1)μ− θ(k− 1) = θ(q+1− k)> 0. We must have

Ȳk(t) = k, and thus Q̄k(t) = 1, for t≥ (k− Ȳk(0))/(θ(q+1− k)). This assertion also holds for k= q̄

if q is not an integer.

Put Z̄(t) :=
∑N−1

i=q̄+2 Q̄i(t). If t is a regular point of Z̄ such that Q̄q̄+1(t) < 1, then by (11) and

(14)–(15),

Z̄ ′(t) =−
N−1∑
i=q̄+2

(μ+(i− 1)θ)(Q̄i(t)− Q̄i+1(t))≤−θZ̄(t).

If Q̄q̄+1(t) = 1, then Q̄i(t) = 1 for i= 1, . . . , q̄, and thus Q̄′
i(t) = 0 for i= 1, . . . , q̄+1. By (17), X̄ ′(t) =

ρμ− μQ̄1(t)− θ(X̄(t)− Q̄1(t)) = (ρ− 1)μ− q̄θ − θZ̄(t) ≤ −θ(1− r)− θZ̄(t) ≤ −θZ̄(t). Therefore,
Z̄ ′(t) = X̄ ′(t)−∑q̄+1

i=1 Q̄
′
i(t) ≤ −θZ̄(t). Because Z̄ ′(t) ≤ −θZ̄(t) always holds, Z̄ must converge to

zero at rate θ. Hence, each Q̄i will also converge to zero at the same rate for i= q̄+2, . . . ,N − 1.

When q is an integer, the above argument is also valid if we take Z̄(t) :=
∑N−1

i=q̄+1 Q̄i(t). In this case,

Q̄q̄+1 will converge to zero at rate θ.

Since Q̄1(t) = 1 for t≥ (1− Q̄1(0))/(θq), it follows from (17) that X̄ ′(t) = (ρ− 1)μ− θ(X̄(t)− 1),

so that X̄(t) will converge to q+1 at rate θ. By the previous results, we deduce that Q̄q̄+1(t) will
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converge to r at rate θ when q is not an integer, and that Q̄q̄(t) will converge to one at rate θ when

q is an integer. Now, we obtain the convergence rate specified by (20) for i= 1, . . . ,N − 1.

Clearly, q∗ is an invariant state in SN . Let q be an arbitrary invariant state in SN . Then, Q̄(t) = q

if we take Q̄(0) = q. By (20), we must have q= q∗, so that q∗ is the unique invariant state in SN .

EC.3. Proof of Theorem 3

We prove part (i) using the following tightness result, the proof of which is given later in this

section.

Lemma EC.1. Under the conditions of part (i) of Theorem 3, {(Q̄n, Ūn) : n∈N} is tight and the

limit of any weakly convergent subsequence is a fluid solution, i.e., a solution to (11)–(16) for t≥ 0

almost everywhere.

By Theorem 1, the dynamical system (11)–(16) has a unique solution (Q̄, Ū), which implies that

all weakly convergent subsequences of {(Q̄n, Ūn) : n ∈ N} must have the same limit. Therefore,

(Q̄n, Ūn)⇒ (Q̄, Ū) as n→∞.

We prove part (ii) in three steps. First, we show that Qn has a unique steady-state distribution

for each n∈N. Second, we prove that Q̄n
i (∞)⇒ 0 as n→∞ when i is sufficiently large. Third, we

prove that {Q̄n(∞) : n∈N} is tight and that the limit of any weakly convergent subsequence must

be q∗. We would thus obtain Q̄n(∞)⇒ q∗ as n→∞.

Step 1. As an irreducible continuous-time Markov chain, Qn has a unique steady-state distribu-

tion if the empty state 0 := (0 : i∈N) is positive recurrent. This steady-state distribution will also

be the limiting distribution. With Qn(0) = 0, let τn(0) be the first hitting time of state 0 by Qn

from other states. Since Qn(t) = 0 if and only if Xn(t) = 0, τn(0) is also the first hitting time of 0

by Xn from other states. We need to prove E[τn(0)]<∞.

At time t, the instantaneous rate of customers leaving the system (either by service completion

or by abandonment) satisfies μQn
1 (t) + θ

∑∞
i=2(i − 1)(Qn

i (t) − Qn
i+1(t)) ≥ (μ ∧ θ)Xn(t). Consider

an M/M/∞ system that has arrival rate λn, mean service time 1/(μ ∧ θ), and initial condition

Xn
∞(0) = 0, where Xn

∞(t) is the number of customers at time t. Using the coupling method in the

proof of Lemma 3 in Dong et al. (2015), we establish that

{Xn(t) : t≥ 0} ≤st {Xn
∞(t) : t≥ 0}, (EC.7)

where ≤st denotes the standard stochastic order. (Please refer to Lemma EC.2 below for a more

general stochastic order result, where Xn
∞,1 +Xn

∞,2 is equal in distribution to Xn
∞. The details of

the coupling method are given in the proof of Lemma EC.2.) Clearly, Xn
∞ is positive recurrent. Let

τn∞(0) be the first hitting time of zero by Xn
∞ from other states. The above stochastic order implies

that E[τn(0)]≤E[τn∞(0)]<∞.
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Step 2. Let M be a positive integer such that M >max{λn/(n(μ∧ θ)) : n ∈ N}. We will prove

that Q̄n
i (∞)⇒ 0 as n→∞ for i > M . As a result, if {Q̄n(∞) : n ∈ N} has a weak limit, it must

belong to SM+1.

We introduce a sequence of auxiliary systems each having two server pools. In the nth auxiliary

system, there are nM servers at the first pool and infinitely many servers at the second pool. All

servers are identical. The arrival process of the nth auxiliary system is identical to that of the

nth DQ–JSQ system. Upon arrival, each customer will join the first pool if there are idle servers;

otherwise, the customer will join the second pool. Service times are exponentially distributed with

mean 1/(μ∧ θ) at both pools. In other words, the nth auxiliary system is an M/M/∞ system as

described in Step 1, with nM servers having priority to take incoming customers.

Let Xn
∞,1(t) and X

n
∞,2(t) be the respective numbers of customers at the two server pools at time

t. The next lemma establishes a stochastic order between the nth DQ–JSQ system and the nth

auxiliary system. The proof is also given later in this section.

Lemma EC.2. Assume that
∑M

i=1Q
n
i (0)≤st X

n
∞,1(0) and

∑∞
i=M+1Q

n
i (0)≤st X

n
∞,2(0). Then under

the conditions of part (ii) of Theorem 3,{( ∞∑
i=1

Qn
i (t),

∞∑
i=M+1

Qn
i (t)
)
: t≥ 0

}
≤st

{(
Xn

∞,1(t)+Xn
∞,2(t),X

n
∞,2(t)

)
: t≥ 0

}
.

Note that Xn
∞,1(t) corresponds to the number of customers in an M/M/nM/nM loss system at

time t and Xn
∞,1(t)+X

n
∞,2(t) corresponds to the number of customers in the M/M/∞ system. Both

processes are positive recurrent continuous-time Markov chains. Therefore, there exists a random

vector (Xn
∞,1(∞),Xn

∞,2(∞)) such that (Xn
∞,1(t),X

n
∞,2(t))⇒ (Xn

∞,1(∞),Xn
∞,2(∞)) as t→∞, where

(Xn
∞,1(∞),Xn

∞,2(∞)) follows the unique steady-state distribution of (Xn
∞,1,X

n
∞,2). By Lemma EC.2,

∞∑
i=M+1

Qn
i (∞)≤stX

n
∞,2(∞).

Put X̄n
∞,k(∞) :=Xn

∞,k(∞)/n for k = 1,2. We next show that X̄n
∞,2(∞)⇒ 0 as n→∞. To this

end, we consider an M/M/k/�+M system with both mean service time and mean patience time

being 1/(μ ∧ θ). With �=∞, this model is identical to the aforementioned M/M/∞ system. By

Theorem 2.3 in Whitt (2004), X̄n
∞,1(∞)+ X̄n

∞,2(∞)⇒ λ/(μ∧ θ) as n→∞. With k= �= nM , this

model is identical to the M/M/nM/nM loss system. Using Theorem 2.3 in Whitt (2004) again,

X̄n
∞,1(∞)⇒ λ/(μ∧ θ) as n→∞. These results imply that X̄n

∞,2(∞)⇒ 0 as n→∞. Then by the

above stochastic order, we obtain

∞∑
i=M+1

Q̄n
i (∞)⇒ 0 as n→∞, (EC.8)

so that Q̄n
i (∞)⇒ 0 as n→∞ for i >M .
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Step 3. The tightness of {Q̄n(∞) : n ∈ N} follows from the fact that 0 ≤ Q̄n
i (∞) ≤ 1 for all

i ∈N. With slight abuse of notation, we also use {Q̄n(∞) : n ∈N} to denote a weakly convergent

subsequence, i.e., Q̄n(∞)⇒ Q̄(∞) as n→∞ for some R∞-valued random vector Q̄(∞). It remains

to prove Q̄(∞) = q∗.

Assume that all DQ–JSQ systems start with their steady states—that is, Q̄n(0) has the same

distribution as Q̄n(∞) for all n ∈N. Since Q̄n(0)⇒ Q̄(∞), we have Q̄n(t)⇒ Q̄(∞) as n→∞ for

all t≥ 0. By (EC.8), Q̄(∞)∈ SM+1. It follows from part (i) of Theorem 3 that (Q̄n, Ūn)⇒ (Q̄, Ū)

as n→∞, where (Q̄, Ū) is a fluid solution. Comparing these convergence results, we deduce that

Q̄(t) = Q̄(∞) for all t≥ 0. Since Q̄(∞) is an invariant state, we must have Q̄(∞) = q∗ by Theorem 2.

Let us present the proofs of Lemmas EC.1 and EC.2 below to complete the proof of Theorem 3.

Proof of Lemma EC.1. To obtain the tightness result, it suffices to prove the tightness of {Q̄n
i :

n ∈ N} and {Ūn
i : n ∈ N} for i ∈ N (see Proposition 3.2.4 in Ethier and Kurtz 1986). To this end,

we define the fluid-scaled versions of some processes by

Ān(t) := Ūn
0 (t) =

1

n
An(t), D̄n

i (t) :=
1

n
Dn

i (t), Ḡn
i (t) :=

1

n
Gn

i (t).

In addition, we write

S̄n
i (t) :=

1

n
Si(nt) and F̄ n

i (t) :=
1

n
Fi(nt),

where {Si, Fi : i∈N} is a set of independent Poisson processes with rate one. Clearly, {Ān : n∈N}
is tight and {(S̄n

i , F̄
n
i ) : n∈N} is tight for each i∈N. Since Ūn

i (t)≤ Ān(t) and 0≤ Ūn
i (t)− Ūn

i (s)≤
Ān(t)− Ān(s) for 0≤ s≤ t, {Ūn

i : n ∈ N} is tight for i ∈ N. Similarly, the tightness of {(D̄n
i , Ḡ

n
i ) :

n ∈ N} follows from (7)–(8) and the fact that 0≤ Q̄n
i (t)≤ 1 for i ∈ N and t≥ 0. Then, we obtain

the tightness of {Q̄n
i : n≥ 1} using these tightness results, along with the dynamical equation (9).

Now let us prove that the limit of a weakly convergent subsequence of {(Q̄n, Ūn) : n∈N} is a fluid
solution. With slight abuse of notation, we also use {(Q̄n, Ūn) : n∈N} to denote such a subsequence,

with (Q̄, Ū) being the limit. By Skorohod’s representation theorem (see, e.g., Theorem 6.7 in

Billingsley 1999), we may further assume that {(Q̄n, Ūn) : n ∈ N} and (Q̄, Ū) are defined on a

common probability space, with (Q̄n, Ūn)→ (Q̄, Ū) as n→∞ on every sample path. Then,{∫ t

0

(Q̄n
i (s)− Q̄n

i+1(s))ds : t≥ 0
}
→
{∫ t

0

(Q̄i(s)− Q̄i+1(s))ds : t≥ 0
}

as n→∞.

It follows from (7)–(9), the functional strong law of large numbers for {(Ān, S̄n
i , F̄

n
i ) : n ∈N}, and

the random time-change theorem (see Theorem 5.3 in Chen and Yao 2001) that the limit satisfies

(11). It also satisfies (12)–(13) and (15)–(16) in view of (2)–(4) and (6), respectively.

It remains to verify (14). It suffices to prove that for 0≤ t1 < t2, Ūi(t2)− Ūi(t1) = 0 if Q̄i(t)< 1

for t1 ≤ t≤ t2. This condition implies that Qn
i (t)<n for t1 ≤ t≤ t2 when n is sufficiently large. By

(5), Un
i (t2)−Un

i (t1) = 0, so that Ūi(t2)− Ūi(t1) = 0. �
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Proof of Lemma EC.2. We follow the approach in Dong et al. (2015) to construct Qn for the

DQ–JSQ system and (Xn
∞,1,X

n
∞,2) for the associated auxiliary system. We will prove that on each

sample path,

∞∑
i=1

Qn
i (t)≤Xn

∞,1(t)+Xn
∞,2(t) and

∞∑
i=M+1

Qn
i (t)≤Xn

∞,2(t) for all t≥ 0. (EC.9)

As a result, the stochastic order in Lemma EC.2 holds even if Qn and (Xn
∞,1,X

n
∞,2) are defined on

different probability spaces.

By the initial condition, we may assume that (EC.9) holds at time zero. Let {τk : k ∈N} be the

sequence of event times—that is, there is a customer either arriving at both systems or departing

(by service completion or abandonment) from one of the systems at time τk. We take τ0 := 0 by

convention. Note that Qn and (Xn
∞,1,X

n
∞,2) are continuous-time Markov chains. Assume that we

have obtained the sample paths of Qn and (Xn
∞,1,X

n
∞,2) up to time τk for some k ∈ N0. With

Qn(τk) = q and (Xn
∞,1(τk),X

n
∞,2(τk)) = (x1, x2), we put

ν(q, x1, x2) := λn +(b1(q)+ b2(q))∨ (μ∧ θ)(x1 +x2),

where b1(q) :=
∑M

i=1(μ+(i− 1)θ)(qi − qi+1) and b2(q) :=
∑∞

i=M+1(μ+(i− 1)θ)(qi − qi+1).

Let δk+1 be an exponential random variable with mean 1/ν(q, x1, x2). Then, τk+1 := τk + δk+1 is

the next event time. We generate a standard uniform random variable Uk that is independent of

{Qn(u) : 0≤ u≤ τk} and {(Xn
∞,1(u),X

n
∞,2(u)) : 0≤ u≤ τk} to determine the event at τk+1 by the

following procedure:

1. If 0≤Uk ≤ λn/ν(q, x1, x2), there is an arrival at both systems at τk+1. By the JSQ policy,

Qn
i (τk+1) :=

{
qi +1, i=min{j ∈N : qj <n},
qi, otherwise.

In addition, Xn
∞,1(τk+1) := x1 +1 and Xn

∞,2(τk+1) := x2 if x1 < nM , and Xn
∞,1(τk+1) = x1 and

Xn
∞,2(τk+1) = x2 +1 if x1 = nM .

2. If (λn +
∑j−1

i=M+1(μ+ (i− 1)θ)(qi − qi+1))/ν(q, x1, x2)<Uk ≤ (λn +
∑j

i=M+1(μ+ (i− 1)θ)(qi −
qi+1))/ν(q, x1, x2) for some j ≥M +1, there is a customer either completing service or aban-

doning the system from a server having j customers in the DQ–JSQ system. Then,

Qn
i (τk+1) =

{
qi − 1, i= j,

qi, otherwise.

3. If (λn + b2(q) +
∑j−1

i=1 (μ+ (i− 1)θ)(qi − qi+1))/ν(q, x1, x2)<Uk ≤ (λn + b2(q) +
∑j

i=1(μ+ (i−
1)θ)(qi − qi+1))/ν(q, x1, x2) for some 1≤ j ≤M , there is a customer either completing service

or abandoning the system from a server having j customers in the DQ–JSQ system. Then,

Qn
i (τk+1) =

{
qi − 1, i= j,

qi, otherwise.
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4. If λn/ν(q, x1, x2)< Uk ≤ (λn + (μ∧ θ)x2)/ν(q, x1, x2), there is a service completion from the

second pool at time τk+1. Then, X
n
∞,1(τk+1) := x1 and Xn

∞,2(τk+1) := x2 − 1.

5. If (λn + (μ ∧ θ)x2)/ν(q, x1, x2) < Uk ≤ (λn + (μ ∧ θ)(x1 + x2))/ν(q, x1, x2), there is a service

completion from the first pool at time τk+1. Then, X
n
∞,1(τk+1) := x1 − 1 and Xn

∞,2(τk+1) := x2.

One can verify that the process Qn constructed in this way has the same generator as the

augmented queue length process in the nth DQ–JSQ system has. Therefore, these two processes

have the same distribution. Similarly, (Xn
∞,1,X

n
∞,2) constructed in the above way has the same

distribution as the corresponding pair of processes has in the nth auxiliary system.

Suppose that (EC.9) holds at τk for some k ∈N0. Now we prove that it also holds at τk+1. Then,

we may complete the proof by induction.

If 0≤Uk ≤ λn/ν(q, x1, x2),

∞∑
i=1

Qn
i (τk+1) =

∞∑
i=1

Qn
i (τk)+ 1≤Xn

∞,1(τk)+Xn
∞,2(τk)+ 1=Xn

∞,1(τk+1)+Xn
∞,2(τk+1).

Suppose that
∑∞

i=M+1Q
n
i (τk+1) > Xn

∞,2(τk+1). Then, we should have
∑∞

i=M+1Q
n
i (τk) = Xn

∞,2(τk)

and thus
∑M

i=1Q
n
i (τk)≤Xn

∞,1(τk). The hypothesis yields
∑∞

i=M+1Q
n
i (τk+1) =

∑∞
i=M+1Q

n
i (τk) + 1,

and thus Qn
i (τk) = n for all i ≤M under the JSQ policy. Because

∑M

i=1Q
n
i (t) = nM , we deduce

that Xn
∞,1(τk) = nM . This implies that Xn

∞,2(τk+1) =Xn
∞,2(τk)+1. On the other hand, the hypoth-

esis also yields Xn
∞,2(τk+1) = Xn

∞,2(τk), which is a contradiction. Therefore,
∑∞

i=M+1Q
n
i (τk+1) ≤

Xn
∞,2(τk+1).

If λn/ν(q, x1, x2)< Uk ≤ 1, we first prove that
∑∞

i=M+1Q
n
i (τk+1)≤Xn

∞,2(τk+1). Suppose on the

contrary
∑∞

i=M+1Q
n
i (τk+1) >Xn

∞,2(τk+1). Then,
∑∞

i=M+1Q
n
i (τk) =Xn

∞,2(τk), i.e.,
∑∞

i=M+1 qi = x2.

We should also have
∑∞

i=M+1Q
n
i (τk+1) =

∑∞
i=M+1Q

n
i (τk) and Xn

∞,2(τk+1) = Xn
∞,2(τk) − 1, which

implies that (λn+ b2(q))/ν(q, x1, x2)<Uk ≤ (λn+(μ∧ θ)x2)/ν(q, x1, x2). Hence, b2(q)< (μ∧ θ)x2.

On the other hand, b2(q) =
∑∞

i=M+1(μ + (i − 1)θ)(qi − qi+1) ≥ (μ ∧ θ)∑∞
i=M+1 qi = (μ ∧ θ)x2, a

contradiction.

Finally, let us prove that
∑∞

i=1Q
n
i (τk+1)≤Xn

∞,1(τk+1)+X
n
∞,2(τk+1) when λ

n/ν(q, x1, x2)<Uk ≤
1. If this is not true,

∑∞
i=1Q

n
i (τk) =Xn

∞,1(τk)+X
n
∞,2(τk), i.e.,

∑∞
i=1 qi = x1+x2. Since (λ

n+ b1(q)+

b2(q))/ν(q, x1, x2)<Uk ≤ (λn + (μ∧ θ)(x1 + x2))/ν(q, x1, x2), we should have b1(q) + b2(q)< (μ∧
θ)(x1+x2). However, b1(q)+b2(q) =

∑∞
i=1(μ+(i−1)θ)(qi−qi+1)≥ (μ∧θ)∑∞

i=1 qi = (μ∧θ)(x1+x2),

a contradiction. �

EC.4. Proof of Theorem 4

Put In(∞) :=max{i∈N0 :Q
n
i (∞) = n}, which is the minimum number of customers that a server

has in the steady state. Then, W n has the same distribution as Ta(I
n(∞)). Consider the number

of servers having at least i customers in the steady state. This number will increase when an
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incoming customer joins a server with i−1 customers. According to the JSQ policy, the increasing

rate is λn · P(In(∞) = i − 1). The number will decrease when a customer leaves a server that

has exactly i customers, either by service completion or by abandonment. The decreasing rate is

(μ+ (i− 1)θ) ·E[Qn
i (∞)−Qn

i+1(∞)]. Equalizing these two rates, we obtain the following balance

equations:

λn ·P(In(∞) = i− 1) = (μ+ θ(i− 1)) ·E[Qn
i (∞)−Qn

i+1(∞)] for i∈N,

which implies that

lim
n→∞

P(In(∞) = i− 1) = lim
n→∞

n(μ+ θ(i− 1))

λn
·E[Q̄n

i (∞)− Q̄n
i+1(∞)].

By part (ii) of Theorem 3 and the dominated convergence theorem,

lim
n→∞

P(In(∞) = i− 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, i < q̄,

1− p, i= q̄,

p, i= q̄+1,

0, i > q̄+1,

from which we deduce that W n ⇒W as n→∞.

EC.5. Proof of Theorem 5 with More General Results

Theorem 5 follows from Propositions EC.1, EC.2, and Corollary EC.1, all of which hold for ρ> 1.

Proposition EC.1 summarizes performance formulas for the DQ–JSQ system with ρ> 1.

Proposition EC.1. Assume that condition (21) holds. Then, the performance of the DQ–JSQ

system satisfies:

(i) The mean fluid-scaled number of customers in the system

lim
n→∞

E[X̄n
D(∞)] = q+1.

(ii) The probability of customer abandonment

lim
n→∞

P n
D(Ab) =

ρ− 1

ρ
.

(iii) The mean AWT

lim
n→∞

E[V n
D ] =

q

ρμ
.

(iv) The probability of delay

lim
n→∞

P n
D(De) =

{
r(μ+ θ)/(ρμ), 1<ρ< 1+ θ/μ,

1, ρ≥ 1+ θ/μ.
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(v) The mean PWT of delayed customers

lim
n→∞

E[W n
D |W n

D > 0] =

{
1/μ, 1<ρ< 1+ θ/μ,∑�q	

k=0 1/(μ+ kθ)− (1− r)/(ρμ), ρ≥ 1+ θ/μ.

(vi) The mean PWT

lim
n→∞

E[W n
D ] =

�q	∑
k=0

1

μ+ kθ
− 1− r

ρμ
.

(vii) The mean AWT of served customers

lim
n→∞

E[V n
D |W n

D ≤R] =

�q	∑
k=1

1

μ+ kθ
+

r

μ+ q̄θ
.

(viii) The mean AWT of abandoning customers

lim
n→∞

E[V n
D |W n

D >R] =
1

q

( �q	∑
k=1

k

μ+ kθ
+

rq̄

μ+ q̄θ

)
.

(ix) The variance of PWTs

lim
n→∞

Var(W n
D) =

�q	−1∑
k=0

( 1

μ+ kθ

)2
+
( �q	−1∑

k=0

1

μ+ kθ

)2

+
2r(μ+ q̄θ)

ρμ(μ+ �q�θ) ·
�q	∑
k=0

1

μ+ kθ
−
( �q	∑

k=0

1

μ+ kθ
− 1− r

ρμ

)2
.

When 1 < ρ < 1 + θ/μ, we have �q� = 0. Then, the results in Proposition EC.1 are reduced

to those in Theorem 5. The proof of Proposition EC.1 will be given later. The next proposition

provides performance formulas for the PQ system when ρ> 1.

Proposition EC.2. Assume that condition (21) holds. Then, the performance of the M/M/n+M

system satisfies:

(i) The mean fluid-scaled number of customers in the system

lim
n→∞

E[X̄n
P(∞)] = q+1.

(ii) The probability of customer abandonment

lim
n→∞

P n
P (Ab) =

ρ− 1

ρ
.

(iii) The mean AWT

lim
n→∞

E[V n
P ] =

q

ρμ
.

(iv) The probability of delay

lim
n→∞

P n
P (De) = 1.
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(v) The mean PWT, the mean PWT of delayed customers, and the mean AWT of served cus-

tomers

lim
n→∞

E[W n
P ] = lim

n→∞
E[W n

P |W n
P > 0] = lim

n→∞
E[V n

P |W n
P ≤R] =w,

where w := ln(ρ)/θ.

(vi) The mean AWT of abandoning customers

lim
n→∞

E[V n
P |W n

P >R] =−μw
θq

+
1

θ
.

(vii) The variance of PWTs

lim
n→∞

Var(W n
P ) = 0.

The proof of Proposition EC.2 will also be given later. The performance formulas in the previous

two propositions allow us to obtain comparison results for ρ> 1.

Corollary EC.1. Assume that condition (21) holds. Then, the performance of the nth DQ–JSQ

system and that of the M/M/n+M system have the following asymptotic relationships:

lim
n→∞

E[X̄n
D(∞)] = lim

n→∞
E[X̄n

P(∞)], (EC.10)

lim
n→∞

P n
D(Ab) = lim

n→∞
P n

P (Ab), (EC.11)

lim
n→∞

E[V n
D ] = lim

n→∞
E[V n

P ], (EC.12)

lim
n→∞

P n
D(De)< lim

n→∞
P n

P (De) for 1<ρ< 1+ θ/μ, (EC.13)

lim
n→∞

P n
D(De) = lim

n→∞
P n

P (De) for ρ≥ 1+ θ/μ, (EC.14)

lim
n→∞

E[W n
D ]> lim

n→∞
E[W n

P ], (EC.15)

lim
n→∞

E[W n
D |W n

D > 0]> lim
n→∞

E[W n
P |W n

P > 0], (EC.16)

lim
n→∞

E[V n
D |W n

D ≤R]< lim
n→∞

E[V n
P |W n

P ≤R], (EC.17)

lim
n→∞

E[V n
D |W n

D >R]> lim
n→∞

E[V n
P |W n

P >R], (EC.18)

lim
n→∞

Var(W n
D)> lim

n→∞
Var(W n

P ). (EC.19)

Proof. The asymptotic relationships (EC.10)–(EC.14) follow from parts (i)–(iv) of Proposi-

tion EC.1 and the corresponding parts of Proposition EC.2. Inequality (EC.15) follows from

w=
1

θ
ln
(μ+ θq

μ

)
=

∫ q

0

1

μ+ θx
dx=

q̄−2∑
k=0

∫ k+1

k

1

μ+ θx
dx+

∫ q

q̄−1

1

μ+ θx
dx

<

q̄−2∑
k=0

1

μ+ kθ
+

r

μ+ θ(q̄− 1)
=

q̄−1∑
k=0

1

μ+ kθ
− 1− r

μ+ θ(q̄− 1)

≤
�q	∑
k=0

1

μ+ kθ
− 1− r

ρμ
,
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which also implies that (EC.16) holds for ρ≥ 1+ θ/μ. If 1<ρ< 1+ θ/μ, (EC.16) follows from

w=
1

θ
ln
(μ+ θr

μ

)
=

∫ r

0

1

μ+ θx
dx<

r

μ
<

1

μ
.

Inequality (EC.17) follows from

w=

q̄−2∑
k=0

∫ k+1

k

1

μ+ θx
dx+

∫ q

q̄−1

1

μ+ θx
dx>

�q	∑
k=1

1

μ+ kθ
+

r

μ+ q̄θ
.

Since limn→∞E[V n
D ] = limn→∞E[V n

P ] and limn→∞ P(W n
D > R) = limn→∞ P(W n

P > R), we deduce

(EC.18) from (EC.17). By Theorem 4 and Lemma EC.4 (see below), limn→∞Var(W n
D) =Var(W )>

0, where W := χ ·Ta(q̄)+ (1−χ) ·Ta(�q�). Then, we obtain (EC.19). �
Corollary EC.1 provides comparison results between the two queueing designs for all ρ > 1. By

using the JSQ policy, the loss of capacity utilization induced by the DQ structure will vanish as n

goes large. The fluid-scaled number of customers, the probability of customer abandonment, and

the mean AWT will thus be approximately equal under the two designs. Although it is strictly less

than one for 1< ρ < 1 + θ/μ under the DQ–JSQ design, the probability of delay approaches one

for ρ≥ 1+ θ/μ, getting close to that under the PQ design. When n is large, both the mean PWT

and the mean PWT of delayed customers are longer under the DQ–JSQ design, while the mean

AWT of served customers is shorter. Since the mean AWTs are approximately equal under the two

designs, the mean AWT of abandoning customers would be longer in the DQ–JSQ system. As we

discussed in Section 5.2, the steady-state PWT converges in distribution to the constant w under

the PQ design, so that the variance of PWTs converges to zero. By contrast, the steady-state PWT

in the DQ–JSQ system converges in distribution to a random variable with a positive variance (see

Theorem 4 and part (ix) of Proposition EC.1), which implies that the DQ structure is intrinsically

unfair as compared with the PQ structure.

Some preliminary results are required to prove Proposition EC.1. The following lemma summa-

rizes some properties of Ta(i) for i∈N.

Lemma EC.3. Put Ta(i) :=
∑i−1

k=0 ξi,k for i ∈ N, where {ξi,k : k = 0, . . . , i − 1} is a sequence of

independent exponential random variables with E[ξi,k] = 1/(μ+ kθ). Then,

E[Ta(i)] =
i−1∑
k=0

1

μ+ kθ
, (EC.20)

E[Ta(i)
2] =

i−1∑
k=0

1

(μ+ kθ)2
+
( i−1∑

k=0

1

μ+ kθ

)2
. (EC.21)

E[Ta(i)∧R] = i

μ+ iθ
, (EC.22)

P(Ta(i)≤R) =
μ

μ+ iθ
, (EC.23)
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E[Ta(i) ·1{Ta(i)≤R}] =
μ

μ+ iθ
·

i∑
k=1

1

μ+ kθ
, (EC.24)

E[R ·1{Ta(i)>R}] =
θ

μ+ iθ
·

i∑
k=1

k

μ+ kθ
, (EC.25)

Proof. Equations (EC.20) and (EC.21) follow from the definition of Ta(i). Write Fa(x) :=

P(Ta(i)≤ x) for x≥ 0. Then,

E[Ta(i)∧R] =
∫ ∞

0

P(Ta(i)∧R>x)dx=
∫ ∞

0

P(Ta(i)>x) · e−θx dx=
1

θ

(
1−
∫ ∞

0

e−θx dFa(x)
)

=
1

θ

(
1−E[e−θTa(i)]

)
=

1

θ

(
1−

i−1∏
k=0

μ+ kθ

θ+μ+ kθ

)

=
i

μ+ iθ
,

where the third equality follows from integration by parts and the fifth equality follows from (22).

By Fubini’s theorem,

P(Ta(i)≤R) =

∫ ∞

0

θe−θx ·Fa(x)dx=

∫ ∞

0

e−θy dFa(y) =E
[
e−θTa(i)

]
=

i−1∏
k=0

μ+ kθ

μ+(k+1)θ
=

μ

μ+ iθ
.

Using Fubini’s theorem again, we obtain

E[Ta(i) ·1{Ta(i)≤R}] =
∫ ∞

0

θe−θx

∫ x

0

y dFa(y)dx=

∫ ∞

0

y · e−θy dFa(y) =E[Ta(i) · e−θTa(i)]

=
i−1∏
k=0

μ+ kθ

μ+(k+1)θ
·
i−1∑
k=0

1

μ+(k+1)θ

=
μ

μ+ iθ
·

i∑
k=1

1

μ+ kθ
,

where the fourth equality follows from

E
[
Ta(i) · e−sTa(i)

]
=−E

[ d
ds

e−sTa(i)
]
=− d

ds
E[e−sTa(i)] =

i−1∏
k=0

μ+ kθ

s+μ+ kθ
·
i−1∑
k=0

1

s+μ+ kθ
.

Equation (EC.25) follows from

E[R ·1{Ta(i)>R}] =
∫ ∞

0

∫ x

0

θe−θy · y dy dFa(x) =−E[Ta(i) · e−θTa(i)] +
1

θ

(
1−E[e−θTa(i)]

)

=
θ

μ+ iθ
·

i∑
k=1

k

μ+ kθ
.

�
Then, we prove some uniform integrability results for the sequence of DQ–JSQ systems.

Lemma EC.4. Assume that condition (21) holds. Then, {X̄n
D(∞) : n ∈ N}, {W n

D : n ∈ N}, and

{(W n
D)

2 : n∈N} are all uniformly integrable.
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Proof. Consider the M/M/∞ system that has arrival rate λn and mean service time 1/(μ∧ θ).
Let Xn

∞(∞) be the steady-state number of customers in this system and X̄n
∞(∞) := Xn

∞(∞)/n.

By (EC.7), X̄n
D(∞) ≤st X̄

n
∞(∞). Hence, it suffices to show that {X̄n

∞(∞) : n ∈ N} is uniformly

integrable. Note that Xn
∞(∞) is a Poisson random variable with mean λn/(μ∧ θ), so that

sup
n∈N

E[X̄n
∞(∞)2] = sup

n∈N

{( λn

n(μ∧ θ)
)2

+
λn

n2(μ∧ θ)
}
<∞.

By Proposition A.2.2 in Ethier and Kurtz (1986), {X̄n
∞(∞) : n∈N} is uniformly integrable.

Then, let us consider {W n
D : n∈N}. Note that W n

D has the same distribution as Ta(I
n(∞)) where

In(∞) := max{i ∈N0 :Q
n
i (∞) = n} is the minimum number of customers that a server has in the

steady state. Taking s=−ζ with 0< ζ <μ∧ θ in (22) yields

E[eζW
n
D ] =E

[ In(∞)−1∏
i=0

μ+ iθ

μ+ iθ− ζ

]
<
μ+ θE[In(∞)]

μ− ζ
.

Since nIn(∞)≤Xn
D(∞),

E[eζW
n
D ]≤ μ+ θE[X̄n

D(∞)]

μ− ζ
≤ μ+ θE[X̄n

∞(∞)]

μ− ζ
=

1

μ− ζ
·
(
μ+

θλn

n(μ∧ θ)
)
,

from which we deduce that supn∈N
E[eζW

n
D ]<∞. By Proposition A.2.2 in Ethier and Kurtz (1986),

both {W n
D : n∈N} and {(W n

D)
2 : n∈N} are uniformly integrable. �

Now let us present the proof of Proposition EC.1.

Proof of Proposition EC.1. (i) It follows from (10), part (ii) of Theorem 3, and the fact that

{X̄n
D(∞) : n∈N} is uniformly integrable.

(ii) By Theorem 4,

lim
n→∞

P n
D(Ab) = lim

n→∞
P(W n

D >R) = p ·P(Ta(q̄)>R)+ (1− p) ·P(Ta(�q�)>R).

Then, the formula follows from (EC.23).

(iii) Since V n
D :=W n

D ∧R and {W n
D : n∈N} is uniformly integrable, {V n

D : n∈N} is also uniformly

integrable. Then by Theorem 4,

lim
n→∞

E[V n
D ] = lim

n→∞
E[W n

D ∧R] = p ·E[Ta(q̄)∧R] + (1− p) ·E[Ta(�q�)∧R].

The formula follows from (EC.22).

(iv) If 1<ρ< 1+ θ/μ, we have 0< q < 1 and by Theorem 4,

lim
n→∞

P n
D(De) = lim

n→∞
P(W n

D > 0) = p=
r(μ+ θ)

ρμ
.

If ρ≥ 1+ θ/μ, we have q≥ 1, so that

lim
n→∞

P n
D(De) = lim

n→∞
P(W n

D > 0) = p ·P(Ta(q̄)> 0)+ (1− p) ·P(Ta(�q�)> 0) = 1.
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(v) Since {W n
D : n ∈N} is uniformly integrable, so is {W n

D · 1{Wn
D
>0} : n ∈N}. If 1< ρ < 1+ θ/μ,

we have 0< q < 1 and by Theorem 4,

lim
n→∞

E[W n
D |W n

D > 0] =E[Ta(1)] =
1

μ
.

If ρ≥ 1+ θ/μ, limn→∞ P(W n
D > 0) = 1 by part (iv). Hence, limn→∞E[W n

D |W n
D > 0] = limn→∞E[W n

D ]

(please refer to the proof of part (vi) below).

(vi) By Theorem 4 and the fact that {W n
D : n∈N} is uniformly integrable,

lim
n→∞

E[W n
D ] = p ·E[Ta(q̄)] + (1− p) ·E[Ta(�q�)].

Then, the formula follows from (EC.20).

(vii) Since {W n
D : n ∈N} is uniformly integrable, so is {W n

D · 1{Wn
D
≤R} : n ∈N}. By part (ii) of

this proposition, limn→∞ P(W n
D ≤R) = 1/ρ. Then by Theorem 4,

lim
n→∞

E[V n
D |W n

D ≤R] = lim
n→∞

E[W n
D |W n

D ≤R]

= ρ · (p ·E[Ta(q̄) ·1{Ta(q̄)≤R}] + (1− p) ·E[Ta(�q�) ·1{Ta(�q	)≤R}]
)
.

The formula follows from (EC.24).

(viii) Note that {R ·1{Wn
D
>R} : n∈N} is uniformly integrable. By Theorem 4 and part (ii) of the

present proposition,

lim
n→∞

E[V n
D |W n

D >R] = lim
n→∞

E[R|W n
D >R]

=
ρ

ρ− 1
· (p ·E[R ·1{Ta(q̄)>R}] + (1− p) ·E[R ·1{Ta(�q	)>R}]

)
.

Then, the formula follows from (EC.25).

(ix) By Theorem 4 and the uniform integrability of {(W n
D)

2 : n∈N},

lim
n→∞

E[(W n
D)

2] = p ·E[Ta(q̄)
2] + (1− p) ·E[Ta(�q�)2]

=

�q	−1∑
k=0

( 1

μ+ kθ

)2
+
( �q	−1∑

k=0

1

μ+ kθ

)2
+

2r(μ+ θq̄)

ρμ(μ+ θ�q�)
�q	∑
k=0

1

μ+ kθ
.

Then, we obtain limn→∞Var(W n
D) using part (vi). �

To prove Proposition EC.2, we also require some uniform integrability results.

Lemma EC.5. Assume that condition (21) holds. Then, {X̄n
P(∞) : n ∈ N}, {W n

P : n ∈ N}, and

{(W n
P )

2 : n∈N} are all uniformly integrable.
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Proof. Using the fact that X̄n
P(∞) ≤st X̄

n
∞(∞), we may follow a similar argument as in the

proof of Lemma EC.4 to show the uniform integrability of {X̄n
P(∞) : n∈N}.

Put T n
P (0) := 0 and T n

P (i) :=
∑i

k=1 ηk for i ∈ N, where {ηk : k ∈ N} is a sequence of independent

exponential random variables with E[ηk] = 1/(nμ+(k− 1)θ). Then, W n
P has the same distribution

as T n
P ((X

n
P(∞)−n+1)+). For i∈N, the Laplace transform of T n

P (i) is

E[e−sTn
P (i)] =

i∏
k=1

nμ+(k− 1)θ

s+nμ+(k− 1)θ
.

Taking s=−ζ with 0< ζ < μ∧ θ in this equation yields

E[eζW
n
P ] =E

[ (Xn
P(∞)−n+1)+∏

k=1

nμ+(k− 1)θ

nμ+(k− 1)θ− ζ

]
<
nμ+ θE[Xn

P(∞)]

nμ− ζ
≤ nμ+ θE[Xn

∞(∞)]

nμ− ζ

=
1

nμ− ζ
·
(
nμ+

θλn

μ∧ θ
)
,

from which we deduce that supn∈N
E[eζW

n
P ]<∞. By Proposition A.2.2 in Ethier and Kurtz (1986),

both {W n
P : n∈N} and {(W n

P )
2 : n∈N} are uniformly integrable. �

The proof of Proposition EC.2 is given below.

Proof of Proposition EC.2. Parts (i)–(v) and (vii) of the proposition follow from Theorem 2.3

in Whitt (2004) along with related uniform integrability results in Lemma EC.5. Part (vi) follows

from the fact that limn→∞E[V n
P |W n

P >R] =E[R|R<w]. �

EC.6. Proof of Theorem 6

By (22), limi→∞E[e−θTa(i)] = 0, which implies that limi→∞ Ta(i) =∞ almost surely. Since Ta(0) = 0

and Ta(i) is stochastically strictly increasing in i, κ(T,α) is well defined for T ≥ 0 and 0< α< 1.

Let us fix T and α in the rest of the proof.

We define a function g : [0,∞)→R by

g(x) :=
(μ+ θx)(x̄−x)

μ+ θx
·P(Ta(x)>T )+

(μ+ θx̄)(x−x)

μ+ θx
·P(Ta(x̄)>T ),

where x := �x� and x̄ := x+ 1. Note that g(q) = P(W > T ) where W is the steady-state PWT in

Theorem 4. Clearly, g is continuous on [n,n+1] for each n∈N0, thus continuous on [0,∞).

Now let us show that g is strictly increasing. We may write g as

g(x) = P(Ta(x)>T )+
(μ+ θx̄)(x−x)

μ+ θx
· (P(Ta(x̄)>T )−P(Ta(x)>T )

)
. (EC.26)

For 0 ≤ x1 < x2 with x1 = x2, we have g(x1) < g(x2) because (μ+ θx̄)(x− x)/(μ+ θx) is strictly

increasing in x. If x1 <x2, we have g(x1)< P(Ta(x̄1)>T )≤ P(Ta(x2)>T )≤ g(x2).
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Since g(0) = 0 and limx→∞ g(x) = 1, there is a unique solution to g(x) = α. Write q̂ := g−1(α).

By (EC.26),

q̂= κ(T,α)+
(μ+ θκ(T,α))(1− r0(T,α))

μ+ θ(κ(T,α)+ r0(T,α))
.

Put λ̂ := μ+ θq̂. Then,

λ̂=
(μ+ θκ(T,α))(μ+ θ(κ(T,α)+ 1))

μ+ θ(κ(T,α)+ r0(T,α))
.

For notational convenience, we write n̂(λ) for n̂D(λ,T,α). We next prove limλ→∞ n̂(λ)/λ= 1/λ̂.

If this is not true, we may find a sequence of arrival rates {λk : k ∈N} such that either n̂(λk)/λk >

1/(λ̂− ε) or n̂(λk)/λk < 1/(λ̂+ ε) for some ε∈ (0, θq̂) and all k ∈N.

If n̂(λk)/λk > 1/(λ̂− ε) for k ∈N, let us consider ň1(λ) := �λ/(λ̂− ε)�. By Theorem 4,

lim
λ→∞

P(W
ň1(λ)
λ >T ) = g

( λ̂− ε−μ

θ

)
< g(q̂) = α.

Then by (24), we should have n̂(λk)≤ ň1(λk) for λk sufficiently large, which contradicts the fact

that ň1(λk)/λk ≤ 1/(λ̂− ε).

If n̂(λk)/λk < 1/(λ̂+ ε) for k ∈N, we can find a further subsequence {λkj : j ∈N} and a constant

λ̂2 ≥ λ̂+ ε > λ̂ such that limj→∞ λkj/n̂(λkj ) = λ̂2 and

P(W
n̂(λkj

)

λkj
>T )≤ α for all j ∈N. (EC.27)

Using Theorem 4 again, we obtain

lim
j→∞

P(W
n̂(λkj

)

λkj
>T ) = g

( λ̂2 −μ

θ

)
> g
( λ̂−μ

θ

)
= g(q̂) = α,

which contradicts (EC.27).

Equation (26) follows from the fact that κ(0, α) = 0 and r0(0, α) = 1−α.

EC.7. Proof of Theorem 7

Since m(0) = 0, ψ(0) = 1, and Ta(0) = 0, we obtain α̂(0) = 0. Put

uk :=
1

θ
ln
(
1+

kθ

μ

)
for k ∈N0. (EC.28)

Then, m(T ) = k for T ∈ [uk, uk+1). Clearly, α̂ is continuous on [uk, uk+1). The continuity of α̂ on

[0,∞) follows from the fact that α̂(uk+1−) = α̂(uk+1) = P(Ta(k+1)>uk+1).

By (23), we may prove the next lemma, the proof of which is given later in this section. The

monotonicity of α̂ on [0,∞) follows from this lemma along with the continuity of α̂.

Lemma EC.6. The function α̂ defined by (29) satisfies α̂′(T )> 0 for T ∈ (uk, uk+1) and k ∈N0.
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For notational convenience, let us write ς := μ/θ. We use the following lemma to prove α̂(∞) =

γ(ς, ς)/Γ(ς). The proof will also be given later in this section.

Lemma EC.7. The tail probability P(Ta(k)>uk) has the limit

lim
k→∞

P(Ta(k)>uk) =
γ(ς, ς)

Γ(ς)
.

Because α̂ is strictly increasing on [0,∞), α̂(uk)≤ α̂(T )< α̂(uk+1) for T ∈ [uk, uk+1) and k ∈N0.

By (29), α̂(uk) = P(Ta(i)>uk). Then, it follows from Lemma EC.7 that α̂(∞) = γ(ς, ς)/Γ(ς).

Next we prove that for a fixed T ≥ 0, limλ→∞ n̂D(λ,T,α)/n̂P(λ,T,α)≤ 1 if and only if α≥ α̂(T ).

Write p̂k := P(Ta(k)>T ) for k ∈N0 and

φ(T,α) :=
μ+ θ(κ(T,α)+ r0(T,α))

(μ+ θκ(T,α))(μ+ θ(κ(T,α)+ 1))
. (EC.29)

Since κ(T,α) = k for α∈ [p̂k, p̂k+1), φ(T,α) is continuous and strictly decreasing in α on this inter-

val. Then because φ(T, p̂k+1−) = φ(T, p̂k+1) = 1/(μ+ θ(k + 1)), φ(T,α) is continuous and strictly

decreasing in α on [0,1). Note that φ(T,0) = 1/μ and limα↑1 φ(T,α) = 0, so that there is a unique

α̌(T ) ∈ [0,1) such that φ(T, α̌(T )) = e−θT/μ. Moreover, φ(T,α)≤ e−θT/μ if and only if α≥ α̌(T ).

Then by (25) and (27), limλ→∞ n̂D(λ,T,α)/n̂P(λ,T,α)≤ 1 if and only if α≥ α̌(T ).

Let us verify α̌(T ) = α̂(T ) for T ≥ 0. Since 0< r0(T,α)≤ 1, we obtain the following inequalities:

1

μ+ θ(κ(T,α)+ 1)
<φ(T,α)≤ 1

μ+ θκ(T,α)
.

Because φ(T, α̌(T )) = e−θT/μ,

1

μ+ θ(κ(T, α̌(T ))+ 1)
<

e−θT

μ
≤ 1

μ+ θκ(T, α̌(T ))
,

which yields κ(T, α̌(T )) = �μ(eθT − 1)/θ�=m(T ). Then using (EC.29), we have

r0(T, α̌(T )) =
1

θ

(
μ+ θm(T )

)(
μ+ θ(m(T )+ 1)

)(e−θT

μ
− 1

μ+ θ(m(T )+ 1)

)
=ψ(T ).

On the other hand, the definition of r0 leads to

r0(T, α̌(T )) =
P
(
Ta(m(T )+ 1)>T

)− α̌(T )

P
(
Ta(m(T )+ 1)>T

)−P
(
Ta(m(T ))>T

) .
Combining the above two equations, we obtain α̌(T ) = α̂(T ).

Now we present the proofs of Lemmas EC.6 and EC.7.

Proof of Lemma EC.6. By (23) and (29), through algebraic manipulation we obtain

α̂′(T ) =ψ(T )
k∏

i=1

(μ+(i− 1)θ)
k+1∑
j=1

e−(μ+θ(j−1))T (μ+ jθ)
k+1∏

i=1,i �=j

1

(i− j)θ
.
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Then, it suffices to prove

Hk(T ) :=
k+1∑
j=1

e−θ(j−1)T (μ+ jθ)
k+1∏

i=1,i �=j

k!

(i− j)
> 0.

The expression of Hk(T ) can be simplified as

Hk(T ) =
k∑

j=0

e−jθT (μ+(j+1)θ)(−1)j
(
k

j

)

= (μ+ θ)
k∑

j=0

e−jθT (−1)j
(
k

j

)
+ kθ

k∑
j=1

e−jθT (−1)j
(
k− 1

j− 1

)

= (μ+ θ)(1− e−θT )k − kθe−θT (1− e−θT )k−1

= (1− e−θT )k−1
(
μ+ θ− (μ+(k+1)θ)e−θT

)
,

where the third equality follows from the binomial theorem. Since T > uk, we have

eθT >
μ+ kθ

μ
>
μ+(k+1)θ

μ+ θ
,

from which we deduce that Hk(T )> 0. �
Proof of Lemma EC.7. Write

Gk(s) :=
k∑

j=1

sς+j−1

ς + j− 1
· (−1)j−1

(
k− 1

j− 1

)
for k ∈N and s≥ 0.

Clearly, Gk(0) = 0. By the binomial theorem,

G′
k(s) =

k∑
j=1

sς+j−2(−1)j−1

(
k− 1

j− 1

)
= sς−1

k−1∑
j=0

(−s)j
(
k− 1

j

)
= sς−1(1− s)k−1,

from which we obtain Gk(s) =
∫ s

0
tς−1(1− t)k−1 dt. Then by (EC.28) and (23),

P(Ta(k)>uk) =
k∑

j=1

(
1+

k

ς

)−(ς+j−1)
k∏

i=1,i �=j

ς + i− 1

i− j

=

∏k

i=1(ς + i− 1)

(k− 1)!

k∑
j=1

(1+ k/ς)−(ς+j−1)

ς + j− 1
· (−1)j−1

(
k− 1

j− 1

)

=

∏k

i=1(ς + i− 1)

(k− 1)!

∫ (1+k/ς)−1

0

tς−1(1− t)k−1 dt. (EC.30)

Because Γ(k) = (k− 1)! for k ∈N and Γ(z) = z ·Γ(z) for z > 0,

∏k

i=1(ς + i− 1)

kς(k− 1)!
=

Γ(ς + k)

kς ·Γ(ς)Γ(k) .
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Then by Stirling’s formula,

lim
k→∞

∏k

i=1(ς + i− 1)

kς(k− 1)!
=

1

Γ(ς)
· lim
k→∞

√
2π(ς + k− 1)

( ς + k− 1

e

)ς+k−1

kς
√

2π(k− 1)
(k− 1

e

)k−1
=

1

Γ(ς)
. (EC.31)

Write � := ς + k. Then,∫ (1+k/ς)−1

0

tς−1(1− t)k−1 dt=

∫ ς/�

0

tς−1(1− t)�−ς−1 dt=
1

�ς

∫ ς

0

uς−1
(
1− u

�

)�−ς−1

du,

and we obtain

lim
k→∞

kς
∫ (1+k/ς)−1

0

tς−1(1− t)k−1 dt= lim
�→∞

(�− ς)ς

�ς

∫ ς

0

uς−1
(
1− u

�

)�−ς−1

du= γ(ς, ς). (EC.32)

The assertion of the lemma follows from (EC.30)–(EC.32). �

EC.8. Proof of Proposition 1

Following the argument in Theorem 2, we obtain Q̄i(t) = 1 for 1≤ i≤ q̄ and Q̄i(t) = 0 for i≥ q̄+2.

Then, Ūi(t) = 0 for i≥ q̄+2 and t≥ 0. By (11) and the fact that Q̄′
q̄+2(t) = 0, we obtain Ū ′

q̄+1(t) = 0

and thus Ūq̄+1(t) = 0 for t≥ 0. By induction from i= 1 to q̄−1, we obtain Ū ′
i(t) = ρμ for 1≤ i≤ q̄−1

using (11) and the fact that Q̄′
i(t) = 0. Hence, Ūi(t) = ρμt for 1≤ i≤ q̄− 1 and t≥ 0.

Taking i= q̄ and q̄+1 in (11), we have the following two equations:⎧⎪⎪⎨
⎪⎪⎩

0 = ρμt− Ūq̄(t)− (μ+ θ(q̄− 1))

∫ t

0

(1− Q̄q̄+1(s))ds,

Q̄q̄+1(t) = Q̄q̄+1(0)+ Ūq̄(t)− (μ+ θq̄)

∫ t

0

Q̄q̄+1(s)ds,

from which the expressions of Q̄q̄+1(t) and Ūq̄(t) follow.

EC.9. Proof of Proposition 2

The monotonicity of α̂(∞) follows from Theorem 1 in Chojnacki (2008). By Theorem 2 in Chojnacki

(2008), we obtain limθ↓0 α̂(∞) = 1/2. For s > 0, e−sss < sγ(s, s)< ss and lims↓0 sΓ(s) = lims↓0Γ(s+

1) = 1. It follows that limθ→∞ α̂(∞) = lims↓0 ss = 1.

EC.10. The DQ–JSQ Design When Patience Times are Long

In this section, we evaluate the fluid model for the DQ–JSQ system when customers’ patience times

are relatively long. A queueing system is considered with mean service time 1/μ= 1.0 and mean

patience time 1/θ= 5.0,10.0,20.0, respectively (i.e., the abandonment rates are θ= 0.2,0.1,0.05).

We first set the number of servers to be n= 100 and take ρ= 1+θ/(2μ), in order for condition (1)

to hold. We summarize both simulation results (with 95% confidence intervals) and fluid approxi-

mations under the DQ–JSQ design in Table EC.1, where exact performance measures for the PQ
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Table EC.1 Performance Comparison Between the DQ–JSQ and PQ Designs for n= 100 and ρ= 1+ θ/(2μ)

θ= 0.2 and ρ= 1.1 θ= 0.1 and ρ= 1.05 θ= 0.05 and ρ= 1.025

DQ–JSQ PQ DQ–JSQ PQ DQ–JSQ PQ

Sim. App. Exact Sim. App. Exact Sim. App. Exact

P (De) 0.590± 0.004 0.546 0.989 0.589± 0.005 0.524 0.967 0.598± 0.006 0.512 0.947

P (Ab) 0.099± 0.002 0.091 0.091 0.055± 0.002 0.048 0.050 0.031± 0.001 0.024 0.028

E[X(∞)] 153.2± 0.4 150.0 150.3 156.0± 0.6 150.0 152.0 159.6± 0.8 150.0 157.5

E[W ] 0.591± 0.006 0.546 0.485 0.601± 0.007 0.524 0.515 0.634± 0.009 0.512 0.576

E[W |W > 0] 0.998± 0.006 1.000 0.490 1.010± 0.007 1.000 0.532 1.042± 0.007 1.000 0.609

E[V ] 0.492± 0.005 0.455 0.457 0.545± 0.007 0.476 0.497 0.601± 0.008 0.488 0.565

E[V |W <R] 0.457± 0.005 0.417 0.475 0.527± 0.007 0.455 0.506 0.591± 0.008 0.476 0.569

E[V |W >R] 0.836± 0.002 0.833 0.284 0.913± 0.002 0.909 0.334 0.999± 0.003 0.952 0.409

Var(W ) 0.837± 0.017 0.793 0.048 0.864± 0.020 0.773 0.086 0.927± 0.024 0.762 0.145

Notes. The Markovian queueing system has 1/μ= 1.0, 1/θ= 5.0,10.0,20.0, ρ= 1+θ/(2μ), and n= 100

under the two queue structures. Both simulation results (with 95% confidence intervals) and fluid

approximations (in italics) are provided for the DQ–JSQ design; exact results are provided for the PQ

design.

Table EC.2 Performance Comparison Between the DQ–JSQ and PQ Designs for n= 100 and ρ= 1.2

θ= 0.2 θ= 0.1 θ= 0.05

DQ–JSQ PQ DQ–JSQ PQ DQ–JSQ PQ

Sim. App. Exact Sim. App. Exact Sim. App. Exact

P (De) 0.906± 0.003 1.000 1.000 0.998± 0.001 1.000 1.000 1.000± 0.000 1.000 1.000

P (Ab) 0.166± 0.002 0.167 0.167 0.167± 0.002 0.167 0.167 0.165± 0.002 0.167 0.167

E[X(∞)] 200.4± 0.5 200.0 200.0 299.8± 0.8 300.0 300.0 499.8± 1.1 500.0 500.0

E[W ] 1.022± 0.007 1.000 0.917 1.918± 0.009 1.909 1.828 3.739± 0.013 3.731 3.651

E[W |W > 0] 1.123± 0.006 1.000 0.917 1.921± 0.009 1.909 1.828 3.739± 0.012 3.731 3.651

E[V ] 0.838± 0.005 0.833 0.833 1.667± 0.008 1.667 1.667 3.337± 0.012 3.333 3.333

E[V |W <R] 0.827± 0.006 0.833 0.907 1.735± 0.009 1.742 1.818 3.565± 0.013 3.564 3.641

E[V |W >R] 0.901± 0.011 0.833 0.467 1.331± 0.014 1.288 0.909 2.205± 0.021 2.178 1.793

Var(W ) 1.195± 0.025 1.000 0.050 2.070± 0.050 1.826 0.100 3.791± 0.119 3.490 0.200

Notes. The Markovian queueing system has 1/μ= 1.0, 1/θ= 5.0,10.0,20.0, ρ= 1.2, and n= 100 under

the two queue structures. Both simulation results (with 95% confidence intervals) and fluid approxi-

mations (in italics) are provided for the DQ–JSQ design; exact results are provided for the PQ design.

design are also provided for comparison. Although the approximate results are generally satisfac-

tory in this table, the fluid approximations become less accurate when θ is smaller. One possible

reason for this phenomenon is as follows: With ρ= 1+ θ/(2μ), the traffic intensity approaches one

as θ gets small. When θ is close to zero, the system will operate in a critically loaded regime rather

than an overloaded regime—in this example, the traffic intensities are ρ= 1.1,1.05,1.025, respec-
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Table EC.3 Performance Comparison Between the DQ–JSQ and PQ Designs for n= 20 and ρ= 1+ θ/(2μ)

θ= 0.2 and ρ= 1.1 θ= 0.1 and ρ= 1.05 θ= 0.05 and ρ= 1.025

DQ–JSQ PQ DQ–JSQ PQ DQ–JSQ PQ

Sim. App. Exact Sim. App. Exact Sim. App. Exact

P (De) 0.659± 0.004 0.546 0.899 0.687± 0.004 0.524 0.886 0.734± 0.004 0.512 0.891

P (Ab) 0.122± 0.002 0.091 0.106 0.077± 0.002 0.048 0.067 0.047± 0.001 0.024 0.044

E[X(∞)] 32.71± 0.10 30.00 31.32 35.33± 0.15 30.00 33.60 38.59± 0.21 30.00 37.54

E[W ] 0.743± 0.006 0.546 0.578 0.855± 0.008 0.524 0.705 1.006± 0.011 0.512 0.909

E[W |W > 0] 1.106± 0.005 1.000 0.643 1.200± 0.007 1.000 0.796 1.319± 0.009 1.000 1.020

E[V ] 0.609± 0.005 0.455 0.530 0.763± 0.007 0.476 0.667 0.945± 0.006 0.488 0.875

E[V |W <R] 0.576± 0.005 0.417 0.542 0.749± 0.008 0.455 0.674 0.943± 0.010 0.476 0.881

E[V |W >R] 0.886± 0.010 0.833 0.425 1.028± 0.013 0.909 0.555 1.152± 0.016 0.952 0.738

Var(W ) 1.069± 0.019 0.793 0.185 1.294± 0.028 0.773 0.315 1.591± 0.060 0.762 0.549

Notes. The Markovian queueing system has 1/μ= 1.0, 1/θ= 5.0,10.0,20.0, ρ= 1+ θ/(2μ), and n= 20

under the two queue structures. Both simulation results (with 95% confidence intervals) and fluid

approximations (in italics) are provided for the DQ–JSQ design; exact results are provided for the PQ

design.

Table EC.4 Performance Comparison Between the DQ–JSQ and PQ Designs for n= 20 and ρ= 1.2

θ= 0.2 θ= 0.1 θ= 0.05

DQ–JSQ PQ DQ–JSQ PQ DQ–JSQ PQ

Sim. App. Exact Sim. App. Exact Sim. App. Exact

P (De) 0.841± 0.003 1.000 0.980 0.968± 0.001 1.000 0.997 0.999± 0.001 1.000 1.000

P (Ab) 0.176± 0.002 0.167 0.169 0.168± 0.002 0.167 0.167 0.167± 0.002 0.167 0.167

E[X(∞)] 40.97± 0.12 40.00 40.23 60.30± 0.22 60.00 60.06 99.89± 0.34 100.0 100.0

E[W ] 1.099± 0.007 1.000 0.845 1.957± 0.011 1.909 1.851 3.753± 0.017 3.731 3.672

E[W |W > 0] 1.288± 0.006 1.000 0.969 2.006± 0.010 1.909 1.856 3.755± 0.017 3.731 3.672

E[V ] 0.885± 0.006 0.833 0.949 1.684± 0.009 1.667 1.670 3.330± 0.014 3.333 3.333

E[V |W <R] 0.873± 0.006 0.833 0.903 1.758± 0.010 1.742 1.802 3.573± 0.016 3.564 3.622

E[V |W >R] 0.973± 0.008 0.833 0.562 1.384± 0.011 1.288 1.008 2.208± 0.016 2.178 1.893

Var(W ) 1.443± 0.026 1.000 0.235 2.465± 0.059 1.826 0.495 4.462± 0.150 3.490 1.001

Notes. The Markovian queueing system has 1/μ= 1.0, 1/θ = 5.0,10.0,20.0, ρ= 1.2, and n= 20 under

the two queue structures. Both simulation results (with 95% confidence intervals) and fluid approxi-

mations (in italics) are provided for the DQ–JSQ design; exact results are provided for the PQ design.

tively. The fluid approximations, which are substantiated by asymptotic analysis for overloaded

systems, may not be as accurate in a critically loaded regime.

When customers’ patience times are long, the fluid model may still provide accurate approxi-

mations for overloaded systems. If we fix the traffic intensity at ρ= 1.2 in the above example, the

corresponding fluid approximations become accurate again—such numerical results are summa-
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rized in Table EC.2. Because condition (1) no longer holds for θ= 0.2,0.1,0.05, we use the formulas

proposed in Proposition EC.1 to produce fluid approximations in this table. Indeed, we expect

that as the mean patience time goes large, the augmented queue length process, being properly

scaled, will also converge to the fluid limit specified in Theorem 3 in the overloaded regime. (One

may refer to He 2016 for a joint scaling approach where both the number of servers and the mean

patience time are used as scaling factors.) Such a fluid limit, however, may not well capture the

dynamics of the DQ–JSQ system in a critically loaded regime, in which case a diffusion limit may

serve as a more refined approximate model. We would leave such topics for future research.

We also change the number of servers to n= 20 and repeat the above numerical experiments. The

numerical results are summarized in Tables EC.3 and EC.4. The fluid approximations appear to be

less accurate when n is not large, and the approximation errors are much greater when the traffic

intensity is close to one. Such observations are consistent with the previous numerical examples.
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