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E-Companion
This e-companion provides supplementary materials to the main paper. In §EC.1, we provide all

the technical proofs omitted from the main paper. In §EC.2, we give additional numerical studies.

EC.1. Proofs

EC.1.1. A More Comprehensive Version of Theorem 1 and Its Proof.

We hereby state and prove a more comprehensive version of Theorem 1, where the FCLT for the
queue lengths is also established which have their own rights.

Theorem EC.1. Suppose the system operates under the proposed staffing and scheduling rule and
there is an initial convergence of (Ĥn, B̂n

1 , . . . , B̂
n
K) to zero at t= 0.

(a) Then there is a joint convergence for the CLT-scaled waiting time processes:(
Ĥn

1 , . . . , Ĥ
n
K , Ŵ

n
1 . . . , Ŵ

n
K

)
⇒
(
Ĥ1, . . . , ĤK , Ŵ1 . . . , ŴK

)
in D2K as n→∞,

where the limits on the right-hand side are well-defined stochastic processes.
(b) The limits for all HWT and PWT processes are deterministic functionals of a one-dimensional

process Ĥ, namely,

Ĥi(t)≡wi(Ĥ(t)−κi) and V̂i(t)≡wi(Ĥ(t+wi)−κi);

the process Ĥ uniquely solves the SVE (3) where

K(t)≡ η−1

(∫ t

0

K∑
i=1

ψiκie
µi(s−t)ds− c

)
, L(t, s)≡ η−1

(
K∑
i=1

eµi(s−t) (ηiµi−ψi)
)
,

J(t, s)≡ η−1

(
2
K∑
i=1

e2µi(s−t)F c
i (wi)λi

)1/2

for ηi ≡wiλiF c
i (wi), ψi ≡wiλifi(wi)

and η≡
∑K
i=1 ηi.

(c) The FCLT for each queue-length process is the sum of two terms, namely,

Q̂i(t)≡
∫ t

t−wi

√
λiF c

i (t−u)dWi +λiF
c
i (wi)Ĥi(t),

where {Wi; i= 1, . . . ,K} are K independent standard Brownian motions.

As alluded to in the main paper, the proof of FCLT for the waiting-time processes proceeds in four
major steps.

Step 1: SSC for the pre-limit HWT and PWT processes. Let ani (t) denote the inter-
arrival time between the HoL customer in queue i and the most recent class-i customer who entered
service. By the way the scheduling rule operates,

Hn(t)− ani (t)/wi <Hn
i (t)/wi +n−1/2κi ≤Hn(t). (EC.1)
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For a fixed time t, it is not difficult to see that ani (t) is first-order stochastically dominated by
an exponential random variable with rate nλiF c

i (T̄ ) for T̄ ≡ T + θ. To proceed, we would like to
establish a uniform bound for ani (t) over all t≤ T . To this end, we make the following observation:
(i) For each class, the number of arrivals over any compact time interval is O(n); and (ii) the
maximum of n i.i.d. exponential random variables is O(logn). As an immediate consequence, we
have supt≤T{ani (t)} = O(n−1 logn). Combining with (EC.1) yields Hn

i (t)/wi + n−1/2κi = Hn(t) −
O(n−1 logn), or, equivalently,

Ĥn
i (t) =wi(Ĥn(t)−κi)−O(n−1/2 logn), (EC.2)

where we recall that Ĥn is the CLT-scaled frontier process, i.e., Ĥn(t)≡ n1/2 (Hn(t)− 1).
We next argue that under the proposed scheduling policy the PWT and the HWT satisfy

V n
i (t−Hn

i (t)) =Hn
i (t) +O(n−1 logn). (EC.3)

The above relation evidently holds true for K = 1, because the PWT at the time of arrival of the HoL
customer is the HoL customer’s elapsed waiting time (i.e., the HWT) at time t plus the additional
time until the next departure. For K ≥ 2, we aims to establish (EC.3) by showing that the number
of service completions needed for the HoL customer of queue i to enter service is no greater than the
sum of K−1 geometric random variables. To see this is the case, suppose at time t customer A enters
service from queue i and customer B becomes the new HoL customer in queue i. Then customer B
must have arrived at the system at time t−Hn

i (t). By the definition of ani (t), customer A arrived at
the system at time t−Hn

i (t)− ani (t). Suppose κi ≡ 0, i ∈ I ≡ {1, . . . ,K} (the case where κi are not
zeros can be analyzed in a similar fashion). Then under the proposed scheduling policy, only those
class-j customers who arrived during the interval(

t− wj (Hn
i (t) + ani (t))
wi

, t− wjH
n
i (t)
wi

)
(EC.4)

could enter service prior to the time at which customer B enters service. To proceed, we make the
following observation: The number of arrivals from a Poisson process with arrival rate λ(2) over an
exponentially distributed time with rate λ(1) follows a geometric distribution with parameter λ(1)

λ(1)+λ(2) .
Now because the interval (EC.4) has a length of (wjani /wi), the number class-j customers who have a
higher service priority over B is stochastically dominated by a geometric random variable with mean

wjλj

wiλiF
c
i

(T̄ ) . This shows that the total number of customers who will enter service before B is first-order
stochastically dominated by the sum of K − 1 geometric random variables. This gives (EC.3) for
K ≥ 2.

Step 2: The FWLLN. We will first prove that the sequence {(B̂n
1 , . . . , B̂

n
K , Ĥ

n);n ∈ N} is
stochastically bounded; see §5.2 of Pang et al. (2007) for a precise definition of stochastic bounded-
ness. To that end, introduce the LLN- and CLT-scaled empirical process

Ūn(t, x)≡ 1
n

bntc∑
k=1

1{Xi≤x} for t≥ 0, 0≤ x≤ 1, and

Ûn(t, x)≡
√
n
(
Ūn(t, x)−E

[
Ūn(t, x)

])
= 1√

n

bntc∑
k=1

1{Xi≤x}−x

 , (EC.5)
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where X1,X2, . . . are i.i.d. random variables uniformly distributed on [0,1]. Krichagina and Puhalskii
(1997) have shown that Ûn⇒ Û in DD as n→∞, where Û is the standard Kiefer process (see for
example Aras et al. (2018) for a review of Kiefer process). We now break the enter-service process
En
i (t) in (7) into three pieces, namely,

En
i (t) =En

i,1(t) +En
i,2(t) +En

i,3(t), (EC.6)

where we defined

En
i,1(t)≡

√
n

∫ t−Hn
i (t)

−Hn
i

(0)
F c
i (V n

i (u))dÂni (u), En
i,2(t)≡

√
n

∫ t−Hn
i (t)

−Hn
i

(0)

∫ 1

0
1{y>F c

i
(V n

i
(u))}dÛn

i (Āni (u), y),

and
En
i,3(t)≡ n

∫ t−Hn
i (t)

−Hn
i

(0)
F c
i (V n

i (u))λidu,

where Ûn
i is a CLT-scaled empirical process specified by (EC.5). The decomposition in (EC.6) exhibits

a separation of randomness. Specifically, the three terms capture the variabilities from three separate
random sources: the arrival process (by the term Âni in En

i,1), the abandonment times (by the Kiefer
term Ûn

i in En
i,2, and the waiting time V n

i (by En
i,3) which further depends on the service times.

To proceed, define the CLT-scaled enter-service process as

Ên
i (t)≡ n−1/2 (En

i (t)−nεi(t)) for εi(t)≡ F c
i (wi)λit. (EC.7)

Following the decomposition given in (EC.6), we can write

Ên
i (t) = Ên

i,1(t) + Ên
i,2(t) + Ên

i,3(t), (EC.8)

where

Ên
i,1(t) =

∫ t−Hn
i (t)

−Hn
i

(0)
F c
i (V n

i (u))dÂni (u), Ên
i,2(t) =

∫ t−Hn
i (t)

−Hn
i

(0)

∫ 1

0
1{y>F c

i
(V n

i
(u))}dÛn

i (Āni (u), y), (EC.9)

and

Ên
i,3(t)≡ n−1/2

(
En
i,3(t)−nεi(t)

)
=
√
n

(∫ t−Hn
i (t)

−Hn
i

(0)
F c
i (V n

i (u))λidu−
∫ t−wi

−wi

F c
i (wi)λidu

)

=
√
nλi

∫ t

0
(F c

i (Hn
i (u))−F c

i (wi)) du−λi
∫ t

0
F c
i (Hn

i (u))dĤn
i (u) +O(n−1/2 logn)

=−λiwi
(∫ t

0
fi(ζni (u))(Ĥn(u)−κi)du−

∫ t

0
F c
i (Hn

i (u))dĤn(u)
)

+O(n−1/2 logn),

(EC.10)

where the second equality follows by a change of variables, namely t→ t−Hn
i (t), plus the relation

(EC.3), while the third equality follows from (EC.2) and applying the mean-value theorem with

min{Un
i (t),wi} ≤ ζni (t)≤max{Un

i (t),wi}. (EC.11)

On the other hand, the conservation of flow implies

En
i (t) =Bn

i (t)−Bn
i (0) +Dn

i (t), (EC.12)
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Clearly, from (EC.7) it follows that εi(t) = µimit. Multiplying its both sides by n, subtracting it from
(EC.12), and dividing both sides by n1/2 yields

Ên
i (t) = B̂n

i (t)− B̂n
i (0) +µi

∫ t

0
B̂n
i (u)du+ D̂n

i (t)

or

dB̂n
i (t) +µiB̂

n
i (t)dt= dÊn

i (t)− dD̂n
i (t) for D̂n

i (t)≡ n−1/2
(
Dn
i (t)−µi

∫ t

0
Bn
i (u)du

)
(EC.13)

Let Bn(t)≡ Bn
1 (t) + · · ·+Bn

K(t). It is routine to show, with the overloading assumption (11), that
the event En ≡ {Bn(t) = sn; 0 ≤ t ≤ T} holds with arbitrarily high probability by choosing n large
enough. Thus, it suffices to focus on the sample paths for which event En holds. In this case we get

K∑
i=1

B̂n
i (t) = n−1/2 (Bn(t)−nm) = n−1/2 (sn−nm(t)) = c. (EC.14)

Upon substituting (EC.8) - (EC.10) into (EC.13), we obtain, for i = 1, . . . , K,

B̂n
i (t) +λiwi

∫ t

0
F c
i (Hn

i (u))dĤn(u) =−µi
∫ t

0
B̂n
i (u)du−λiwi

∫ t

0
fi(ζni (u))Ĥn(u)du

+λiwiκi

∫ t

0
fi(ζni (u))du+ Ên

i,1(u) + Ên
i,2(u)− D̂n

i (u) +O(n−1/2 logn).
(EC.15)

Together with (EC.14), we end up getting K + 1 linear differential equations with respect to the
(K + 1)-dimensional process (B̂n

1 , . . . , B̂
n
K , Ĥ

n). Paralleling (5.14) in Aras et al. (2018), we apply the
Gronwall’s inequality together with the stochastic boundedness of Ên

i,1, Ên
i,2, D̂

n
i plus the assumed

properties of fi, F c
i to conclude the stochastic boundedness of the sequence {(B̂n

1 , . . . , B̂
n
K , Ĥ

n);n∈N};
in particular, the sequences {Ĥn;n∈N} and {(B̂n

1 , . . . , B̂
n
K);n∈N} are stochastically bounded.

On the other hand, by the established stochastic boundedness of {Ĥn;n∈N} together with the rela-
tions (EC.2) and (EC.3), we conclude that {Ĥn;n∈N} and {V̂n;n∈N} are stochastically bounded.
This implies the FWLLN for the HWT and PWT processes, that is, as n→∞,

(Hn,Hn
1 , . . . ,H

n
K , V

n
1 , . . . , V

n
K)⇒ (e,w1e, . . . ,wKe,w1e, . . . ,wKe) in D2K+1, (EC.16)

where the joint convergence is due to converging-together lemma (Theorem 11.4.5. in Whitt (2002)).
Step 3: The FCLT for the waiting time processes. Similar to the proof of Lemma 5.1 in

Aras et al. (2018), we invoke the continuous mapping theorem with (EC.9) and (EC.16) to get

Ên
i,1(t)⇒ Êi,1(t)≡ F c

i (wi)
∫ t−wi

−wi

√
λidWλi

(u), (EC.17)

where Wλi
is a standard Brownian motion. To proceed, we argue that, as n→∞,

Ên
i,2(t)⇒ Êi,2(t)≡

√
F c
i (wi)Fi(wi)

∫ t−wi

−wi

√
λidWθi

(u), (EC.18)

where Wθi
is a standard Brownian independent of Wλi

. The essential structure of the proof for
(EC.18) is exactly the same as that of A.7.2 in Aras et al. (2018), which in turn draws on The-
orem 7.1.4 in Ethier and Kurtz (1986). Because the proof can be fully adapted from theirs, we
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omit the details. Moreover, as a direct consequence of the established stochastic boundedness of
{(B̂n

1 , . . . , B̂
n
K);n∈N}, we have the FWLLN for the busy-server processes

(
B̄n

1 , . . . , B̄
n
K

)
⇒ (m1e, . . . ,mKe) in DK as n→∞.

Next a standard random-time-change argument allows us to derive

D̂n
i (·) = n−1/2

[
Πd
i

(
nµi

∫ ·
0
B̄n
i (u)du

)
−nµi

∫ ·
0
B̄n
i (u)du

]
⇒Wµi

(
µi

∫ ·
0
mi(u)du

)
(EC.19)

as n→∞, where we have defined Πd
i to be a unit-rate Poisson process and Wµi

to be a standard
Brownian motion independent of Wλi

and Wθi
. To establish the convergence of (15), we will need

to strengthen (EC.17), (EC.18) and (EC.19) to joint convergence. The joint convergence of multiple
random elements is equivalent to individual convergence if they are independent. Here Ên

i,1, Ên
i,2 and

D̂n
i are not independent because both Ên

i,1 and Ên
i,2 involve the arrival-time sequence, and D̂n

i depends
on Bn

i which in turn correlates with En
i through (EC.12). But they are conditionally independent

given Ani ,Hn
i , V

n
i and Bn

i . Hence, we can establish the joint convergence by first conditioning and then
unconditioning. See Lemma 4.1 of Aras et al. (2017) for a reference, which is a variant of Theorem
7.6 of Pang et al. (2007).

To derive a set of SDEs satisfied by the CLT-scaled processes (B̂n
1 , . . . , B̂

n
K , Ĥ

n), we seek to simplify
the right-hand side of (EC.10). First we note that the inequality (EC.11) and the convergence in
(EC.18) imply

ζni (t) =wi +O(n−1/2 logn) =Hn
i (t) +O(n−1/2 logn). (EC.20)

Using integration by parts, we get that −λiwi
∫ t

0 F
c
i (Hn

i (u))dĤn(u) is equal to

−λiwiF c
i (ζni (t))Ĥn(t) +λiwiF

c
i (ζni (0))Ĥn(0) +λiwi

∫ t

0
Ĥn(u)dF c

i (ζni (u)). (EC.21)

Upon plugging (EC.21) into (EC.10) and making use of (EC.20), we arrive at

Ên
i,3(t) =−λiwifi(wi)

∫ t

0
(Ĥn(u)−κi)du+λiwiF

c
i (wi)Ĥn(0)−λiwiF c

i (wi)Ĥn(t) +O(n−1/2 logn).

Now plugging (EC.8) and the equation above into (EC.13), we have, for i= 1, . . . ,K,

B̂n
i (t) +λiwiF

c
i (wi)Ĥn(t) = B̂n

i (0) +λiwiF
c
i (wi)Ĥn(0)−µi

∫ t

0
B̂n
i (u)du

−λiwifi(wi)
∫ t

0
Ĥn(u)du+λiwifi(wi)κit+ Ên

i,1(t) + Ên
i,2(t)− D̂n

i (t) +O(n−1/2 logn).
(EC.22)

The joint convergence (B̂n
i , . . . , B̂

n
K , Ĥ

n)⇒ (B̂i, . . . , B̂K , Ĥ) then follows by applying the continuous
mapping theorem (see Theorem 4.1 of Pang et al. (2007)) to (EC.14) and (EC.22), with the joint
convergence of Ên

i,1, Ê
n
i,2, and D̂n

i as specified by (EC.17), (EC.18), and (EC.19), respectively. The
convergence of {Ĥn

i ;n∈N} and {V̂ n
i ;n∈N} follow easily from and (EC.2) and (EC.3), respectively.
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Step 4: Deriving the SVE for the frontier process. The multi-dimensional SDE (18) is
equivalent to

d
dt
(
eµitB̃i(t)

)
= eµit

(
−ηiĤ(t)−

∫ t

0
ψiĤ(u)du+ yi(t) +Gi(t)

)
, (EC.23)

where

B̃i(t)≡
∫ t

0
B̂i(u)du and yi(t)≡

∫ t

0
wifi(wi)λiκidu.

Integrating (EC.23) from 0 to t yields

B̃i(t) = e−µit

∫ t

0
eµis

(
−ηiĤ(s)−

∫ s

0
ψiĤ(u)du+ yi(s) +Gi(s)

)
ds

=−
∫ t

0
ηie

µi(s−t)Ĥ(s)ds−
∫ t

0
ψi

1− eµi(s−t)

µi
Ĥ(s)ds

+
∫ t

0
ψiκi

1− eµi(s−t)

µi
ds+

∫ t

0
eµi(s−t)Gi(s)ds.

Summing up over i from 1 to K, we have∫ t

0
cds=

K∑
i=1

B̃i(t) =−
K∑
i=1

(∫ t

0

(
ηie

µi(s−t)Ĥ(s)−ψi
1− eµi(s−t)

µi
Ĥ(s) +ψiκi

1− eµi(s−t)

µi

)
ds

+
∫ t

0

1− eµi(u−t)

µi

√
F c
i (wi)λi +µimidWi(u)

)
,

where the second equality holds by aggregating three independent Brownian motions Wµi
, Wθi

and
Wλi

in (19) into one independent standard Brownian motion Wi. Differentiating the above and
further aggregating the independent Brownian motions W1, . . . ,WK into W yields the SVE in (3).

FCLT for the queue-length processes. To derive the FCLT for the queue-length processes,
we decompose the right-hand side of (8) into three terms, namely,

Qn
i (t) =Qn

i,1(t) +Qn
i,2(t) +Qn

i,3(t), (EC.24)

where

Qn
i,1(t) ≡

√
n

∫ t

t−Hn
i

(t)
F c
i (t−u)dÂni (u), t≥ 0, (EC.25)

Qn
i,2(t) ≡

√
n

∫ t

t−Hn
i

(t)

∫ 1

0
1{x>F c

i
(t−u)}dÛn

i (Āni (u), x) t≥ 0, (EC.26)

Qn
i,3(t) ≡ nλi

∫ t

t−Hn
i

(t)
F c
i (t−u)du t≥ 0, (EC.27)

Similar to (EC.6), the decomposition of the queue length above can also be explained by the sepa-
ration of variabilities in the arrival process, service times, and abandonment times.

Accordingly, the centered and normalized queue-length process can be decomposed into three terms

Q̂n
i (t)≡ n−1/2 (Qn

i (t)−nqi(t)) = Q̂n
i,1(t) + Q̂n

i,2(t) + Q̂n
i,3(t),
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where

Q̂n
i,1(t)≡

∫ t

t−Hn
i

(t)
F c
i (t−u)dÂni (u) ⇒

∫ t

t−wi

F c
i (t−u)dÂi(u), (EC.28)

Q̂n
i,2(t)≡

∫ t

t−Hn
i

(t)

∫ 1

0
1{x>F c

i
(t−u)}dÛn

i (Āni (u), x)⇒
∫ t

t−wi

√
λiF c

i (t−u)Fi(t−u)dWθi
(u), (EC.29)

Q̂n
i,3(t)≡

√
nλi

∫ t−wi

t−Hn
i

(t)
F c
i (t−u)du ⇒ λiF

c
i (wi)Ĥi(t). (EC.30)

Here the proof for (EC.28) and (EC.29) is very similar to that of (EC.17) and (EC.18), and the proof
for (EC.30) is also straightforward. �

EC.1.2. Proof of Theorem 2.

To establish part (i), we find that there exist multiple integrability criteria that we can apply to the
resolvent of linear Volterra equations. Here we choose to use the results laid out by Levin (1977). For
this purpose, write L=L1−L2 where

K1(t)≡ η−1

(
K∑
i=1

e−µitηiµi

)
and K2(t)≡ η−1

(
K∑
i=1

e−µitψi

)
.

For an arbitrary number δ≥ 0, we see that∫ ∞
0
L1(t)e−δtdt=

K∑
i=1

ηiµi/η(µi + δ)≤ 1,
∫ ∞

0
L2(t)e−δtdt=

K∑
i=1

ψi/η(µi + δ)≥ 0. (EC.31)

It is not difficult to see from (EC.31) that∫ ∞
0
L(t)e−δtdt 6= 1 for all δ≥ 0 if and only if ψj > 0 for some j.

Part (i) of the proposition then follows by applying Theorem 1.1. of Levin (1977). Part (ii) is a well-
known result, see, e.g., Levin (1977). For part (iii), the expression for the first moment is immediate.
To derive the variance formula, we apply Itô Isometry to get

Var(Ĥ(t)) =
∫ t

0

(
J (t−u) +

∫ t

u

R(t− s)J (s−u)ds
)2

du

=
∫ t

0

(
J (t−u) +

∫ t−u

0
R(s)J (t−u− s)ds

)2

du,

where the last expression, upon using a change of variables, leads to (26). To show that the result
of part (iv) is true, notice that function J has exponential decay. Thus, the limit of the right-hand
side of (26), as t→∞, is finite, if function R is uniformly bounded over the positive real line. But
the required uniform boundedness follows as an immediate consequence of the conclusion of part (i)
under the specified condition. Convergence (finiteness) of E[Ĥ(t)] as t→∞ is immediate due to (25),
the integrability of R, and the uniform boundedness of function K. To establish part (v), it suffices
to show that (a) K is vanishing as t→∞ and (b) R is integrable. Condition (a) is automatically
guaranteed by our specific choice of control parameters whereas condition (b) follows directly from
part (i). This completes the proof of the proposition. �
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EC.1.3. Proof of Theorem 3.

The proof of part (a) follows closely the steps of that for Theorem 1. Thus, we only show the proof
of part (b).

Uniqueness and existence of solution to the SVE (3). Consider two functions x, y ∈ C
(space of continuous functions) satisfying an equation

x(t) =
∫ t

0
L(t, s)x(s)ds+ y(t). (EC.32)

we show that (EC.32) specifies a well-defined function φ : C→C such that x= ψ(y). To do so, for a
given y, we define the operator

ψ(x)(t)≡
∫ t

0
L(t, s)x(s)ds+ y(t). (EC.33)

Therefore, x solves the fixed-point equation (FPE)

x= ψ(x). (EC.34)

We first prove that ψ is a contraction over a finite interval [0, T ]. Specifically, let x1, x2 ∈C, and use
the uniform norm ‖x‖T = sup{0≤t≤T} |x(t)|. We have

|ψ(x1)(t)−ψ(x2)(t)| ≤
∫ t

0
|L(t, s)|ds · ‖x1−x2‖T ≤L↑T‖x1−x2‖T , (EC.35)

where the constant

L↑ =
∑K
i=1wiλ

↑
i (µiF c

i (wi) + fi(wi))∑K
i=1wiλ

↓
iF

c
i (wi)

<∞. (EC.36)

In case L↑T > 1, we can partition the interval [0, T ] to successive smaller intervals with length
∆T satisfying ∆T < 1/L↑. This will recursively guarantee the contraction property over all smaller
intervals. Hence, the Banach fixed point theorem implies that the FPE (EC.34) has a unique solution
over the entire interval [0, T ].

Consequently, the function φ specified by (EC.32) is well-defined because φ(y) has one and only
one image for any y. So we conclude that (3) has a unique solution Ĥ. If fact, we can write (3) as

Ĥ(t) = φ

(∫ t

0
J(t, s)dW(s) +K(t)

)
.

To show that Ĥ is Gaussian, we again use the contraction ψ defined in (EC.33). We follow the
steps that establish strong solutions in Karatzas and Shreve (1991). Define a sequence of processes
{Ĥ(k), k = 0,1,2, . . .} such that Ĥ(0)(t) = 0, and Ĥ(k+1) = ψ(Ĥ(k)) with y(t) =

∫ t
0 J(t, s)dW(s,ω) for

k≥ 0. (For each Brownian path and associated Brownian integral, we recursively define the sequence.)
We can show that Ĥ(k) is Gaussian using an inductive argument. Specifically, Ĥ(k+1) is Gaussian
because both

∫ t
0 L(t, s)Ĥ(k)(s)ds and

∫ t
0 J(t, s)dW(s,ω) are Gaussian. Because ψ is a contraction, we

know that Ĥ is the almost sure limit of Ĥ(k), which implies weak convergence. Hence, Ĥ is again
Gaussian (because the limit of convergent Gaussian processes is again Gaussian). To elaborate, we
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may consider the characteristic function of Ĥ(k)(t): Φk(s) = eisµk−s2σ2
k/2 (with µk and σ2

k being the
mean and variance of Ĥ(k)), which must converge to the characteristic function of Ĥ. Convergence
of Φk(s) at all s implies the convergence of µk and σ2

k, which implies that the characteristic function
of Ĥ has the form eisµ∞−s

2σ2
∞/2, which concludes the Gaussian distribution.

Treating the mean and variance of Ĥ. Taking expectation in (3) yields

m
Ĥ

(t) =
∫ t

0
L(t, s)m

Ĥ
(s)ds+K(t), where m

Ĥ
(t) = E[Ĥ(t)]. (EC.37)

It remains to show that the FPE x= Γ(x) has a unique solution, where x∈C and the operator

Γ(x)(t) =
∫ t

0
L(t, s)x(s)ds+K(t).

We can do so by showing that Γ : C→C is another contraction. Specifically, for x1, x2 ∈C,

|Γ(x1)(t)−Γ(x2)(t)| ≤
∫ t

0
|L(t, s)||x1(s)−x2(s)|ds≤L↑t‖x1−x2‖t,

where the finite upperbound L↑ is given by (EC.36). The rest of the proof is similar.
To treat the variance of Ĥ, consider the SVE (3) at 0≤ s, t≤ T

H(t)−
∫ t

0
L(t, u)H(u)du=

∫ t

0
J(t, u)dW(u),

H(s)−
∫ s

0
L(s, v)H(v)dv =

∫ s

0
J(s, v)dW(v).

Multiplying the two equations and taking expectation yield that

C(t, s) =−
∫ t

0

∫ s

0
L(t, u)h(s, v)C(u, v)dvdu+

∫ s∧t

0
J(t, u)J(s, u)du

+
∫ t

0
L(t, u)C(u, s)du+

∫ s

0
h(s, v)C(t, v)dv,

where C(t, s) = Cov(Ĥ(t), Ĥ(s)), or equivalently, an FPE

C = Θ(C), (EC.38)

where C(·, ·)∈C([0, T ]2), and the operator

Θ(C)(t, s) =−
∫ t

0

∫ s

0
L(t, u)h(s, v)C(u, v)dvdu+

∫ t

0
L(t, u)C(u, s)du

+
∫ s

0
L(s, v)C(t, v)dv+

∫ s∧t

0
J(t, u)J(s, u)du. (EC.39)

Using the norm ‖x‖T = sup
0≤s,t≤T

|x(t, s)|, we next prove that Θ is a contraction. Specifically, for x1, x2 ∈

C([0, T ]2), we have

|Θ(x1)(t, s)−Θ(x2)(t, s)| ≤
∫ t

0

∫ s

0
|L(t, u)L(s, v)| · |x1(u, v)−x2(u, v)|dvdu

+
∫ t

0
|L(t, u)| · |x1(u, s)−x2(u, s)|du+

∫ s

0
|L(s, v)| · |x1(t, v)−x2(t, v)|dv



ec10 e-companion to Liu, Sun and Hovey: Service Differentiation in Multiclass Queues

≤
(
(L↑)2ts+L↑t+L↑s

)
‖x1−x2‖T .

The contraction property is guaranteed if we pick a small ∆T > 0 such that ((L↑)2∆T 2 + 2L↑∆T )< 1.
According to the Banach contraction theorem, we have the uniqueness and existence in the small
block [0,∆T ]2. The uniqueness and existence of C(·, ·) over the entire region [0, T ]× [0, T ] can be
proved by recursively dealing with small blocks of the form [i∆T, (i+ 1)∆T ]× [j∆T, (j+ 1)∆T ]. �

Remark EC.1 (Numerical Algorithm for σ2
Ĥ

(t)). The above proof of the existence and
uniqueness of the FPE (EC.38) automatically suggests the following recursive algorithm to compute
the covariance C(t, s) and variance σ2

Ĥ
(t). To begin with, we pick an acceptable error target ε > 0.

Algorithm:
(i) Pick an initial candidate C(0)(·, ·);
(ii) In the kth iteration, let C(k+1) = Θ

(
C(k)) with Θ given in (EC.39).

(iii) If ‖C(k+1)−C(k)‖T < ε, stop; otherwise, k = k+ 1 and go back to step (ii).
According to the Banach contraction theorem, this algorithm should converge geometrically fast.
When it finally terminates, we set σ2

Ĥ
(t) = C(t, t), for 0≤ t≤ T , which will be used later to devise

required control functions c and κi. The algorithm to compute the mean M
Ĥ

is similar. �

EC.1.4. Proof of Theorem 4

The conclusion of part (i) is immediate. The conclusion of part (ii) is also straightforward because
the TPoD for class-i customers

P(V n
i (t)>wi) = P(

√
n(V n

i (t)−wi)> 0) = P(V̂ n
i (t)> 0)

→ P(V̂i(t)> 0) = P
(
wi
(
Ĥ(t+wi)−κi(t+wi)

)
> 0

)
= P

(
Ĥ(t+wi)>κi(t+wi)

)
= P

(
Z > κi(t+wi)

σ
Ĥ

(t+wi)

)
= P (Z > zαi

) = αi,

where the third equality holds by (33).
To prove part (iii), note that the FPE (35) specifies a well-defined function φ : C→C such that

M
Ĥ

= φ(K).

See the proof of the uniqueness and existence of the SVE (specifically, see (EC.32)–(EC.36)) for
details. To proceed, let (κ∗, c∗)≡ (κ∗1, . . . , κ∗K , c∗), with κ∗i and c∗ given in (40) and (39). Let K∗ and
M∗
Ĥ

be the corresponding version of (34) and the mean of Ĥ. (We know that K∗(t) =M∗
Ĥ

(t) = 0.)
So we have

κ∗i (t) = κ∗i (t)−M∗Ĥ(t) = z1−αi
σ
Ĥ

(t), 1≤ i≤K. (EC.40)

Now consider another solution to (κ̃, c̃) to (38), with (κ̃, c̃)≡ (κ∗1 + ∆κ1, . . . , κ
∗
K + ∆κK , c∗+ ∆c). Let

K̃ and M̃
Ĥ

be the corresponding version of (34) and mean of Ĥ. By (38), we have

κ∗i (t) + ∆κi(t)− M̃Ĥ
(t) = z1−αi

σ
Ĥ

(t), , 1≤ i≤K. (EC.41)
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Comparing (EC.40) with (EC.41), we must have

∆κi(t) = M̃
Ĥ

(t)−M∗
Ĥ

(t)≡∆κ(t) for all 1≤ i≤K. (EC.42)

Hence, any alternative solution to (38) (if any) has the form (κ∗1 + ∆κ, . . . , κ∗K + ∆κ, c∗+ ∆c). Next,
M∗
Ĥ

= φ(K∗) and M̃
Ĥ

= φ(K̃) imply that

M∗
Ĥ

(t) =
∫ t

0
L(t, s)M∗

Ĥ
(s)ds+K∗(t) and M̃

Ĥ
(t) =

∫ t

0
L(t, s)M̃

Ĥ
(s)ds+ K̃(t),

which leads to

∆κ(t) = M̃
Ĥ

(t)−M∗
Ĥ

(t) =
∫ t

0
L(t, s)

(
M̃
Ĥ

(s)−M∗
Ĥ

(s)
)

ds+
(
K̃(t)−K∗(t)

)
,

=
∫ t

0
L(t, s)∆κ(s)ds+

(
K̃(t)−K∗(t)

)
, (EC.43)

where the last equality holds by the first equality. By (EC.42) and (34), we have

K̃(t)−K∗(t) =
∆κ(t)

∑K
i=1

(
ηi(t)−

∫ t
0 ηi(s)eµi(s−t)(µi−hFi

(wi))ds
)
−∆c(t)

η(t) . (EC.44)

Finally, combining (EC.43) with (EC.44), we must have, for any ∆κ,

∆c(t) = ∆κ(t)
K∑
i=1

(
ηi(t)−

∫ t

0
ηi(s)eµi(s−t)(µi−hFi

(wi))ds
)
− η(t)

(
∆κ(t)−

∫ t

0
L(t, s)∆κ(s)ds

)
= 0,

where the last equality holds by (34). This establishes part (iii). �

EC.1.5. Proof of Corollary 3.

Because the functions L(t, s) and J(t, s) are now separable in t and s, SDE (3) becomes

Ĥ(t) = 1
R(t)

∫ t

0
L̃(s)Ĥ(s)ds+ 1

R(t)

∫ t

0
J̃(s)dW(s) +K(t), (EC.45)

where R(t), L̃(t) and J̃(t) are specified in Corollary 3. Multiplying R(t) on both sides and differen-
tiating (EC.45) yields

R′(t)− L̃(t)
R(t) Ĥ(t)dt+ dĤ(t) = J̃(t)

R(t)dW(t) +K ′(t)dt+ K(t)R′(t)
R(t) dt.

Multiplying e
∫ t

0
R′(t)−L̃(t)

R(t) dv on both sides and integrating from 0 to t yields

e
∫ t

0
R′(v)−L̃(v)

R(v) dv
Ĥ(t) =

∫ t

0
e
∫ u

0
R′(v)−L̃(v)

R(v) dv J̃(u)
R(u)dW(u)

+
∫ t

0
e
∫ u

0
R′(v)−L̃(v)

R(v) dvdK(u) +
∫ t

0
e
∫ u

0
R′(v)−L̃(v)

R(v) dvK(u)R′(u)
R(u) du.

or equivalently Ĥ(t) =
∫ t

0
e
−
∫ t

u

R′(v)−L̃(v)
R(v) dv J̃(u)

R(u)dW(u)
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+
∫ t

0
e
−
∫ t

u

R′(v)−L̃(v)
R(v) dvdK(u) +

∫ t

0
e
−
∫ t

u

R′(v)−L̃(v)
R(v) dvK(u)R′(u)

R(u) du. (EC.46)

Note that

e
−
∫ t

u

R′(v)−L̃(v)
R(v) dv = elogR(u)−logR(t)e

∫ t

u

L̃(v)
R(v) dv = R(u)

R(t) e
∫ t

u

L̃(v)
R(v) dv

. (EC.47)

Combining (EC.46) and (EC.47) yields the solution in (43). The variance formula in Corollary 3
easily follows from the isometry of the Brownian integral. �

EC.1.6. Proof of Corollary 4

When K = 1, the variance formula simplifies to

σ(t) = e−hF (w)t

η(t)

√∫ t

0
e2hF (w)u (F c(w)λ(u−w) +µm(u)) du.

Therefore, the second-order staffing term

c(t) = z1−αe
−µt

e−hF (w)teµt

√∫ t

0
e2hF (w)u (F c(w)λ(u−w) +µm(u)) du

−(µ−hF (w))
∫ t

0
e−hF (w)seµs

√∫ s

0
e2hF (w)u (F c(w)λ(u−w) +µm(u)) duds

)

= z1−αe
−µt

(
Z(t)− (µ−hF (w))

∫ t

0
Z(s)ds

)
for Z(t) given in statement of the corollary. �

EC.2. Additional Numerical Studies

EC.2.1. Implementation Details

All Monte Carlo simulations were conducted using MATLAB. We sample the values of the per-
formance functions at fixed time points t1, . . . , tN , with ti ≡ i∆T , 1 ≤ i ≤ N , T = 24, the step size
(sampling resolution) is ∆T = 0.01, and N = T/∆T = 2400 is the total number of samples in [0, T ].
To collect simulated data of PWT, on each simulation run, we create virtual arrivals to all queues at
t1, . . . , tN . These virtual customers behave like real customers while in the queue and capture what
the system experience would be like for a customer had they arrived at the given sampling time
points. However, these virtual customers, when they are eventually moved to the head of the queue
and assigned with a server, will not enter service; instead, they are removed immediately from the
system after their elapsed waiting times have been recorded. For instance, the jth (1≤ j ≤N) class-i
virtual customer arrives at queue i at time j∆T . If this customer is removed (from the head of the
line) at time t, then the system collects a sample for the class-i PWT at time j∆T on the lth run:
V l
i (j∆T ) = t− j∆T . The class-i mean PWT and TPoD at time tj ≡ j∆T are estimated by averaging
m (e.g., m= 5000) independent copies of Vi(j∆T ) and indicators 1{Vi(j∆T )>wi}.
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EC.2.2. Fixed Staffing Intervals

In practice, system managers are often unable to add and remove servers in a nearly continuous
manner; they must staff at a certain level for a fixed period of time (i.e. shifts in a hospital). We
further expand upon the discretization of the continuous staffing function, by letting staffing decisions
be limited to fixed intervals, in which the staffing levels must remain constants. We explore the
impact of modifying our prescribed staffing formula to mimic this practical constraint. For a given
staffing interval ∆s (e.g., 30 minutes) and a continuous staffing formula s(t), we consider two ∆s-
based discretization methods (i) average staffing level (ASL) and (ii) maximum staffing level (MSL),
which are given by

sASL(t)≡
dT/∆se∑
i=1

s̄i1{t∈[(i−1)∆s,i∆s}, s̄i ≡
1

∆s

∫ i∆s∧T

(i−1)∆s

s(u)du,

sMSL(t)≡
dT/∆se∑
i=1

s↑i1{t∈[(i−1)∆s,i∆s}, s↑i ≡ sup
(i−1)∆s≤u≤i∆s∧T

s(u),

where x ∧ y ≡ min(x, y). MSL sets the staffing level in each interval as the maximum of staffing
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Figure EC.1 Plots of (i) simulated class-dependent TPoD P(Vi(t)>wi) (top panel) and (ii) time-varying ASL
and MSL staffing levels having ∆s = 0.5 (bottom panel) for the two-class base-case example with
5000 independent runs.

function, ensuring target QoS to be met as we will be slightly overstaffing the system; while ASL uses
the average staffing level in each interval to ensure a smaller absolute deviation from the TPoD target.
We again simulate our two-class base-case example, but with staffing formulas calculated according
to the ASL and MSL methods. We give our simulation results with ∆s = 0.5 (30 minutes) in Figure
EC.1. We observe that both ASL and MSL achieve relative performance stabilization after an initial
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warm-up period (approximately the interval [0,4]). During the warm-up period, the rate of change
in the required staffing is high and an inflexible staffing interval is not able to respond dynamically
enough to meet demand. Indeed, ASL achieves better stabilization around the targets while MSL
ensures meeting service levels at all times, leading to higher QoS than required. We consider other
values for the staffing interval ∆s in the e-companion.

EC.2.3. Additional numerical examples
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Figure EC.2 Plots of (i) arrival rates (top panel); (ii) simulation estimates of class-dependent TPoD P(Vi(t)>
wi) (middle panel), and (iii) time-varying staffing level (bottom panel) for a two-class model with
class-dependent rates wherein µ1 = 0.5, µ2 = 1, n= 50, w1 = 0.5, w2 = 1, α1 = 0.2, α2 = 0.8.

EC.2.3.1. Class-dependent service rates Results in §4 enables us to treat the case of class-
dependent service rates, which has strong practical relevance. Consider our two-class base-model
example with modified service rates (µ1, µ2) = (0.5,1) (so that a high priority class requires signif-
icantly more time in service). In this case we numerically compute the variance of Ĥ(t) and the
required control functions using our contraction based algorithm given in Remark EC.1. In the numer-
ical experiment, it takes 42 iterations for the algorithm to converge with an error tolerance ε= 10−6.
Figure EC.2 shows that our methods continue to achieve desired service-level differentiation and
performance stabilization.

EC.2.3.2. Mixed arrival rates We look at the case where arrival rates are of different orders
of magnitude. This is relevant because, in practice, certain customer classes may have infrequent
arrivals as compared to other classes, see Ding et al. (2019). We modify the arrival rates in our
two-class base-case example so that λ̄1 = 0.1, but set n= 100 so that the overall system size remains
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comparable to the base case. We see from Figure EC.3 that even though the majority of arrivals to
the system are from Class 1, we have effective TPoD stabilization for both classes.
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Figure EC.3 Plots of (i) arrival rates (top panel); (ii) simulation estimates of class-dependent TPoD P(Vi(t)>wi)
(middle panel), and (iii) time-varying staffing level (bottom panel) for a two-class model with mixed
arrival rates wherein λ̄1 = 0.1, λ̄2 = 1.5, n= 100, w1 = 0.5, w2 = 1, α1 = 0.2, α2 = 0.8.
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Figure EC.4 The two-class model with high QoS targets: (a) w1 = 0.5, w2 = 1, α1 = 0.05, α2 = 0.1 (left), (b)
w1 = 0.1, w2 = 0.2, α1 = 0.2, α2 = 0.4 (right).
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EC.2.3.3. Higher QoS targets In our base model, we set α1 = 0.2 and α2 = 0.8 to test if
TPoDs can be indeed significantly differentiated. We now validate the effectiveness of rules (29) and
(31) when both classes have higher QoS targets. Figure EC.4 gives the simulation results with (i)
smaller probability targets α1 = 0.05 and α2 = 0.1 (w1 = 0.5, w2 = 1); and (ii) smaller delay targets
w1 = 0.1 and w2 = 0.2 (α1 = 0.2, α2 = 0.4). Figure EC.4 shows that TPoD’s remain relatively stable
in both cases.

EC.2.3.4. A Five-Class Example We now consider a five-class V model, having class-
dependent sinusoidal arrival rates as in (46), exponential abandonment and service times. All model
input parameters and QoS parameters are given in Table EC.1.

Table EC.1 Five Class Model: Class specific parameters and QoS target levels
Class parameters Service levels

Class λ̄ r γ φ θ µ w α
1 1.0 0.20 0.5 0 0.6 1 0.2 0.1
2 1.5 0.30 1.0 -1 0.3 1 0.4 0.3
3 1.2 0.05 1.3 1 0.5 1 0.6 0.5
4 1.1 0.15 1.6 -2 1.0 1 0.8 0.7
5 1.6 0.40 2.0 2 1.2 1 1.0 0.9

The control functions are given in the left-hand panel of Figure EC.5. In this example, we intention-
ally let the sinusoidal arrival rates have class-dependent periods, frequencies, and relative amplitudes
(see right-hand panel of Figure EC.5). Nevertheless, our method continues to successfully achieves
stable TPoD-based service levels across all 5 classes.
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Figure EC.5 A five-class example: (i) Computed control functions m(t), c(t), and κi(t) for i= 1, . . . ,5 (left), (ii)
Simulation comparisons for TPoD P(Vi(t) > wi), i = 1, . . . ,5 (right), with n = 50, input and QoS
parameters given in Table EC.1, and 5000 samples.




