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E-Companion

Supplementing the main paper, in this appendix we give additional results. In §EC.1, we give
proofs of all results in the main paper. In §EC.2, we consider the SSRD with preemptive service.
In §EC.3, we give additional discussions on how our results compare to Xu et al. (2015). In §EC.4

we provide additional simulation results.

EC.1. Proofs
Proof of Theorem 1
According to the waiting time formulas (6) and (9), wssrp < wy is equivalent to

<pl+p2> s 01405~ (p101 + pabh) (EC.1)

< .
P p3 Ho 01 + 05 — p(p101 + p2bs)

Because p; /1 + pa/p2 = 1/ o, the left-hand side of (EC.1)
b1 D2 2 2 9
<2 + 2) po =1+pip2 (1/p1 —1/p2)” - g, (EC.2)
Hr M3
and the right-hand side of (EC.2)

01 + 62 — (p161 + p202) 14 Ao (02 — 01)p1p2(1/ 11 — 1/ o) (EC.3)

01 + 02 — p(p101 + p20s) 01 + 62 — p(p101 + p2bs2)

We require that the second term of (EC.2) is positive, which implies that ps >y when 0y > 6;.
Combining (EC.1), (EC.2) and (EC.3) yields that

Ao(6s — 0,)
01 + 03 — p(p101 + p20;

7> (1/p1 =1/ ) - 1,

or equivalently

i 11
(p2—p1)(L—p)+(2—p)/0 (%_é> > po (M M2>. (EC.4)

Let Cp =05/6; and C,, = pio/ 11, we have 6, = 0y(p1 +p2/Ca), p1 = po(p1 +p2/C,.). Plugging Cy and
C,, into (EC.4), we can further algebraically simplify (EC.4) to

Co+1—p

—_ . EC.
A—p)Cot1 " (EC.5)

It is noted that f_";;ﬁ is increasing in Cy, which is upper bounded by 1/(1 — p). Thus we have

C, <1/(1—p). By noticing that (1 —p)C,, <1, then (EC.5) can be transformed to

Co+p—1 1

Cg>m and C‘u<7

1—-p’

which completes this proof. |
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Proof of Lemma 1

To prove part (i), we decompose —A into a summation of an identity matrix I and an matrix B

as follow
m
—Zl 101 — Q11 —ai2 —A1,m
m
—az 1 - Z 1 G2, — Q22 * —Aa2.m
~A=1+ . . : =I+B,
m

_anL,l am,2 T 21':1 am,i - am,m

where I is an m-dimensional identity matrix. Based on the definition of a; ;, we have — > ay; —
agr € (—1,0) for ¢,k =1,2,...,m and —a;; € (—1,0) for i # j, thus all elements of B are in the

interval (—1,0], then the inverse of —A can be expressed as
(-A)'=1+B)'=I+)» (-1)B".

Because B < 0, we have (—1)'B* > 0 for ¢ > 1. Therefore, (—A)~' = (I+B)~' >1— B. Hence,
we can obtain that A™' = —(I+B)™' < —(I - B) < -I<0. Notice that x=—A"'e, where —z;
equals the summation of the elements of the i'" row of matrix A~!, in which A~ < —1I, thus the
summation of the elements in each row of A~! is smaller than —1, i.e., —z; < —1 (z; > 1) for

i1=1,2,...,m, which completes this proof.

(ii) Because x = —A~'e, the solutions 1, ..., z,, satisfy
~ Crpr —~ Cipr
ch+c (r;+xp)=2;,—1 and ch+c (zj+zp)=2; — 1.

Without loss of generality, we assume ¢ < j, so that

Z Crpry CrprpTr Z Crprr; Crprro
Ce+C; Cu+C Ci+C; Co+Cy
(EC.G)

"~ Crorzr, Crpray, Crprz;  Crprx;
E _ At B,
> ~ Cr+C; Ck_|_0 ZC’;A—CQ Co+C, o+ o(acl xj)

Hence we can obtain that ; —z; > Ay/(1— By), where Ay =" | Cyprxs/(Cr.+C;) — Crprar/(Cr+
C;), Bo=> 1, Crpi/(Cr+C;). Because By <Y " | px = p <1 and A, >0, it is obvious to see that
r;—x;>0.

(iii) We assume p; >0 for all i =1,2,...,m (If p, =0 for some k, the m-grade case degenerates to
the (m —1)-grade case). Because Ax = e, multiplying C; to the i*" row and dividing by C; for the
4t column of A yields

m 1
Z,-:1 ay, —1l—aiz —a12 —Q1,m Xy

pl e pm m
—a21 Zi:l az;—1—ags -+ —Q2.m Coxy

D1 P : . . . :
_a7n,1 _a'm,Q e Zi:l am,i —-1- am,m mem _Cm
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Omitting the last row (after some algebraic steps), we have

—b1,1 b1,2 ce —b1,m T1 Cy—1
—ba1 —bao o —bap Coxy Cs—Cs
. . ) . . = . , (EC.8)
*bmfl,l *bmfl,Z e bmfl,m Cm:rm Cm - Cmfl
where b; ; > 0 and
1 1
bi,i = - Cipi, k#i,i—1;
b <Ck+Ci Ck+1+ci> P 70
bpr=1-— + — Cppr, k=1,....m—1; EC.9
o <; Ck+Ci> (Ck+ck Ck+1+ok> kP " ( )
bk,k:+1: Z bk}j, kzl,,m—l
JAk+1
Because Cy41 > C), and by 41 = Z#Hl by, for k=1,...,m—1, (EC.8) implies that
Z b1 ;Cozy > Z b,;Cjz;,
j=1 j=1
Zbk7jck+1$k+1 >Zbk’jcjxj’ k:2,,m—2,
j=1 j=1
Z bm,LijiL’m > mefl,jCjI‘j.
j=1 j=1
It is easy to find that Cyzy, (k> 2) is not the smallest one among 1, Coxa, ..., Cp,2,,, otherwise we

have 377 by ;Crrr < 3070 by ;Cjx;, which contradicts to the inequalities above. Therefore,
we must have z; < Ciz; (1 > 2). Next, we will prove Coxy < Cix; for i =3,...,m in a similar

way. In (EC.8), dividing by C;1; — C; in i row for i =1,...,m — 1 and subtracting t; = b, ; (Cy —

1)/[b1.1(Ciy1 — C;)] times of the first row in i*" row for i =2,...,m —1 leads to
—bi1 ) b2 / / b, / 1 1
(.) e _ b1z T j.Lt2b17m 02,3:2 = ! B & ; (EC.10)
0 _b{rn—172 — tm_lbll)Q tee b;n—l,m + tm—lb&,m Cmﬂjm 1-— tm—l

where b; ; = b; ;/(Ciy1 — C;). In order to find the relationships among Caxs,Cszs. .., CyZpm, We

rewrite the above equations as

—02,2 02,3 _027m Chxy ag
_QS,Z —¢3,3 —st,m 03'333 _ 61'3 ? (EC.ll)

_Cm—l,Z _Orn—l,l’» Cm—l,m Cm‘r'rn Am—1
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where

b1 1bk,2 + b1 26k 1 )
Choo = G0 k=2 me
Choprr = b1 10k k1 + b1 k41081
o (Cre1—Cr)bia
~ biabry — by 50k

Cp, = A2k
" (Cry1— Cl)bra i

akzl—tk., k:2,...,m—1.

>0, k=2,....m—1;
(EC.12)

Based on the definition of C; ;, it is easy to verify that Cj 41 = Z#Hl Cy,jfor k=2,...,m—1.

The structure of (EC.11) is similar to (EC.8). If a; > 0 and C} ; > 0, we have

m m
Z C’Q’jCE;.fL'g > Z b2,jijj7
j=2 j=2

ch,jck+lxk+l >Zbk’jijj’ k=3,....m—2;

=2 =2

m m
Z Cm_l,jcmxm > Z bm—l,jijj-
j=2 j=2

Hence, we can deduce Cyxy < Cix; for i =3,...,m. Therefore, it is sufficient to complete the proof
by showing that a, >0 and Cj, ; > 0.
Because (Cy —1)/[(Crs1 +1)(Cr+1)] < 1/(Cy+ 1), we have

bkl(CQ—l) i Ol
FELLILE LA, - > i >1-p>0, EC.13
R oA p1+ 3 =’ p ( )

which implies that a; >0 for k=2,...,m —1.

Note that we have Cj 5 >0 and Cj 11 > 0 from (EC.12), it remains to show that Cj ; > 0 for
2<k<m-—1and j¢{2,k+1}, we consider the following cases:
(1) When j =k, we need to prove by 1by > by by 1, that is

< I 1 >C < I 1 )
110 Gor G ) 050 140 )™

G 1 1 G 1 Ch
1— 4+ =— 1— S [ — .
<[ ZH@’”(a 1+02>p1[ ;Cﬁcz-m*(z CH@H)”’“]

i=1

It is straightforward to verify that

G 1 Crpx -
1— Jyat >1-5" ), ,
Z1+cip+2+c,c+1 ;p TP P

C; Pk P1 =
1- o+ Ok >1-% pi .
;Ck+c,»p+2+0k+1 ;pﬂ)ﬁpk
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By letting Y =1— p+ p1 + pr, we have
G 1 1 G 1 Ch

1— == 1— (- —=—E—
;1+cﬁ+<2 1+02>p1 ;CHCJ”(Q ck+ck+1>pk

P1 Crpr P1 Crpr x Cry )r 2
>|Y — + Y — + > [1— + Y

and

(1 S )@m( Lo >p1< G Ty
1+C,  Cy+Cy 1+Cy  1+4+Crn 1+C,7 14 Cy
where x = p, /Y,y =p../Y.

Therefore, it is sufficient to show that [1 — (2/z +ay)]* > a(1l —a)xy, where a=Cy/(Cr+1),a €
(1/2,1), ie. 2/z + ay + v/a(l —a)zy < 1. Define ¢(x) = 2/x + a(l — z) + v/a(l —a)z(1—z) >
2/z + ay + \/a(l —a)zy so that ¢'(x) = [1/2 —a + (Va(l —a)(1 — 22))/(2/x(1 —x))]. Setting
A= (2a—1)%/[a(1 —a)], we find that (i) when 0 <z < 1/2 — \/A/(4A+16), ¢'(z) > 0 and (ii)
when 1/2 —/A/(4A+16) <z < 1, ¢/(x) <0, then we derive that 2/z +ay++/a(1 — a)zy < ¢(z) <
max¢(z) = f(1/2—/A/(4A+16)) = (a+1)/2 < 1.

(2) When j # k, we need to prove by 1by ; > by ;bi 1, that is

C,—1 (Cri1+C5)(C +C)) ~ G (1 1 >
<1- JR (e
(Cr+1)(Crya+1) (1+Cj)(C2+Cj) 1 Z 1 +C¢p + 2 1+C, P

Define ¥(z) = (Cry1+2)(Cr + ) /[(Cry1 + 1)(Cr + 1)] — (1 + 2)(Cy + ) /(Cy 4+ 1). We have

1 1 ) Cr+ Crir
(

— —-1<0
(Crir+D(Cr+1) Cy+1 Cri1+1)(Cr+1)

V(z) =2 (

for all > 1. Then ¥(z) is decreasing in x > 1. Notice that ¥(1) = —1, then ¥(z) <0 for x > 1,
which gives that U(C;) <0 for j # k. Then we can get that

(<)) <0 o 1 (Crn+ GG+ Cy) 1
(1+C)(Cy+Cy) (Ce +1)(Cry1+1) (14+C)(Cy+Cy) Cy+1’
- Cs (Cr1+Cy)(Cy, +Cy) Cs
(Cr +1)(Cryr+1) (14+CH)(Co+C)) Co+1’

which implies that

Cy—1 (Chy1+C5)(Ce+ C)) 1

<1
(Cr+1)(Copr+1) (14+C))(C2+Cy) Co+1

Therefore, we have

W 1 1 Cy—1 (Chy1 +C)(CL+Cy)
1— i —— | p1—
Z p+(2 1+02>p1 (Cr+1)(Crr +1) (14C))(Cy+C)) 1

C
>1_’01_21+C,pi>1_p>0’
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which completes our proof. |
Proof of Theorem 2 Our proof has two steps. First, we show the sub-optimality of m-grade case;
second, derive the optimal SSRD parameters for the 2-grade case.

Step 1: Sub-optimality of cases m > 3. The optimization problem (14) can be rewritten as

min Y piv/zi(prs - Pm)
i=1

st > pi=p<l (EC.14)
i=1

Pz‘EO, ’1:21,2,...,771,

where x;(p1,...,pm) is a function of (py,...,p,) and it is the solution of the linear equation Ax =
—e. We apply the first-order Kuhn-Tucker condition to obtain the optimal work load p7,...,p},.
Let A >0, u; >0 for i =1,...,m be the Lagrange multipliers (Luenberger and Ye 2008). The
corresponding Lagrangian of (EC.14) is

L(p1y- s Py Ay s o5 Him) = Zpi\/ Ti(p1y- s Pm) — /B(ZPz —p) +Z%Pi- (EC.15)
=1 =1 =1
The Kuhn-Tucker condition implies that if the minimizers pj,...,p}, exist, there exist § >0,
a; >0,2=1,...,m such that
oL
a :0, ozlpzz(), p,;,a,;ZO, izl,...,n, (ECIG)
Pi

which is equivalent to

1 (xup: L2 P2 l“mipm> .
Vi + 5 + 4+t —f+a;=0, ap;i=0, pj,;20, i=1,....m,
2 (\/asi N N B p p

(EC.17)
where z; ; = 0z, /0p;, which solves the linear equation
with bi = (fEiJ, e ,xi7m)T, e = (1, Ceay 1)T7
261’1 0O --- 0 Ci,m 0o - Ci,m
c21 €21 00 0 com 0 com C;
B, = c , ..., By, = ’ 7 . Cij= ! EC.19
Ol S 0 1 o “i= oy (EBCL9)
Cm,1 0 0 Cm,1 0 0 0 2C’mJn

For all p; >0, we have b; = A7'B;Ale.
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We first consider the case m =3 and later extend to the case of general m > 3 by induction. If
the optimal p7, p3, p5 are all strictly greater than 0, we find that o; = 0,7 =1, 2, 3 from Kunh-Tucker

conditions. Then p7, p3, p; satisfy the following equations

fi(p1sp2s p3) = 2(\/x1 — \/x2) —a(by —by) =0,

(EC.QO)
f2(/)1:,02703) = 2(\/1"71_ \/E) - a(bl - b3) = 07
where a = (p1//1, p2/\/T2, p3//T3). Note that
Ca1 Co1 — 1 0 1
b1 — b2 = A_l(Bl — BQ)A_le = A_l Ca1 C21 — 1 0 A_1 1 . (EC21)
C31 —C32 C31—C32 1

Define the matrix

diy dio dis
Al = dyy doo dos |,

dzy d3p d33
where d;; <0 from (i) of Lemma 1. Because Ax = —e, we have
C21 C21 — 1 0 1 C21 C21 — 1 0
_Ai1 Ca1 C21 — 1 0 .4&71 1 = —1&71 C21 C21 — 1 0 X
C3,1 —C32 (€31 —C32 1 C3;1 —C32 C3;1 —C32

x1[(dig +dip)can +discsa] —x2[(dig+di2)cie+discs 2] +x3(csn —ase)dis
=— | 1[(da1 +dap)can +dascaa] — x2[(de +dao)ci o+ dascsa] +x3(c3n —azo)das
x1[(ds1 +dsp)can +dsscsn] — x2[(ds1 +ds)ci 2+ dssc32] +x3(c31 —as2)ds s

From (iii) of Lemma 1, we have z1co 1 — x2¢10=121/(Co+1) — Coxy/(Cy + 1) <0, and

L1 1 — T Cay b TaCa 1 — Tac _< T Coxy )_(C?,xs_ Csx3
ol A 2T Oy 41 O+ Cy Cs+1 Cy+Co
<<CQCL'2 B CQ.I‘Q )_(Cd$3 B 03$3 )
Cs+1 O340 Cs+1 O340,
1 1
= (Cyxy — C —
(Coz 3‘7”3)(03“ 03+02><0’

where the inequalities hold because from Chzy < Cizs (part (iii) of Lemma 1). Since d; ; <0, we

have (.’1310271 - $20172)(di71 + d@g) + [33'10371 — T2C32 + T3C31 — $3C372]di73 >0 for i = 1, 2, 3. Hence,

Ca1 C21 — 1 0 1
A! Co1 Co1 — 1 0 A1 1 <0. (ECQQ)
C31 —C32 C31—C3p2 1

Therefore, we have b; — by < 0, leading to a(b; —bs) <0 (note that a > 0). According to (ii) of

Lemma 1, we have x; > x5, which implies that

fi(p1sp2s p3) = 2(\/x1 — \/x2) —a(by —by) >0,
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which cannot satisfy the optimal condition (EC.20). This shows that (p3, p3, p3) cannot be attained
in the region {(p1, p2, p3)|p1 > 0, p2 > 0, p3 > 0}. Therefore, we must have p; = 0 for some i € {1,2,3}.
If there are p; = p; =0 for ,j € (1,2,3) and i # j, it degenerates to the homogenous service case.
Because we have shown that SSRD policy outperforms the homogeneous policy, there should be
only one p; =0 (the grade-2 case).

We next treat the general case m > 3. We assume that this structure holds for the i case, i <m,
that is, if there are in total m service grades, the optimal SSRD allocation is to allocate the arriving
customers with two classes. We consider the m + 1-grade case. If pf >0 for i =1,...,m+1, similar

to (EC.20), we have

fk(pla"'aperl):Q(\/x»l_ ka+1)_a(b1_bk+1)zov k:]-a"'am' (E023)

When k =1, similar to (EC.21), we have

Ca1 C21 — 1 0 0
Ca1 C21—1 0 0

b, —b,=A"' (B, -By)A'e=—-A""] G1 —C32 C31—C32 " 0 X,
Cm,1 —Cm2 0 r Cm,1 — Cm2

where B; and B, are defined as (EC.19) analogically. Denote d;; as the (i,7)™ entries of A~!.

From (i) of Lemma 1, we have d; ; <0. Because z,¢y 1 — 9¢; 5 < 0, the k™ element of the vector

Ca1 C21 — 1 0 te 0
C21 C21 — 1 0 cee 0
A1 €1 —C32 C31—C32 " 0 x
0 . 0
Cm,1 —Cm2 0 0t Cm,1 — Cm2
satisfies
m m m
1 [(dg1 +di2)ean + E di.iCin] — xo[(dp1 +di2)c1 o + E diiCio] +x; E (cin—cio)dy
i=3 i=3 i=3

m
> E dk,ici,ﬂ?l - dk,ici,2332 + dk,iCi,ﬂCi - dk,icmxi
i=3

_id . T _ 021132 + xT; . CQIEZ'
T MO+ GG Gl G+ G
" T Cg.’l?g Ci.’lTi Ciﬂfi " 1 1
Z_; " {clﬂ Gt Gt G ci+1]—iz_; il Caz x><ci+1 ci+cz>>

Therefore, we have b; —b; <0, which implies that fi(p1,...,pm) > 0, because a(b; —by) <0 and

VZ1 > /%2 ((i) of Lemma 1). This means that p; > 0 for all ¢ can not be optimal for (m + 1)-grade
case, so that we must have p; =0 for some i. Hence, the m+ 1 case degenerates to the k-grade case

for some k£ < m.
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Step 2: Treating the m =2 case. For the 2-grade case with C'= 6,/6,, the optimal allocation
probability can be derived directly from Proposition 1, namely,

_ mvV1+C—-Cp
pVI+C—=Cp+p/1+C—p’

pV/1+C—p
piVI+C—=Cp+py/1+C—p

p1(C,p) p5(Cip) = (EC.24)

We next develop the optimal policy for p;(C) and p3(C) by unconditioning on p. Substituting
(EC.24) into (14), our minimization problem becomes
g PVIFC—ptpay1+C=Cp)

p1,p2 1+C—-Cp+(C—-1)p; (EC.25)
st. pr+p2=p<l

We can give the optimal SSRD results (as a function of C' and p) below.
Let E=1+C—Cp, F=1+C —p, py =2z and p, = p— 2. Define g(2) = (VFz+ (p—2)VE)?/[E +
(C' —1)z]. Then the first-order derivative of g(z) with respect to z is

dgz)  ((VE~VE)z+VEp)- (€~ )WF~VE):~((C~)VEp~2A(VF - VE)E)))

dz (E+(C—1)z)?
(EC.26)
Because F' > F and C > 1, it is easy to verify that (C — 1)(v/F —vE)x >0 and (C — 1)VEp —

2(v'F —VE)E > 0. So we conclude that

VF-VE C-1
dz VEp

dg(z){<0, when 0 < z< L2 b
2F
ﬁ_\/ﬁ—a<z<p.

>0, when

Hence, z* = VEp/(VF —VE) —2E/(C — 1) is the unique minimizer in (0, p). Substituting it into
pi(C, p) and p3(C, p) in (EC.24) yields (p;(C, p),ps(Ca,p)) = (E/E+ F,F/E + F). The correspond-
ing optimal SSRD parameters (p*,p*, u*,0") and delay w*(C,p) can be obtained, accordingly, by
replacing p; with z*.

We have showed that, if there are m > 2 “candidate” grades, it is optimal to consider 2 grades.
It remains to argue that we should choose grade 1 and grade m, not any other grade j, 1 < j <m.
For a 2-grade SSRD policy with a fixed p > 0, w*(C,p) is decreasing in C' (see Proposition 2).
Hence, we have w*(C,,, p) < w*(Cp—1,p) < --- <w*(Cy, p). This concludes that it is optimal to to
allocate all customers to the classes having the mazimum retrial rate (case m) and the minimal
retrial rate (case 1) (none to any other classes). |
Proof of Proposition 2 Plugging the optimal SSRD parameters p3, p5 and pi,p; into (9), we
obtain that the expected waiting time as a function of C":

w*(Cp):2pz<c5+1>< V(A+C=Cp)1+C—p) ) )
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which has the derivative with respect to C

dw*(C, p) (cz+1)(2-p)p'(C—-1)

dC o T C—p/TFC—Cp(VIFTC—p+VITC=Cp) (1= p)Ae

(EC.27)

Since C' > 1 and p < 1, we can easily validate that dw*(C, p)/dC < 0, so that w*(C, p) is decreasing
in C' > 1. Letting C — oo in (15)—(17) yields (19)—(20). [

Proof of Proposition 3 Let E=1+C —Cp and FF'=1+C — p, we have

w0 (Cp) = tim (wf [ —EE ) ) o (Y
. <Cvf’>—(,1%o< o ((\/E+\/F)2>+ 0)‘ ’ ((m+1)2>+ "

Next, for any p € (0,1), we have

. * I B V1i—p _ (2_/)),02
Jim (@)l s ) 0= g e s <

Thus we have w*(C, p) = wl +wPv/T—=p(1/(v/T—p+1)>+0(1/C)). That is, w*(C, p) converges
to wf <(\/177 V_ll;f’l)Q) +w{ when C' — oo in the order of O(1/C). Substituting the optimal allocation
into (21) yields
" 1— (AEL
wy —w*(C, p) ((\/E-‘rﬁ)z)
Rp(C, p) = _ . EC.28

It is sufficient to prove that (F + F')/v/ EF is increasing in C' and p, namely,

ABE+F)/NEF __ 2-p(C-1p
dC T 21+ C—pP(1+C—Cppr T
d(E+F)/VEF _ (C—1)2(1+C)p .
dp T o1+ C—pp(l+C—Cppr

Therefore, Rp(C, p) is increasing in C' and p. For any given py and 6y, as C' — oo and p — 1, we
obtain the desired result. In addition, the asymptotic order of growth in the homogeneous case
is O(1/(1 — p)) because wy = (1/60 + (2 +1)/2p0)p/(1 — p). For the waiting time under SSRD,
it is decreasing in ratio C. When C' — oo, by substituting C' = oo into F and F' in (17), we have
w*(00,p) = O(1/y/T=p) + O(1/(1 — p)). Therefore, wo — w* (50, p) = O(1/(1 — p)) — O(1//T=p),

which gives

wo —w*(C,p) _ O(1/(1=p)) =O(1/vT=p) 1 n

wo a O(1/(1=p)) 14200/ (Bo(c2 + 1))

Proof of Proposition 4 For fixed C'=6,/6, > 1, §, and p, the average number of retrials under

SSRD (Theorem 2) and homogeneous service are given by

. _ (2 +1)p*6y ([ VEF(CE+F)(C+1) R ) p
MO TN <C(E+F)(\/E+\/F)2>+1—P S P
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Therefore, we have
2ymp(C+rp)(C+1)

ro—r"(C.p) _ '~ Carpatymy
R (C,p) = = . EC.29
v(C.p) To 1+2p0/(60(c2+1)) ( )
In order for our SSRD policy to outperform the homogeneous service policy, we need
2,/1p(C+1,)(C+1)
Ctr)(1+ym)?

or equivalently,
A1+C—p)(1+C=Cp) (14C = p+C*(1+C —Cp))* < C2(1+C)* (2 - p)*.
We define
WC,p)=C*(1+C) (2= p)* —4(1+C = p)(1+C —Cp) (1+C — p+C*(1+C - Cp))*. (EC.30)

By taking the first and second partial derivatives of h(C, p) with respect to p, we have

2
%a(pc;p) = 4(0271)2 (6(1+C4) (p—1)+C? (*22+18p+3p2)—20(1+02) (9712p+6p2)).

For any C' > 1, we have p <1, —22+18p+3p*> <0 and 9—12p+6p* =6(p—1)?+3 > 0, which imply
Oh*(C, p)/dp* < 0. Because Oh(C, p)/dp|,—0 > 0 and Oh(C, p)/dp|,=1 > 0, h(C, p) must be increasing
in p € [0,1]. It is also noted that h(C,0) = —4(1+ C)*(C?* —1)*< 0 and h(C,1)=C?*(1+ C)*(C —
1)? > 0. Therefore, there exists a unique p, such that Ry (C,p) >0 when p > p. for any given
C > 1. The value of p. can be found by solving f(C,p)=0. If p_}}%n_m C?/3.(1—p)=1€]0,00],

then lim r,/C*°= s s = 1/9, which leads to

. 2,/(C+1,)(C+1) , 2013(C +9C%3)(C +1)
lim = lim )
p=1Coo C(L47,) (14 /)2 p=1Coee CVI(1 4 C2/3)9)(1+ C/3//9)?
1/3
- 2/9(C +1/19)(C+1):2\/;97
p=1,C—o0 (14 1/9C2/3)C2/3

yielding lim  Rr(C,p) = (1~ 2/0)/(1+ 2510/ B0(c3 + 1)
Next we will identify the maximal Rz(C, p). First, we will show that Rp(C,p) is increasing in

p€(0,1) for any C' > 1. Then it is sufficient to prove that u(r,) = % is decreasing in

rp, because 1, = 1i5?1+§p) > 1 is increasing in p € (0,1). The derivative of u(r,) is

du(r,) C+1 ) o(rp)

dry ¢ V(L4 /rp)3(L+1)? ]
where ¢(r,) =7,(3+ /T + 1, — 13/%) = C(r, + /T, + 3r2/? — 1). Because ¢(1) <0 and
d(ry) _ 6y/Ty+3ry+ 4y —5r) — C' (1427, + 97
dr, 2y
- 6,/Tp +3r, —C (1427, +9r,) _ Ay —6ry— 1 “0
= 2.7 TN
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we conclude that ¢(r,) <0, and more important, u(r,) is decreasing in r,. Taking p — 1, we have

ro —r*(C,p) 1 - o3 vey
_ o ) _ (14+VC)2
(O ) = T = T 3 /(B + 1)) (EC1)

Because Rr(C, 1) increases in C' > 1, it can be asymptotically maximized when C' — oo (the upper

bound can be attained at 9 = 0). |

Proof of Proposition 5 We consider the asymptotic value of Rg(C, p) as p — 1,C — oo. First, note
that o 1oe=, fe HO=, fe (/0= fim Wi/(dn)=0md i =

C/l[1—=p)C+1]=00. With {= lim (1—p)C, we have

p—1,C—o0

1+L[(C+Tp\/@)(1+\/ﬁ) (c%+1>\/ﬂ E[S; ]

i 0= (Cop) o T T @) T o)
—1,C—00 —1,C—00 c2+1 1 -1
. Yo / 1+ 2 (22 + L) BlS; )
(C+rpyTp) 1+yTp) | (3+1)y/Tp
- lim 1-— (14rp)bo(C+rp) o (1+rp)
p—1,C—00 c2+1 1
2p0 )
1, [odem Vassen) (U asSom)
= lim R (+ i) (s ) %
—1,0— 241 1
P > 210 + 0o
c%Jrl + 1 1 5
— hm 2pg o (§+2)90 — hm CU + 1 + 2[(§ + 1)/(5 + 2)]lu0/90
p—1,C—o00 C;;""l + HL p—1,C— o0 C% +14+ 2,[1,0/60 '
1o o

Proof of Corollary 3
In Proposition 3, we have showed that RRD can be maximized as C' = oo and p — 1. When
C=0(1/(1-p)*) witha € (1,3/2), we have lim C%¥?.(1—p)=0and lim C-(1—p)=o0,
C—o00,p—1 C—o00,p—1

so that the maximum RRT and RRS can be attained, respectively. |

Proof of Proposition 6
We first note that OF (z¢,yc,C)/0xc = OF (xc,yc,C)/Jyc = 0. Then by taking the derivative of
dF (zc,yc,C) with respect to C, we have

dF(zc, Yo, C)
ac
_ OF(z¢,yc,C) dzc BF(ﬁfcﬂJC,C)% OF (z¢,y0,C)
_ OF(z¢,yc,C)
B oC
_ Of(wi(zc,yc, C)) Owi (e, yc, O) df(wa(zc,yc, C)) dwa (2, yc,C) (1—zc)
0w (7o, ye,C) oC “T dwa(ze,ye, C) oC e

Of (wi(ze,ye, C)) (2*p)(pfyc)(%+%) . (1= 20)p )
owy(zc,ye,C) \ U—ye+(1—p+yc)C)P?M(1—p)  (zc(C—1)+1)20:(1—p) |
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Of(wa(rc,yc, C)) “Ye(2=0) <%+%) - ep (1—-zc)

Ows(zc,yc,C)  \ (L—yc+ (1 —=p+yc)C)?Mo(l—p) (zc(C—1)+1)*6p(1—p) ¢

(2 p) (L2 + )
1—yo+(1—p+yc)C)*Ao(1—p)

_ (Of(wi(ze,ye, C)) of (wa(z¢,yc,0))
_( 3w1(xc,yc,0) xC(p_yC)_ 3w2(33073107c)

+ <8f(w1(ICayaO)) _ 3f(w2($039070))) zo(l—zc)p
Ows(zc,yc, C) Ows(zc,yc,C) ) (xe(C—=1)+1)%60(1—p)

Let G=0f(wi(ze,yc,C)) /0w (ze,yc,C) = f (wa(xc, ye,C))/Ows(xc, yo, C), we consider the fol-
lowing three cases:

Case 1. If f is linear (i.e., G=0), we have dF(z¢c,yc,C)/dC <0, because z¢(p —yc) — yco(l —
xo)=Ac(l—xc)(1/pu2 —1/p1) <0, which implies that C* = co.

yo(l— xc)) (

Case 2. If f is concave (i.e., G <0), we have dF (zc,yc,C)/dC <0 (which similar to the analysis
in case 1).

: : of(wy(zco,yc,C of(wa(zc,yc,C P .
Case 3. If f is convex (i.e., G > 0), we know that {)Eﬂll(i;y"f’c))) ( g(w;((z;yycc,c)))) is increasing

(decreasing) in C' because wi(z¢, yc, C) (wa(zc,yco, C)) is increasing (decreasing) in C'. It is evident
that g@o%gm =0 and 3320102(%507% < co. In particular, if Cligoca%gc@) >0,
it implies that F(zc,yc,C) will keep increasing when C' is large, hence the optimal ratio that

minimizes F(z¢,yc,C) can only be attained at a certain finite value C* € (0, 00).

The limits C' — oo, Clgl;o To =T and Ch_r}go Yo = Yoo can be derived by solving the equations (32)-
(33) with C' = co. By substituting them into w;(00) = w1 (Zoo, Yoo, 00) and ws(00) = W2 (T s s Yoo, ),
we can obtain the resulting waiting times. Therefore, a sufficient condition that a finite C* can be
attained is

lim C?.
o dC

x w1 (00 wWa (00 (2_ ) %"’%
A (@e,ve.C) ) o, (62(101(5)0)))9300(0—%0)—8222(20)))%0(1—1‘00)) a —ZEy:)on(l jp2
Of(wi(o0))  9f(wa(o0))) (I—ws)p
*( Juwr(s0) | un(o0) >$w90(1—0)

Note that the condition (EC.32) always holds as long as . (p — Yeo) > Yoo (1 — 2 ), Or equivalently

> 0. (EC.32)

TooP > Yoo From (33), we have

(df(wl(xvyvc))

dwn(2,9.C) (1=p)(1—z)+

=0.

df(’LUQ(J?, Y, C)) IL') 8'(1}1(%‘, Y, C)
dw2(xay70) 8y

Because OJw;(x,y,C)/0y = 0 (due to the fact that [df(wi(z,y,C))/dw:(z,y,C)](1 —
p)(1 — z) + [df(wa(z,y,C))/dws(x,y,C)|x > 0), the equation above implies that yo =
T+ 2 (1= P2+ d2cp(Z = p) — (1+20)(1 - p))/2, which yields

Toop > Yoo € 22— p) <V (1+2:)2(1 = p)? + 420p(2 — p) = (1 + 2o0) (1= p)

S 22-p)+(14+20)1=p)) <(1+20)*(1 = p)* +42,0p(2 — p) & To0 > Ty [ |
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Proof of Lemma 7 Note that ¢ and j are the numbers of customers in the buffer and orbit,

respectively, we have the following balance equations for 1 <i< K —1 and j > 0:

(Ao + 760)p0,5y=HoP,5) (EC.33)
(Ao =+ o + J00) P y=topi+1,5) + (7 + 1bopi-1,j+1) + AoDi-1,5 (EC.34)
(Ao + po)pejy=(J + 1)0op(rc—1,j+1) + AoPr -1, + AoPr j-1- (EC.35)

We will solve the above equations using the generating function below:

Multiplying equations (EC.33)-(EC.35) by 2/ and summing up over all j > 0, we obtain the

balance equations of the generating functions:

Moo (2) + 200115 (2)=oI1; (2), (EC.36)
(Mo + 10)ILi(2) + 260011 (2)=poIL; 11 (2) + 0011, (2) + NoILi_1(2), (EC.37)
(Mo — Aoz + 110 Lic (2)=0oIT,c 1 () + AoILic_1 (). (EC.38)

Multiplying equations in (EC.37) by 2 for 1 <7< K — 1 and then sum them over for (EC.36)-
(EC.38), we have

K-
oIl (2) 4 (Ao + po) Z 2"+ (Mo — Aoz + o)k ()2

=1

K—-1
= 110101 (2) + Y (polLi1 (2) + AoILiZ1(2))2" + AoIl g1 (2) 2"
=1
K
& Xo(1=2)o(2) + Y (A2 (1= 2)ILi(2) — poz ' (1 — 2)ILi(2)) =0
=1

& Xollo(2) + Y (Aoz — o)z~ 'Ti(2) =0. (EC.39)

Setting z =1 in (EC.39) yields Zfil IT; = 2—8, which is the probability that the server is busy.
Furthermore, by taking the derivative with respect to z in (EC.39) and letting z =1, we get

Aol (1) + Z((i)\o — (1 = 1) o)L + (Ao — p10)IT5(1)) = 0

= ,LL[)H/ +Z Z)\()* Z*].)Iuo) ILJJ()*)\O ZH/
=1
II (1— —(i—1)1;
fro(I1y — po(1 = po)) +Z (ipo—(i—1))
0o(1 — po) 1—po

Aad NO’I”b’Lt
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where N, ;s = Zf{:o IT/(1) is the mean number of customers in the orbit. |
Proof of Proposition 8 When the capacity of waiting line is K, we let I(¢) be the number of
customers in line and N (t) be the state of the waiting line, where N (t) € {0,1,...,25}. When the
state of waiting line is N (¢), the total number of customers in the buffer can be uniquely determined
by I(t) = [logy ¥, see Figure EC.1. Define Ny (t) = N(t) and N,_1(t) = [(N;(t) — 1)/2] for
i=1(t),I(t) —1,...,1. Then the '™ customer in the waiting line is a type-2 customer if and only
if N;(t) is even. Therefore, the state of waiting line can be characterized by N (t) uniquely. Then
the system state under SSRD can be modeled by the continuous-time Markov chain (CTMC)
{(I(t),N(t),Q:(t),Q2(t));t >0}, where Q;(t) is the number of type-i customer in orbit i, i =1,2.

Its infinitesimal generator of the CTMC is given as follows:

i+ 1-2

e @ mymy) = (0= 1,n— 27T 2 g )

mq 6y, if (i/,n/,mi,mby)=(+1,2n+1, m1 1,m});
Q(in,my mo), (i 0! ;m) ;mb) = Mo, if (¢,n',my,mb) = (i+1,2n+2,m},m,—1);

A1, if (¢/,n',m},my) = (i+1,2n+1,m},m});

A2, 1fw(lz n',mi,mb) = (i+1,2n+2,m},m)).

Let P(i,n)=>3_, >, pi,n,mi,ma)z " 25" through Kolmogorov equations for the stationary
distributions, and take the summation for m; >0, my > 0, we have

()\0 —I—/.L( 2n+1 T)P(i’ 2n + ].) +
2i—1.3_2

82’1 822
; i ; i+1 918P( )
=mPE+1,2n+14+2") + puaP(i4+1,2n+1+2"7") + TJFA 1Pi—1,n), (EC.40)
1

210P(i,2n+2)01  220P(i,2n+2)6,
Jr
82’1 822

620P(—1m) XoP(i—1,n), (EC.41)
322

()\O +,u’— _2n42 T)P(z,2n+2) +

2i—1.3_2
=mP>i+1,2n+2+2) +uo P(i+1,2n+2+271) +
d9P(0,0)6, N 0P(0,0)0,

P =u; P(1,1 P,
Ao P(0,0) + 0 025 pa P(1,1) + pa Py o,
OP(K —1,n)60
Mo+ fty 202 T—)\121—)\222)P(K,2n—|—1):%—i—)\lP(K—Ln), (EC.42)
2i—1.3_2 1
OP(K —1,n)6
()\0 +,U/( »271+2 1 —)\121 —)\QZQ)P(K,Qn—l—Q) = % —|—)\2P(K— 1,’[’1,), (EC43)
2i—1.3_2 2

where i > 1, 2171 <n <2i — 2.
7—1

Multiplying z} - (zg/zl)zézowﬂ; Vo2t (20)21) , 21 (zg/zl)z
n+d/2 2
2K (zg/zl)zj =ol ! on the both sides of (EC.40), (EC.41), (EC.42) and (EC.43), and

i—1 i—1
Z; oLMJ olmt=2

2 and
then summing them up over all i =1,2,..., K — 1 and 27! — 1 <n <2’ -2, we can eliminate
all terms of 8P(il’") and ap(il’") Letting z; =1 and z; = 2z, we can eliminate the (1 — z) on the

both sides of the equation above. By letting z = 1 and using FPpo + Zl 1Zn QZ L 2 P(i,n) +

2i+1l_o

ZZ LD _ni-15 o P(i,n) =1, we have

K 207132 2it1l_o

PO,0)A 4> > zn)\g—i—z > Pli,n) (A —p2) =0

i=1 p=21_1 i=1 p=2i—1.3_1
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K 207132 2itl_q K 2itl_2

& P(0,0))\g—i—z Z (i,n /\Q—i—z Z P(i,n))\zzz Z P(i,n)pe
=1 p=2i—-1 1=1 pn=2i-1.3-2 1=1 p=2i-1.31
2t _9

& A= MQZ > P(in).

i=1 p=2i-1.3-1
Notice that N(t) € [27'-3 —1,2¢"1 —2] for : =1,..., K implies that the service area is occupied

by type-2 customer, then the probability that the service area is occupied by type-2 customer

i4+1_ i4+1_
is ZZ 122 im 213 , P(i,n), which gives p, = ZZ 1Zi gim 213 L P(i,n) = Xy/po. Similarly, we can
conclude that p; = Ay /1, which completes this proof. [ ]

=3 © ®e OV ®6

Figure EC.1  The system states in M/M/1/K retrial model with SSRD

Algorithm 1
Step 1. Set the initial value of K, M, C' and the A, u, 8, p under SSRD

Step 2. Define the transition matrix Q

Step 3. Define an e’ in an additional column of Q, and an additional 1 in a vector of 0’s, I.
Step 4. Calculate II=1Q'.

Step 5. Derive N;, N, and the expected queue length L in the buffer through IT.

EC.2. The Preemptive SSRD

In the main paper, we have studied the non-preemptive SSRD policy, where high priority customers
may not always receive service before low priority customers, but they have a higher probability
to receive service first. As a result, the performance (delay and number of trials) of high priority
customers are somewhat influenced by low priority customers. In this section, we assume that type-
1 customers may be preempted by type-2 customers. For tractability, we restrict our attention to 2

service groups. Artalejo et al. (2001) considered a retrial queueing system where retrial customers
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have preemptive priority over customers in the waiting line. Here we consider two retrial groups
among which one group prempts the other.

We make the following model assumptions:

e An arrival seeing an idle server immediately enters service;

e If a type-2 customer, upon arrival or retrial, finds a type-1 customer in service, it immediately
enters service by preempting that type-1 customer to the orbit queue;

e If a type-2 customer, upon arrival or retrial, finds the server is occupied by another type-2
customer, she will be blocked and enter the orbit queue;

e If a type-1 customer, upon arrival or retrial, finds the server is occupied by another customer
(of type 1 or type 2), she will be blocked and enter the orbit queue.

We assume the retrial rates and service rates are 6,60, and pq, ps for the two classes. It is evident
that performance of type-2 customers are not affected by type-1 customers, so that the expected
waiting time for type-2 customers are given by (6). In particular,

P2 1 1 >
Wy = —+— . EC.44
2 1—po (92 2 ( )

The main difficulty is to compute the expected delay for type-1 customers. We will first obtain the
stationary marginal distribution of the number of type-1 customers via the principle of maximum
entropy; and we will next derive the expected number of customers using generating functions.
Specifically, we consider a three dimensional CTMC {X (¢); t > 0}={(L(¢), N1(t), Na(t)) ; t > 0},
where L(t) denotes the type of the customer in service (if any), and N;(¢) is the number of type-i
orbiting customers, i = 1,2. The states L(t) =0, 1,2 correspond to the case of an idle server, a type-
1 customer in service, and a type-2 customer in service. For my,ms > 0, we set up the following

balance equations:

(A+m1601 +m202)D(0,m1 ma) = H1P(,my,ma) F B2D(2,my,ma) s (EC.45)
()\ + H1 + m292)p(1,m1,m2) = )\lp(O,ml,mg) + (ml + l)elp((),m1+1,m2)> (EC46)
(A + /’LQ)p(Q,ml,mg) == >\2p(0,7n1,m2) + (mQ + 1)92p(0,ml,7n2+1) + AQp(l,’rnl—l,nLg)

+ )\1p(2,m1—1,m2) + >\2p(2,m1,m271)a (EC47)

where p( —1.my) = P(i,m,,—1) = 0 for i =1,2. We also define the following generating functions:

(21, 22) = Z Z 21 23 P PO,y ma)

mi= Omg 0

T, (21, 22) = Z Z 21 2y P(1my ma)

mi= Omg 0

2(21, 22) Z Z 2123 P2y ma)-

m1=0mgo=0
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Multiplying equations (EC.45) and (EC.47) by 2{"! and z;"?, and summing up over all m; and

ms, we obtain the following balance equations for the generating functions:

oIl oIl
219170 + 229270 + >\H0 = Nl]:[l + ,UQHQ, (EC48)
82’1 82’2
oIl oIl
Hl()\—f—,ul)—l—zﬁg L :)\1H0+9170+21)\1H1, (EC49)
622 821
oIl oIl
HQ(}\ + “2) = )\ZHO + 92 azo + 2102 821 + )\2211_[1 + )\121H2 + )\QzQHQ- (EC50)
2 2

Comparing the two workloads p; and p, yields the following result.

ProposITION EC.1. Considering the preemptive M/M/1 retrial queues having two customer

classes. The workloads are py = A1 /1 and ps = Ao/ 1io.

Proof. First, we have p; =1I; for i = 1,2. In order to find II; and IIy, we multiply (EC.49) and
(EC.50) by z; and z, respectively and substract them from (EC.48), which yields

()\ — ZlAl — ZZ)\Q)HO + (Zl ()\—i—,ul) - 2'12)\1 - )\22122 - ,Uq)Hl + ((A+/L2>22 - ()\121 +)\222)2’2 - ILLQ)H2 =0.
(EC.51)
Letting z; =1 and 2z, =1, and removing (1 — z5) and (1 — z;) on the both sides of (EC.51) yield

)\2]:[0 + )\2]]1 + ()\22’2 - ,U,Q)Hg = O, (EC52)
)\1H() — (/.Ll — ZlAl)Hl + >\1H2 = 0. (EC53)
Setting Ay = A\; =1 in (EC.52) and (EC.53), we have II; = A, /py and II, = Ay /1. |

Proposition EC.1 shows that the steady-state workloads of the two classes remain unchanged
when the service policy becomes preemptive. Hence the fized-capacity constraints in (2) continue to
hold under the preemptive rule. When L(t) = j, we denote the expected number of type-i customers
in orbit ¢ as L;; = 0ll;/0z],,—1 for j =0,1,2 and i = 1,2. Therefore, the mean number of type-1

customers satisfies Ny = Lo 1 + L1 + Lo ;. We next explain how to compute N;.

ProprosITION EC.2. Considering the preemptive M/M/1 retrial queues having two customer

classes, the expected number of type-1 orbiting customers is
N1:A'L271+B, (EC54)

where

_ 161 — 120>

A0+ 0 — Aaby

AT (A — pao) pia (1 4 61) + M Ao (—paa(pn + pi2) (p1 + 02) + g (1 + 126))
/J1,LL2()\2 - M2)(—)\191 + Mlel - )\292)

B=
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Proof. Because type-2 customers are not affected by type-1 customers and Ny = Lo o+ Ly 2+ Lo 2,
we have L072 + LLQ = )\%/(92#2) and L272 = (92 + )\2))\%/(,&292(”2 — )\2)) From (EC49) and (EC50),
we have

. A(l—HQ) —01L071 I . 91_[/071+)\1H1+A1H0—H1()\+ILL1)
1,2 —
> 92

That is, both Ly » and L 5 are functions of L ;. Differentiating (EC.53) on both sides with respect

. (EC.55)

to z; and and setting z; =1 yield
)\1L0’1 — ([1/1 — )\1)L111 + )\1H1 + )\1L2’1 = 0 (EC56)
Letting z; = 2z = z in (EC.51), we have

A1 = 2Ty + (2 A+ 1) — 22X — )T + (2 + X))z — A2? — ), =0
54 )\H0+(>\Z—M1)H1 +()\Z—M2)H2:0
~ )\(LOI + LOQ) + )\Hl + ()\ — ,U,l)(Lll + L12) + ()\ — Mz)(LQ] + L22) + )\Hg =0. (EC57)

Plugging (EC.55) into (EC.57) and combining (EC.56) and (EC.57), we can express both Lg; and
L, as functions of L, ;. Equation (EC.54) is obtained using the relation Ny =L+ L1+ Lo ;. B
It now remains to compute Lo;. In the rest of this section, we develop a procedure to compute
the stationary distribution of pi m, m,) for mi,my > 0. We define the marginal distribution as
POemg) = D, POmimg)s  Pllomg) = ) Plmma)s  Poma) = ) P2myma)-
my>0 m1>0 my >0

The exact marginal distribution for type-2 customers is given as follow (Artalejo et al. (2001)):

mo—+1 m2

p Ay

p(2,~,7n2) - Z p(2,m1,m2) = m(l - ,02)1+ 02 H()\Q + n02), (EC58)
m1>0 272 n=1
ps° 22 2

PO, ) F P ma) = D Ploimyma) = W(l —p2) "% ] (ha+nbo). (EC.59)
mq1>0 : n=0

We truncate the type-1 and type-2 orbit queues by K and M, respectively. For a given large
number K and a certain prespecified error parameter € > 0, the minimal M can be determined as

follow

M
M= mln{M| Z P(0,-,m2) TP, mo) T P2, mo) > 1-— 6}. (ECGO)

m1=0

We write (EC.45)—(EC.47) in the vector notations:

pO,mQAmg - ,U’lpl,mg +,u2p2,m2) (ECG].)
pl,mgBmg = pO,mQCm27 (ECGQ)

p2,’m2Dm2 - )\2p0,m2 + pO,m2+1Em2 + pl,szmQ + >\2p2,m2—1 + p17m2+1Gm27 (ECG3)
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where mo = 07 17 7M and Pimy = (p(i,O,mg)ap(i,l,mg)a "'7p(i,K,m2))7 1= 07 1727 A%g) - )\+ (Z - 1)91 +
moby for i=j and 1 <i < K +1, Efqig):(mg—i-l)ﬁg fori=jand 1 <i< K +1, F&Qj):)\g for
j=i+land 1<i<K, G{J) = (my+1)0, for j=i+1and 1 <i<K,

A+ +maby, fori=jand 1 <i<K+1;

B = ¢ =\, for j=i+1and 1<i<K;
0, else.
B A1, fori=jand 1<i<K+1;
Cl =0 (i—1)0;, fori=j+1land2<i<K+1;
0, else.
Ao+ o, fori=jand 1<i< K41,
D) = ¢ =\, for j=i+1and 1<i<K;
0, else.

From (EC.61) and (EC.62), we have
Po,ms = H2P2,m, (Am2 - CmgBmglﬂl)ily (E064)
pl,m2 = ,U/2p2,m2 (Am2 — CTYLQBm51M1>7ICm2B;112. (E065)

Substituting (EC.64) and (EC.65) into (EC.63), we can obtain

P2,m5Omy = P2mot1Dmyt1 + AoP2,my—1, (EC.66)

for 0 < my < M, where ©,, = Dy, — Xa(p2(An, — Co,Brlu)™") — (p2(An,
Cm2B;112H1)_1)Cm2Bn_112Fm2 and Amz+1 = (M2(Am2+1 - CMQ+1B;112+1N1)_1)(E7712 +
Crny+1Bot 111Gy )-

In summary, we can compute the distribution ps ,,, for 0 <my < M by follow Algorithm 2 below.

Algorithm 2
Step 1. Calculate pa,..my+1) a0d D0, myt1) +P(1,-,my+1) for 0 <my < M from (EC.58) and (EC.59),

where M is determined by (EC.60) for any given small e.

Step 2 Let p;,M—‘,—l = P2]7\.471-\’_4;1 eT.
Step 3. Take Oy, = GTJQW, O 0=0,_9 91\/\42—1 _ %;1_

Step 4. Calculate ©,,, = @m2+16m2+1;2®m2+2Am2+2 and A,,, = Zmz‘Ll@mQH/\;ZM“AW“ for 0 <
me <M —3

Step 5. p3 = (ALA] —A¢00) (000, — O,A;)7 L.

Step 6. p5 ,,,, = P30+ A; for 0<my <M —1.

Step 7. Loy =Y p. _oPbm, - 3, Where 3=(0,1,2,.... K)T.

The initial value in Step 2 of Algorithm 2 can be estimated via the principle of the maxi-

mum entropy. We consider an example to illustrate this algorithm. For 6; = 0.6111, 6, = 1.8333,
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A1 = 0.21083, Ay = 0.2917, p; = 0.9097, s = 1.0763, p; = 0.4167, p, = 0.5833, the approximate
distribution and exact distribution are given in Table EC.1, with the error parameter ¢ = 0.005
(M =5,K=235).

Table EC.1 The comparison between approximated distribution and stationary distribution when p =0.5

D2,..0 D2,..1 D2,.2 D2,..3 P24 P2,.5
Approximate distribution 0.1851 0.0581 0.0170 0.0049 0.0014 3.8357E-4
Exact distribution 0.1879 0.0590 0.0173 0.0049 0.0014 3.8803E-4

Table EC.1 shows that the desired accuracy can be achieved when M =5, which also implies
that Ly =0.4078 and N; =1.0022. It is noted that the approximated distribution are less than
the stationary distributions, i.e., p3,, < P2.m, due to the finite truncation of the orbit queue. To
normalize the probabilities so that they add up to 1, we may add an additional step between Step
6 and Step 7, namely, p;,,, = (P2,m/P5.,,€)P5 -

However, when p is large, the value of the truncation K and M should be more carefully selected.
For example, when p=0.9, we set K =200 and M = 15 to keep the error within the tolerance, in
which Lo = 11.7592, N; = 20.7155. Therefore, by carefully selecting the truncated values K and
M, desired accuracy can be achieved.

Plugging L, ; into (EC.54), we obtain the expected number of type-1 customers N;. Next,
the mean delay of type-1 customers can be determined using Little’s law w; = N;/\;. Following
(EC.44), the expected total orbiting time and total number of trials for all customers can be derived
as WEgpp = wip) +wops and rigpp = w10,p1 +webapy. In Figure EC.2, we plot delays and number
of trials as a function of C, with p =0.7,0.9. Because C' ranges from 0.01 to 100, the case C < 1
(C > 1) represents the case where class 1 (class 2) has a higher priority.

REMARK EC.1. Considering the preemptive M /M /1 retrial queues with two customer types.
o If type-2 customers receive a higher priority, then
P P

e If type-1 customers receive a higher priority, then

P P
Wegrp < WssrD < Wo, Tssrp = "SSRD > To-

Specifically, a preemptive priority (with type-2 customers receiving a higher priority) can reduce
the number of trials but increases the overall delay. On the other hand, a preemptive priority
(with type-1 customers receiving a higher priority) will increase the number of trials but reduce
the overall delay. In summery, the preemptive differentiation policy cannot reduce both the delay

and number of trials simultaneously as in our non-preemptive SSRD policy.
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Figure EC.2 The comparison of preemptive and non-preemptive case under SSRD

EC.3. Comparison to Xu et al. (2015)
EC.3.1. Monotonicity of variability

To support the discussion in Part (c) of Remark 5, we compare the variance of delay in the M/G/1
model in Xu et al. (2015) and in our M/G/1 retrial model under SSRD.

First, following §4.1 of Kella and Yechiali (1988), we obtain the variance of delay in Xu et al.
(2015) by Var[W]=>",", pr(E[W}] — E*[W}]), where

27:1 AiE[SiQ]
21-0  p)1=0 pi)’
S UNE[S?] | S NE[S?)

EW?2 = = 4 &= E[W,] +
N AT VIS S A

EW,] =

> iy ME[ST] 1
3(1 - Z§:1 pi)(l - Zf:_f pi) (1 - Zf:_f pi)
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Figure EC.3  Mean and variance of delay of the M/M/1 model in Xu et al. (2015) as a function of the service

grade m, with uo =1 and Ao =0.9.

Figure EC.3 illustrates the mean and variance of delay when puy =1 and Ag = 0.9. We observe that
the mean and variance of delay are decreasing and increasing in the number of service grades m,
respectively, under the optimal differentiation policy (Corollary 3 and (24) of Xu et al. (2015)).
That is, the delay can be further reduced when the variance increases (which occurs when the
service grades m increases).

Next we study the monotonicity of the variance of delay for our M/G/1 retrial queue under
SSRD. Consider m > 2 service grades, with the maximum ODR C' =4,,/0,. Let C; =1+ (i—1)(C —
1)/(m—1) and p; =p/m fori=1,2,...,m. According to the optimal allocation (13) and constraint
(2), we have p; = (1/\/307)/(22"21 1/\/Z;), i = Xi/ pi = mAop;/p and 0; = C;0, Z;"':lpi/C’i. For C' =
5, we examine the mean and variance of delay as functions of the number of service grades m.
Figure EC.4 shows that the mean (variance) of delay significantly decreases (increases) as m =1
increases from 1 to 2. However, the variance (mean) of delay becomes decreasing (increasing) in m
when m > 2. Indeed, the minimum mean delay is achieved at m =2 (which is consistent with our
main result in Theorem 2), which yields the maximum variance of delay. Similar to results in Xu
et al. (2015), the reduction of delay benefits from the increased variance, which now decreases as
m increases when m > 2.

Finally, we use simulations to demonstrate the growth of the variance of delay in C. Figure
EC.5 shows that, under the optimal SSRD given by Theorem 2 with m =2, the variance of delay
is increasing in the ORD C, then the mean of delay is decreasing in C', which is consistent with

Proposition 2.

EC.3.2. Limiting distribution of the random service rate in Xu et al. (2015)

We hereby provide support to Part (b) of Remark 5. It has been shown in Xu et al. (2015) that

creating service variability can reduce the mean waiting time in an M/G/1 queue. Especially, the



e-companion to Wang, Wang and Liu: Service Differentiation in Retrial Queues ec2

18—e— : : : 1000 :
E N . ‘.
17.8} R S
K2 é‘ 900! ',.’
& 176 . ° : .
[} N [a) ‘e,
a K 5 eree.,, e
‘5 17.4} } o 800! R
c R LC) B!
3 . @ :
s 17.2¢ R = :
> 700f
17} :
- ® .
16.8 - 600 ‘ ‘ ‘ ‘
0 2 4 6 8 10 0 2 4 6 8 10
m m

Figure EC.4  Mean and variance of delay of the M/M/1 retrial model under SSRD as a function of the service
grade m, with 8p = uo =1 and Ao =0.9
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Figure EC.5  Mean and variance of delay of the M/M/1 retrial model under SSRD as a function of C, with
90=,u0:5 and )\020.9

optimal performance can be achieved when the number of service grade m — co. We discovered

that the optimal case (m — o0) yields a nice continuous distribution for the random service rate.

ProrosiTiON EC.3 (Limiting continuous service-rate distribution in Xu et al. (2015)).
Under the optimal service allocation policy in Xu et al. (2015), the service provider offers a
random service rate M, where M is a random wvariable following a continuous distribution with
bounded support, having probability density

fmla)= ip_,u%) a, a€S= (Bﬂ%) = <2'u;(i_p p), 22;—10[)) . (EC.67)
REMARK EC.2. First, it is easy to check that the density function given above is indeed well

defined, that is, fa es Im (a)da =1. Apparently the base service rate i is in the interior of S, because
%1;’)) < po < 22%(;. The spread of the support increases in p. Specifically, S becomes the interval
(0,2u0) as p— 1, and S degenerates to a single point pg as p — 0.

Proof: Suppose there are K customer grades. By (24) of Proposition 4 (p.241) in Xu et al.

(2015), we know that the optimal service rate assignment satisfies

pr = pl(1—p)7 ] (EC.68)
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e = pa[(1—p)

3

P 1<k<m—1. (EC.69)
Normality of py,...,px implies

2(k—1) 1—(1—p)=
l=pttpa=pl (=) F (1) ] = p =0T _((1_’2)2 . (EC.70)
Similarly, the equal mean condition, along with (EC.68)—(EC.70) imply that

I p; Pm DI k=1 Hop 1—(1—/))%
fo Hom ul,; C1-(1-p? 1-(1-p)m
Let p1(m) be the py in (EC.71), we have
1—(1-— % 1—(1-— 2x
lim m (m> _ Hop - lim ( p) — = Hop - im ( p)

_pep o =2(0=p)*log(l—p) _ 2mp _ 2p0
1=(1=p)as0 —=(1=p)log(l—p) 1-(1=p)* 2-p

. . 1o
Tim g (m) = lim gy (m)[(1 = p) =] = pa(00) (1 = p).

(EC.73)
Now let the random variable M,,, denote the random service rate offered to an arbitrary cus-

tomer where there are m service grades. According to (EC.72)—(EC.73), we know that as m — oo,
M., asymptotically has a bounded domain S given by (EC.67).

We next show that M,, = M, =M as m — oo, where the limiting random variable M, has a
continuous support in S. Pick a € S and a small A > 0, then

P(M,, € (a,a+h))= Z Liu, (m)e(aatn)y - Pe(m),
k=1

where px(m) and pi(m) are the py, and py given in (EC.68) and (EC.69). According to (EC.69),
we have

_ _ mlog(—%—)
a<p=mm)(1—p) 7 <at+h & kyp=

log (-2
p(m) wi(m) _
—— ~ t1>k> ———F1=k,.
log(1—p) log(1—p) -
Hence, we have
k
—~ 1-—(1—p)m 2.k
k=k,,+1 P
1=(=pp 1-(1-p)m
2log a—é_r}rlr,) . .
(1-p) '°gﬁl—p> ) 2[ 0w sty ) s (5 ) |
1-— (1 —p Tog(1—p)
1—(1-p)?

- 1<—l(?i>p)2 (1_ (aih>2>'
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Now letting m — oo yields

P(Me (a,a+h)= lim P(M,, € (a,a+h>>=1(_“z(f‘f>p)2 <1—<

2
(a+h)(2—p)
a )2>_( 200 p) (2a+ h)h

a+h I—(1=p)7 (at+h)?’

where the last equality holds by (EC.72). The probability density function of M is given by

2
(a+h)(2-p)
. P(MEe(a,a+h)) . ( 210 ) (2a+h) 2-p
Jula) =l I T 0=p? (axhp 2o @ €5

EC.4. Additional Simulations

Nonexponential retrial times. In this paper, we have treated a retrial model with general
service times but exponential orbit times. We have showed that the dominance condition (10)
is independent with the structure of the service-time distribution beyond its mean. Hence, we
conjecture that condition (10) continues to hold for nonexponential orbit times. In the future, we
plan to extend to models with nonexponential orbit times. We conduct simulation experiments
in Table EC.2 for the M/H,/1 model with 2-phase hyperexponential (H) service times (mixture
of two exponential distributions) and H, orbit times with SCV ¢? = ¢2 =4, 6y = o = 1. Table
EC.2 shows that SSRD achieves a smaller average delay than homogeneous service when the traffic
intensity p is close to 1. Specifically, the RRD of SSRD with respect to homogeneous service is
13.3% (13.7%, 4.6%) for p=0.972 (0.95, 0.9). But RRD is negative when p <0.8.

Table EC.2  Comparing SSRD and homogeneous service for the M/H,/1 model with H, retrial times.

Homogeneous service Differentiated service
p E[No. waiting] FE[No. in service] El[delay] E[No. waiting] FE[No. in service]  Fl[delay]
0.975 100.94£9.67 0.97£4.1E-3 105.03£10.20  94.86£8.67 0.97£4.1E-3 91.03+9.07
rel. diff. - - - 6.02% 0% 13.33%
0.95 65.17£7.15 0.95+5.4E-3 68.92£7.54 57.26+5.64 0.95+5.5E-3 59.4545.65
rel. diff. - - - 12.14% 0% 13.74%
0.9 29.20+2.06 0.90+£6.4E-3 32.02£2.22 27.92£2.10 0.90£6.6E-3 30.55+2.19
rel. diff. - - - 4.42% 0% 4.61%
0.8 11.57+0.60 0.80£6.4E-3 14.53+0.77 11.86+0.66 0.80£6.5E-3 14.72+0.75
rel. diff. - - - -2.51% 0% -1.38%
0.7 6.26+£0.27 0.70£6.4E-3 8.97+0.37 6.43£0.28 0.70£6.7E-3 9.15+0.38
rel. diff. - - - -2.64% 0% -1.97%

Multiple server. Multiserver queueing models have been proven more practical for modeling
realistic service systems. Therefore, in the future we plan to extend our service-differentiation policy
from single-server framework to multi-server models. We next conduct a simulation example for an
M /M /2 retrial queueing system. In Table EC.3 we observe that SSRD helps reduce the average
delay when the traffic intensity is close to 1. All simulations are conducted with 95% confidence

intervals.
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Table EC.3  Comparing performance of SSRD and homogeneous service for the 2-server M /M /2 model.
Pure service Differentiated service

p E[No. waiting] FE|[No. in service]  E[delay]  E[No. waiting] E[No. in service]  FE[delay]
0.975 77.43+£3.71 1.95+2.0E-3 39.71+1.89 72.324+3.50 1.95+2.1E-3 36.94+1.77
rel. diff. - - - 6.61% 0% 6.96%
0.95 36.16+0.91 1.90+2.1E-3 19.08+0.48 34.71+0.90 1.90+2.1E-3 18.26+0.48
rel. diff. - - - 3.95% 0% 4.30%
0.9 15.83+0.23 1.80+2.1E-3 8.82£0.13 15.5440.23 1.80+2.2E-3 8.64+0.12
rel. diff. - - - 1.83% 0% 2.11%
0.8 6.09£5.2E-2 1.60+2.4E-3 3.80£3.2E-2  6.11£5.4E-2 1.60+2.4E-3 3.81£3.5E-2
rel. diff. - - - -0.36% 0% -0.42%
0.7 2.94+1.9E-2 1.404+2.0E-3 2.10£1.3E-2  2.99+£2.0E-2 1.404+2.3E-3 2.14+1.6E-2
rel. diff. - - - -1.50% 0% -1.81%






