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Abstract A functional law of the iterated logarithm (FLIL) and its corresponding law of
the iterated logarithm (LIL) are established for a multi-server queue with batch arrivals
and customer feedback. The FLIL and LIL, which quantify the magnitude of asymptotic
fluctuations of the stochastic processes around their mean values, are developed in three
cases: underloaded, critically loaded and overloaded, for five performance measures: queue
length, workload, busy time, idle time and departure process. Both FLIL and LIL are proved
using an approach based on strong approximations.

Keywords Functional law of the iterated logarithm · Multi-server queue · Batch arrival ·
Customer feedback · Nonexponential service times · Strong approximation

1 Introduction

We develop a functional law of the iterated logarithm (FLIL) and its corresponding law of the
iterated logarithm (LIL) for themulti-serverGI B/GI F/N queue, which has a renewal batch
arrival process with independent and identically distributed (i.i.d.) batch sizes (the GI B ),
i.i.d. non-exponential service times (the second GI ), N servers in parallel, and customer
feedback after service completion in a Bernoulli fashion (the superscript F).

Many asymptotic results have been developed for queueing networks having the batch
arrivals. For single-server queueing models, there is a large volume of literature on the
asymptotic analysis, including stationary probability distribution analysis (Machihara 1999;
Ommeren 1990), fluid approximation (Chen and Shanthikumar 1994; Dai 1995), diffusion
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approximation in heavy traffic (Glynn and Whitt 1987; Pang and Whitt 2012), LIL limits
(Guo and Liu 2015; Minkevičius and Steišūnas 2003; Sakalauskas 2000), strong approxima-
tion (Chen andMandelbaum 1994; Chen and Shen 2000; Glynn andWhitt 1991a, b; Horváth
1992; Mandelbaum et al. 1998; Whitt 1983; Zhang 1997; Zhang et al. 1990; Zhang and Hsu
1992), stationary optimal policies under a linear cost structure (Lee and Srinivasan 1989),
etc. Related heavy-traffic results for multi-server queues include the diffusion approxima-
tion (Chen and Shanthikumar 1994) and the LIL limits (Minkevičius 2014) for generalized
Jackson network in strictly heavy traffic. See Iglehart (1971) for the FLIL and LIL lim-
its of multi-channel queue models. Queueing models having after-service feedback have
also proven useful in modeling real service systems, see Dai (1995) for stochastic queueing
networks with customer feedback, Yom-Tov and Mandelbaum (2014) for the Markovian
Erlang-R model and Liu andWhitt (2017) for time-varying staffing recommendations to sta-
bilize performance in queues with feedback. Readers are referred to Borovkov (1984), Chen
and Yao (2001) and Whitt (2002) for a whole asymptotic analysis for queueing networks.

FLILs and LILs. The earliest FLIL results were developed for the standard Brownian motion
(BM). Let W be a one-dimensional standard BM. By considering a sequence of scaled BMs
indexed by n, Wn(t) ≡ W (nt)/

√
n log log n, 0 ≤ t ≤ 1, n ≥ 3, Strassen (1964) showed

that, with probability one (w.p.1), the sequence {Wn, n ≥ 3} is relatively compact, that is,
every subsequence of Wn has a convergent subsubsequence, and the limits of all convergent
subsequences are contained in a compact set:

E =
{
x ∈ C

1[0, 1] : x(0) = 0,
∫ 1

0

(
d
dt

x(t)

)2

dt ≤ 1

}
,

whereC1[0, 1] is the space of the one-dimensional continuous functions on [0, 1]. Intuitively,
the set E is the space of absolutely continuous functions with a controlled total variation. Igle-
hart (1971) adapted Strassen’s approach to establish the FLIL for a multi-channel queueing
systems; also see Glynn and Whitt (1986, 1987, 1988) for a Little’s law version of FLIL.

The earliest LIL result was developed for the standard BM by Lévy (1937) and Lévy
(1948), that is,

lim sup
t→∞

W (t)√
2t log log t

= − lim inf
t→∞

W (t)√
2t log log t

= 1, w.p.1. (1)

The version of LIL in (1) is called the strong form because it provides an explicit value
[the “1” on the right-hand side of (1)] to quantify the asymptotic rate of the increasing
variability for a standard BM. Motivated by the Lévy’s works, other LIL results have later
been developed for queueing systems, including single-server priority queues (Guo and Liu
2015), multi-channel queues (Iglehart 1971), strictly overloaded tandem queueing model
(Minkevičius and Steišūnas 2003) and generalized Jackson networks (Minkevičius 2014;
Sakalauskas 2000). In contrast to the strong form in (1), Chen and Yao (2001) developed
a weak form of LIL for the queue length process Q (centered by its fluid function Q̄) of
the GI/GI/1 queue: they showed that sup0≤t≤T

∣∣Q(t) − Q̄(t)
∣∣ is in the same order of the

function
√
T log log T as T → ∞. This result is called the weak form because the value of

the LIL limit [as in (1)] was not identified. Also see Chen andMandelbaum (1994), Chen and
Shen (2000) and Chen and Yao (2001) for other results on weak-form LILs for generalized
Jackson network and feedforward queueing network.
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Our contributionsWe summarize our contributions below:

(i) First, we establish a strong-form FLIL and LIL for key performance functions of the
GI B/GI F/N queue including the queue length, workload, busy time, idle time and
departure processes.

(ii) Second, our results cover all three regimes defined in terms of the traffic intensity ρ:
(i) underloaded (UL) with ρ < 1, (ii) critically loaded (CL) with ρ = 1 and (iii)
overloaded (OL) with ρ > 1 (unlike most previous works which merely focused on
either UL or OL state).

(iii) Third, in terms of the model input parameters (e.g., arrival rate, feedback probability
and moments of service times), we identify the FLIL and LIL limits as simple analytic
expressions. The FLIL limits are compact sets which are explicitly defined by the model
parameters; and the LIL limits are closed-form functions of the model parameters.
These simple FLIL and LIL limits provide structural insights and interesting results.
For instance, Theorem 3 shows that Little’s law always holds in the UL and CL cases
but may fail in the OL case; Little’s Law holds in the OL case only when the variance
of service times are zero. To gain insights into our explicit FLIL and LIL limits, we
provide detailed discussions in Sect. 4 and numerical examples (see Sect. 6).

(iv) Finally, different from previous methods for LIL and FLIL [e.g., using probability
inequalities (Minkevičius and Steišūnas 2003; Minkevičius 2014; Sakalauskas 2000)
and construction of renewal processes (Iglehart 1971)], we adopt a new strong approx-
imation (SA) based approach; we believe that this new approach may help stimulate
future research (e.g., facilitating proofs of asymptotic results of other queueingmodels).
We next give more details of our SA-based approach.

The strong approximation approach. To illustrate the framework of SA, consider a renewal
process {N (t), t ≥ 0} with rate λ > 0 and interrenewal-time variance σ 2 < ∞. Define
N̄ (t) = λt and Ñ (t) = λ t + λ3/2σW (t), where W is the one-dimensional standard BM. In
fact, N̄ (t) and Ñ (t) are the fluid limit and SA of N (t) respectively. It follows from Horváth
(1984a) and Horváth (1984b) that, if the r th moment of interarrival times is finite, r > 2,
then

sup
0≤t≤L

∣∣N (t) − Ñ (t)
∣∣ = o

(
L1/r ) , w.p.1, (2)

where the little function “o(·)”means that f (t) = o(g(t)) as t → ∞ if limt→∞ | f (t)/g(t)| =
0. Equation (2) implies that the renewal process is approximated by a one-dimensional
standard BM with an error o

(
L1/r

)
with r > 2 if the r th moment of interarrival times is

finite. For t ∈ [0, 1], the FLIL of the renewal process N (t) can be obtained by taking n → ∞
in the sequence:

N (nt) − N̄ (nt)√
2n log log n

= N (nt) − Ñ (nt)√
2n log log n

+ Ñ (nt) − N̄ (nt)√
2n log log n

= λ3/2σW (nt)√
2n log log n

+ o(1),

where the second equality holds by (2). Hence, the FLIL of renewal process is now trans-
formed to the FLIL problem of the corresponding scaled BM. SAs have been developed for
various stochastic processes, such as random walks (Csörgő et al. 1987) and renewal-related
processes (Csörgő and Révész 1981; Csörgő and Horváth 1993). There is a body of litera-
ture using the SA to study queueing models, including the GI/GI/1 queue (Chen and Yao
2001), GI/GI/∞ queue (Glynn and Whitt 1991a), multiple channel queue (Zhang et al.
1990), tandem-queue network (Glynn andWhitt 1991b), generalized Jackson network (Chen
and Mandelbaum 1994; Horváth 1992; Zhang 1997), non-preemptive priority queue (Zhang
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and Hsu 1992), time-dependentMarkovian network queues (Mandelbaum andMassey 1995;
Mandelbaum et al. 1998) and feedforward queueing networks (Chen and Shen 2000; Chen
and Yao 2001).

Our SA-based approach follows four steps: first, we need to establish the fluid limits
and strong approximations for the desired performance functions (e.g., the queue length
and workload processes). Second, we connect the FLILs of these performance functions to
the FLILs of their corresponding SAs; these SAs are usually in forms of some continuous
functions of BMs. Next, we directly treat the BM related processes to obtain closed-form
FLIL limits. Finally, we obtain the LIL limits from their corresponding FLIL limits. One
major advantage of the SA-based approach is that, once the SAs of the desired performance
functions are established, we are able to take advantage of existing FLIL results for BMs. In
this case, developing FLILs for BM-related functions is much easier than treating FLILs for
the discrete performance functions (e.g., queue length process). Nevertheless, there are two
major difficulties in this SA-based approach: it is in general not easy to develop the heavy-
traffic fluids and strong approximations for the desired performance functions. Commonly
used methods include the continuous mapping approach (Chen and Shen 2000; Chen and
Yao 2001; Zhang 1997; Zhang et al. 1990) and probability inequality approach (Horváth
1992; Zhang and Hsu 1992). In addition, obtaining the LIL limits from the corresponding
FLIL results may not be straightforward.
Organization of the paper In Sect. 2, we introduce the GI B/GI F/N model, define key
performance functions and give useful preliminary results. In Sect. 3, we review the fluid
limits of theGI B/GI F/N queue which are building blocks for the FLIL and LIL. In Sect. 4,
we present our main FLIL and LIL results (Theorems 2, 3, 4, 5). In Sect. 5, we prove the
main results and other supporting results. In Sect. 6, we give concrete numerical examples
to gain insights into the main results. Finally, we draw conclusions in Sect. 7. Additional
supporting materials, including additional numerical examples and omitted proofs, appear in
“Appendix” section.
Notations We close this section by summarizing all notations. All random variables and
processes are defined on a common probability space (Ω,F,P). We let E(X) and Var(X) be

themean and variance for X . Wewrite X
d= Y if X and Y have the same distributions. For any

positive integer k, we denote by R
k and R

k+ the sets of the k-dimensional real numbers and
nonnegative real numbers. Vector e ∈ R

k is a column vector with all of its entries being ones.
We denote R = R

1 and R+ = R
1+. For a ∈ R, [a]+ ≡ max{a, 0}. For any t ∈ R, denote

by 	t
 the maximal integer no more than t . Let Dk[a, b] be the space of k-dimensional right
continuous functions on [a, b) having left limits on (a, b], endowed the Skorohod topology,
see Ethier and Kurtz (1986). Let Ck[a, b] be the subset of continuous paths in D

k[a, b].
Denote D ≡ D

1 and C ≡ C
1. We say that fn ⇒ K f w.p.1 if { fn, n ≥ 1} is relatively

compact (i.e., every subsequence has a convergent subsubsequence) and the set of all limit
points is the compact set K f . Let || f ||T ≡ sup0≤t≤T | f (t)| be the uniform norm of f . We
say fn → f uniformly on compact set (u.o.c.) if || fn − f ||T → 0, as n → ∞. We say
f (t) = O(g(t)) as t → ∞ if lim supt→∞ | f (t)/g(t)| ≤ M for some M > 0. We use “≡”
to denote a definition. We summarize all acronyms in Table 2 of “Appendix” section.

2 The GI B/GI F/N queuing model

Consider a multi-serverGI B/GI F/N queue with batch arrivals and customer feedback. The
servers are indexed by 1, 2, . . . , N . External customers arrive in batches and are served in the
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order of arrival. Customers in the same batch are served in an arbitrary order. If a customer
finds at least one available server, it starts service with the available server having the smallest
index. If all servers are busy, the arrival waits in queue. When a customer finishes service,
with probability 0 ≤ p < 1 it returns for more service (joining the end of the queue) and
with probability 1− p it leaves the system. We assume a work-conserving service discipline,
i.e., no server is allowed to be idle if there is a customer waiting in queue.

Let u(n) be interarrival time between the (n − 1)th and nth batches, v j (n) be the service
time of the nth served customer by server j , and ξ(n) be the size of the nth arrived batch,
n = 1, 2, . . .. Suppose that u ≡ {u(n), n = 1, 2, . . .}, v j ≡ {v j (n), n = 1, 2, . . .} and
ξ ≡ {ξ(n), n = 1, 2, . . .} are mutually independent i.i.d. sequences of non-negative random
variables, having means E[u(1)] ≡ 1/α, E[v j (1)] ≡ 1/μ and E[ξ(1)] ≡ m, and squared
coefficients of variation (SCV) c2a ≡ Var [u(1)]/(E[u(1)])2, c2s ≡ Var [v j (1)]/(E[v j (1)])2
and c2b ≡ Var [ξ(1)]/(E[ξ(1)])2. Throughout the rest of the paper, we assume that, for some
r > 2,

E
[
u(1)r

]
< ∞, E

[
v j (1)

r ] < ∞, E
[
ξ(1)r

]
< ∞, for all j = 1, 2, . . . , N . (3)

We use the i.i.d. sequence γ ≡ {γ j (n), j = 1, 2, . . . , N , n = 1, 2, . . .} to characterize the
Bernoulli feedback. After a customer completing service by server j , let γ j (n) = 1 if the
customer decides to revisit the system, and let γ j (n) = 0 if the customer leaves the system.We
assume that the sequence γ is independent of u, v, ξ , and has mean E[γ j (1)] ≡ p ∈ [0, 1).

Define the partial sums of the interarrival times, service times, batches and routings:

U (n) ≡
n∑

k=1

u(k), Vj (n) ≡
n∑

k=1

v j (k), B(n) ≡
n∑

k=1

ξ(k), Γ j (n) ≡
n∑

k=1

γ j (k), (4)

n = 1, 2, . . . , and two renewal processes:

A(t) ≡ max{n ≥ 0 : U (n) ≤ t} and S j (t) ≡ max{n ≥ 0 : Vj (n) ≤ t}, (5)

where A(t) counts the total number of batch arrivals in (0, t] and S j (t) counts the number
of customers server j can potentially serve in (0, t] (assuming server j is always busy).

Define the traffic intensity:

ρ ≡ λ

Nμ
with λ = mα + pNμ. (6)

We say that the system is UL when ρ < 1, CL when ρ = 1 and OL when ρ > 1.

Performance functions Let Q(t) be the total number of customers in the system at time t
and Z(t) be the workload at time t , that is, the time until the system first becomes empty
assuming no future arrivals after time t . Let Tj (t) indicate the cumulative busy time of server
j during [0, t] and I j (t) ≡ t − Tj (t) indicates the cumulative idle time of server j during
[0, t]. Let T (t) ≡ ∑N

j=1 Tj (t) and I (t) ≡ ∑N
j=1 I j (t) = Nt − T (t) be the total busy time

and idle time for all N servers in [0, t]. Let D(t) denote the total number of departures by
time t .

SystemequationsWeassume the system is empty initially, i.e., Q(0) = 0. Flow conservation
implies that

Q(t) = B(A(t)) −
N∑
j=1

S j (Tj (t)) +
N∑
j=1

Γ j (S j (Tj (t))), (7)
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where, by time t , B(A(t)) is the total number of customer arrivals, S j (Tj (t)) is the total
number of service completions at server j andΓ j (S j (Tj (t))) is the total number of customers
that are feedback from server j .

To relate the queue length process to idle times, we rewrite (7) as

Q(t) = X (t) + Y (t), (8)

where the auxiliary processes:

Y (t) ≡ (1 − p)μI (t) = (1 − p)μ
N∑
j=1

I j (t) ≥ 0, (9)

X (t) ≡ θN t + [B(A(t)) − mαt] +
N∑
j=1

[
Γ j (S j (Tj (t))) − pS j (Tj (t))

]

+ p
N∑
j=1

[
S j (Tj (t)) − μTj (t)

]−
N∑
j=1

[
S j (Tj (t)) − μTj (t)

]
, (10)

and θN ≡ mα − (1− p)Nμ. We note that, for any j = 1, 2, . . . , N , I j (t) cannot increase at
time t if Q(t) ≥ N under the work-conserving service discipline. That is, when Q(t) ≥ N ,
dY (t) = 0. On the other hand, if Q(t) < N , then dY (t) ≥ 0. This implies that

(N − Q(t))dY (t) ≥ 0. (11)

More discussion on the queue length and idle time see Sect. B.2.
When N = 1, the multi-dimensional system dynamical equations simplify to:

Q(t) ≡ B(A(t)) − D(t) ≡ X (t) + Y (t) ≥ 0, D(t) ≡ S(T (t)) − Γ (S(T (t))),

X (t) ≡ θ1t + [B(A(t)) − mA(t)] + m [A(t) − αt]

+ [Γ (S(T (t))) − pS(T (t))] − (1 − p) [S(T (t)) − μT (t)] ,

Y (t) ≡ (1 − p)μI (t),
∫ t

0
Q(t)dY (t) = 0,

Z(t) ≡ V (B(A(t)) + Γ (S(T (t)))) − T (t) = V (Q(t) + S(T (t))) − T (t), (12)

where Γ ≡ Γ1, V ≡ V1, S ≡ S1. In this case an equivalent representation for Q(t) and Y (t)
is

Q(t) = Φ(X)(t) and Y (t) = Ψ (X)(t), (13)

where two functions (Ψ,Φ), defined as

Ψ (x)(t) = sup
0≤s≤t

[−x(s)]+ and Φ(x)(t) = x(t) + Ψ (x)(t), (14)

are known as the one-dimensional oblique reflection mapping (ORM) (see Sect. B.1 for an
alternative definition of ORM).

The objective of the rest of the paper is to establish the FLIL and LIL for performance pro-
cesses (Q, Z , T, I, D) and identify the their corresponding FLIL and LIL limits as functions
of the model input data

D ≡ (
α,μ,m, p, c2a, c

2
s , c

2
b, N

)
. (15)
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3 Fluid limits

Since the forms of the FLIL and LIL involve the performance measures centered by their
corresponding fluid functions, we now give the corresponding fluid limits. We first define the
fluid-scaled processes:

Q̄(n)(t) ≡ 1

n
Q(nt), Ȳ (n)(t) ≡ 1

n
Y (nt), X̄ (n)(t) ≡ 1

n
X (nt), Z̄ (n)(t) ≡ 1

n
Z(nt),

T̄ (n)(t) ≡ 1

n
T (nt), Ī (n)(t) ≡ 1

n
I (nt), D̄(n)(t) ≡ 1

n
D(nt), T̄ (n)

j (t) ≡ 1

n
Tj (nt),

Ī (n)
j (t) ≡ 1

n
I j (nt), D̄(n)

j (t) ≡ 1

n
D j (nt), j = 1, 2, . . . , N .

We next give the functional strong law of large numbers (FSLLN) results for the
GI B/GI F/N model. The proof is similar with Chen and Yao (2001) and Dai (1995). We
give the proof in Sect. C.1 of “Appendix” section.

Theorem 1 (FSLLN for GI B/GI F/N ) Assume the system is initially empty. If E[u(1)] <

∞, E[v j (1)] < ∞ and E[ξ(1)] < ∞, j = 1, 2, . . . , N, then,

(i) If N ≥ 1 and ρ ≥ 1, then, as n → ∞,(
Q̄(n), X̄ (n), T̄ (n)

j , Ī (n)
j , D̄(n), D̄(n)

j

)
→ (

Q̄, X̄ , T̄ j , Ī j , D̄, D̄ j
)

u.o.c., w.p.1,

where Q̄(t) = X̄(t) = θN t, T̄ j (t) = t − Ī j (t) = t , T̄ (t) = Nt, Ī (t) = 0, D̄ j (t) =
(1 − p)μt and D̄(t) = ∑N

j=1 D̄ j (t).
(ii) If N = 1, then, as n → ∞,(

Q̄(n), X̄ (n), Ȳ (n), Z̄ (n), T̄ (n), Ī (n), D̄(n)
)

→ (
Q̄, X̄ , Ȳ , Z̄ , T̄ , Ī , D̄

)
, u.o.c., w.p.1,

where Q̄, X̄ , Ȳ , Z̄ , T̄ , Ī , D̄ satisfy, for t ≥ 0,

(Q̄, Ȳ ) = (Φ,Ψ )(X̄), X̄(t) = θ1t, Ī (t) = 1

(1 − p)μ
Ȳ (t),

Z̄(t) = 1

μ
Q̄(t), T̄ (t) = t − Ī (t), D̄(t) = (1 − p)μT̄ (t). (16)

4 Main results

In this section, we establish the LIL and FLIL for the GI B/GI F/N queue. we first define
the LIL and FLIL scalings in Sect. 4.1; next in Sect. 4.2 we develop the FLIL and LIL results
in the UL, CL and OL cases. We give all proofs in Sect. 5.

4.1 The LIL and FLIL scalings

LIL scaling and limitsUsing the fluid limits given in Sect. 3, we now define the LIL scaling
and limits. Let

Q∗
sup ≡ lim sup

t→∞
Q(t) − Q̄(t)

ϕ(t)
and Q∗

inf ≡ lim inf
t→∞

Q(t) − Q̄(t)

ϕ(t)
. (17)

123

Author's personal copy



164 Ann Oper Res (2018) 264:157–191

where ϕ(t) = √
2t log log t for all t > e (Euler’s constant). Similarly, we define the upper

and lower LIL-scaled processes: Z∗
sup, Z

∗
inf , T

∗
sup, T

∗
inf , I

∗
sup, I

∗
inf , D

∗
sup, D

∗
inf , T

∗
j,sup, T

∗
j,inf and

I ∗
j,sup, I

∗
j,inf , j = 1, 2, . . . , N . We will express all the LIL limits in terms of the input data D

in (15).

FLIL scaling and limits For any t ∈ [0, 1] and n = 3, 4, . . ., define

Qn(t) ≡ Q(nt) − Q̄(nt)

ϕ(n)
. (18)

Similarly we define the FLIL-scaled processes: Xn(t), Yn(t), I n(t), T n(t), Zn(t), Dn(t),
T n
j (t) and I nj (t) in the same token of (18), j = 1, 2, . . . , N . We will develop the FLIL results

by showing that(
Qn, Zn, I n, T n, Dn) ⇒

(KQ,KZ ,KI ,KT ,KD
) ≡ K∗, w.p.1, (19)

and identifying the compact sets KQ,KZ ,KI ,KT ,KD characterized by the input data D in
(15) and the compact set Gk defined as

Gk(δ) ≡
{
x ∈ C

k[0, 1] : x(0) = 0,
∫ 1

0
[ẋ(t)]2 dt ≤ δ2

}
, δ > 0, (20)

where the square denotes inner product, and ẋ(t) denotes the derivative of x(t) which exists
almost everywhere with respect to Lebesgue measure.

We remark that Gk(δ) is the space of continuous functions having a δ-controlled quadratic
variation. We give some examples to gain insights. For instance, x1(t) = δat ∈ G(δ) for 0 <

a ≤ 1 because x1(0) = 0 and
∫ 1
0 [ẋ1(t)]2dt = a2δ2 ≤ δ2; x2(t) ≡ (δb1t, δb2t)′ ∈ G2(δ) for

b1, b2 such that 0 < b21 + b22 ≤ 1, because x2(0) = 0 and
∫ 1
0 [ẋ2(t)]2dt = δ2(b21 + b22) ≤ δ2.

4.2 The LIL and FLIL limits

We now give our main results. For the OL and CL GI B/GI F/N model with N ≥ 1, we
give the FLIL and LIL results for the queue length, busy time and idle time process. For the
case N = 1, we give the FLIL and LIL results for all performance functions in OL, UL and
CL cases. We give all proofs in Sect. 5.

Theorem 2 (FLIL for GI B/GI F/N ) For N ≥ 1, we have

KQ =
{

Φ(G(σo(N ))), ρ = 1,
G(σo(N )), ρ > 1,

(21)

where G ≡ G1 is defined in (20) and

σ 2
o (N ) = m2α

(
c2a + c2b

)+ p(1 − p)μ + (1 − p)2Nμc2s . (22)

If ρ = 1, then for all t ∈ [0, 1],

(1 − p)μ
N∑
j=1

I nj (t) ⇒ Ψ (G(σo(N ))), w.p.1. (23)

If ρ > 1, then I nj (t) ⇒ 0 and T n
j (t) ⇒ 0 w.p.1 for all t ∈ [0, 1] and j = 1, 2, . . . , N.
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Remark 1 (Understanding FLIL for GI B/GI F/N ) When ρ ≥ 1, the FLIL limit for the
queue length is mainly determined by total variability σo(N ), including the variabilities of
the arrival, batch, routing and service distributions. When ρ = 1, the weighted idle time
FLIL limit in (23) is dependent on σo(N ) through continuous mapping Ψ . When ρ > 1, the
FLILs for busy and idle time both degenerate to a single point zero, because all the servers
are busy almost all time so that both busy and idle times are almost linear in time t . By the
definition of the relatively compact, if fn ⇒ K f w.p.1 and the setK f contains a single point,
then fn → K f w.p.1. Therefore, the FLIL here implies the FSLLN, that is, I nj (t) → 0 and
T n
j (t) → 0 w.p.1 as n → ∞.

Theorem 3 (FLIL for GI B/GI F/1) If N = 1, then the convergence (19) holds with K∗ =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{(
0, 0, σuc

(1−p)μ x,− σuc
(1−p)μ x, σD,ux

)
: x ∈ G(1)

}
, if ρ < 1,{(

Φ(x), 1
μ
Φ(x), 1

(1−p)μΨ (x),− 1
(1−p)μΨ (x), h(y)

)
: x ∈ G(σo), y ∈ G2(σo)

}
,

if ρ = 1,{(
σox,

σZ ,o
μ

x, 0, 0, (1 − p)σD,ox
)

: x ∈ G(1)
}

, if ρ > 1,

(24)

where h is a continuous function mapping: C × C → C, defined as

h(x, y)(t) = y(t) + inf
0≤s≤t

[x(s) − y(s)], (25)

σo ≡ σo(1) > 0 defined in (22), and

σuc ≡
√

αm2
(
c2a + c2b

)+ (1 − p)mαc2s + pmα,

σD,u ≡
√

αm2
(
c2a + c2b

)
, σD,o ≡

√
μc2s + pμ

1 − p
,

σZ ,o ≡
√

αm2
(
c2a + c2b

)+ c2s
(
pμ1/2 − (mα + pμ)1/2

)2 + p(1 − p)μ. (26)

Remark 2 (Little’s law in FLIL) Unlike in the fluid limit where Little’s Law always holds
(e.g., Q̄(t) = μZ̄(t) in (16)), Little’s law in FLIL, such as,KQ = μKZ , continues to hold in
the UL and CL cases, but fails in the OL case. In general Little’s law fails in FLIL because
FLIL describes the asymptotic stochastic fluctuations around the means rather than the mean
values (that are characterized by the fluid model). In fact, in (24) we have KQ = μKZ in the
OL case if we let cs = 0 (little’s law holds in the OL case only when the service times are
deterministic).

Remark 3 (FLIL for GI/GI/1) Setting m = 1, cb = 0 and p = 0 yields the FLIL for the
GI/GI/1 special case. The FLIL parameters in (26) simplify to the following:

σuc = σZ ,o =
√

α
(
c2a + c2s

)
, σD,u =

√
αc2a, σo =

√
αc2a + μc2s ,

σD,o =
√

μc2s . (27)

Here for the GI/GI/1 queue, the FLIL of the departure KD = h(G2(σo)) coincides with
the result in Theorem 4.2 in Iglehart (1971).

We next give the LIL results for the GI B/GI F/N model.
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Theorem 4 (LIL for GI B/GI F/N )

(i) If ρ = 1, then Q∗
sup = σo(N ), Q∗

inf = 0.
(ii) If ρ > 1, then Q∗

sup = −Q∗
inf = σo(N ), T ∗

sup = T ∗
inf = I ∗

sup = I ∗
inf = 0 and

T ∗
j,sup = T ∗

j,inf = I ∗
j,sup = I ∗

j,inf = 0 for all j = 1, 2, . . . , N.

Remark 4 (Understanding the GI B/GI F/N LIL limits) According to the FLIL scaling in
(17), the LIL limits given in Theorem 4 imply the fluid limits in (i) in Theorem 1, because
ϕ(n)/n → 0 as n → ∞. The LIL limits of T, I, Tj and I j given in (ii) in Theorem 4 are
consistent with their FLIL limits in Theorem 2, because when both the lim sup and lim inf
are zero, the limit is zero. In the CL case, Q∗

inf = 0 implies that the scaled queue length
Q(t)/ϕ(t) approaches 0 infinitely often on every sample path. However in the OL case, the
queue length has both positive and negative fluctuations around its fluid limit.

Theorem 5 (LIL for GI B/GI F/1) If N = 1, then the LIL limits are given below:

(i) If ρ < 1, then

Q∗
sup = Q∗

inf = Z∗
sup = Z∗

inf = 0, D∗
sup = −D∗

inf = σD,u,

T ∗
sup = −T ∗

inf = I ∗
sup = −I ∗

inf = σuc

(1 − p)μ
. (28)

(ii) If ρ = 1, then

Q∗
sup = μZ∗

sup = σo, I ∗
sup = −T ∗

inf = σo

(1 − p)μ
,

Q∗
inf = Z∗

inf = I ∗
inf = T ∗

sup = 0. (29)

(iii) If ρ > 1, then

Q∗
sup = −Q∗

inf = σo, Z∗
sup = −Z∗

inf = σZ ,o

μ
,

T ∗
sup = T ∗

inf = I ∗
sup = I ∗

inf = 0, D∗
sup = −D∗

inf = (1 − p)σD,o. (30)

Remark 5 (Little’s law in LIL) Similar to the observations in Remark 2, the LIL Little’s Law
for Q and Z holds in the UL and CL cases, i.e., Q∗

sup = μZ∗
sup and Q∗

inf = μZ∗
inf , but fails in

the OL case, i.e., Q∗
sup 
= μZ∗

sup and Q∗
inf 
= μZ∗

in f . Note that the workload Z keeps track
of the total amount of unfinished service times while the queue length Q only counts the
number of unfinished customers. Although, as time goes to infinity in an OL system, many
customers will never be served so their service variability will play no role in the FLIL limit
of Q. Nevertheless, their service variability still make an impact to the workload Z (this
explains why Little’s law holds in the OL case (30) only if we set cs = 0).

Remark 6 (LIL for GI/GI/1) Setting m = 1, cb = 0 and p = 0 yields the GI/GI/1
special case. In particular, (28)–(30) hold with σuc, σD,u, σZ ,o, σD,o and σo defined in (27).
For example,

Q∗
sup =

⎧⎪⎪⎨
⎪⎪⎩
0, if ρ < 1,√

α
(
c2a + c2s

)
, if ρ = 1,√

αc2a + μc2s , if ρ > 1,

Q∗
inf =

{
0, if ρ ≤ 1,

−√αc2a + μc2s , if ρ > 1,

Z∗
sup =

{
0, if ρ < 1,
1
μ

√
α(c2a + c2s ), if ρ ≥ 1,

Z∗
inf =

⎧⎨
⎩
0, if ρ ≤ 1,

− 1
μ

√
α
(
c2a + c2s

)
, if ρ > 1.
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In Sect. D of “Appendix” section, we conduct sensitivity analysis for the FLIL and LIL limits:
we study the impact of all model input parameters, e.g., the mean values, variabilities, upon
the FLIL and LIL limits. Also see Sects. 6 and E in “Appendix” section for related numerical
studies.

5 Proofs

In this section, we prove ourmain results.We first provide two preliminary results (i) FLIL for
BM (Strassen 1964) (Lemma 1) and (ii) strong approximations for GI B/GI F/N (Theorem
6). Next, we apply these results to prove Theorems 2, 3, 4 and 5.

Strassen (1964) firstly developed the FLIL for the k-dimensional standard BM.

Lemma 1 (Strassen’s FLIL forBMStrassen1964)LetWn(t) ≡ W (nt)/
√
n log log n, n ≥ 3,

t ∈ [0, 1] where W is a k-dimensional standard BM, then Wn ⇒ Gk(1) w.p.1, k = 1, 2, . . .

We next give the SAs and leave the proof in Sect. C.2 of “Appendix” section.

Theorem 6 (Strong approximations for GI B/GI F/N ) Suppose (3) is satisfied.

(i) If N ≥ 1 and ρ ≥ 1, then, for some r > 2, w.p.1,

sup
0≤t≤L

|Q(t) − Q̃(t)| = o
(
L1/r ) , sup

0≤t≤L

∣∣(1 − p)μI (t) − Ψ (X̃)(t)
∣∣ = o

(
L1/r ) ,

(31)

where Q̃(t) = Φ(X̃)(t), and

X̃(t) = X̄(t) + mα1/2caWa(t) + mcbWb(αt) − (1 − p)μ1/2
N∑
j=1

cs, jWs, j (t)

+√
p(1 − p)

N∑
j=1

W f, j (μt), (32)

and Wb, Wa, Ws, j and W f, j are mutually independent BMs associated with the batches,
arrival, service and feedback, j = 1, 2, . . . , N.

(ii) If N = 1, then

sup
0≤t≤L

|Q(t) − Q̃(t)| = o
(
L1/r ) , sup

0≤t≤L
|T (t) − T̃ (t)| = o

(
L1/r ) ,

sup
0≤t≤L

|Z(t) − Z̃(t)| = o
(
L1/r ) , sup

0≤t≤L
|I (t) − Ĩ (t)| = o

(
L1/r ) ,

sup
0≤t≤L

|D(t) − D̃(t)| = o
(
L1/r ) , for some r > 2, (33)

where Ws ≡ Ws,1, W f ≡ W f,1, and T̄ (t) is given in (16),

(
Q̃, Ỹ

) = (Φ,Ψ )(X̃), Ĩ (t) = 1

(1 − p)μ
Ỹ (t), T̃ (t) = t − Ĩ (t),

X̃(t) = X̄(t) + mα1/2caWa(t) + mcbWb(αt) − (1 − p)μ1/2csWs(T̄ (t))

+√
p(1 − p)W f (μT̄ (t)),
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Z̃(t) = 1

μ

[
Q̃(t) + μ1/2cs(Ws(T̄ (t)) − Ws(ρt))

]
,

D̃(t) = (1 − p)
[
μT̃ (t) + μ1/2csWs(T̄ (t))

]−√
p(1 − p)W f (μT̄ (t)). (34)

Remark 7 X̃(t) − X̄(t) is a driftless BM with variance parameter σ 2
o (N ) defined in (22) in

Theorem 2 if N ≥ 1, and σ 2 defined in Theorem 3 if N = 1.

5.1 Proof of Theorem 2

For all t ∈ [0, 1] and n = 3, 4, . . ., define

Q̃n(t) = Q̃(nt) − Q̄(nt)

ϕ(n)
, (35)

where Q̄ and Q̃ are defined in Theorem 1 and Lemma 6, respectively. By Lemma 6, since
L1/r = o(ϕ(L)) for all r > 2, we have, for all t ∈ [0, 1], w.p.1,

lim
n→∞

∣∣Q(nt) − Q̃(nt)
∣∣

ϕ(n)
≤ lim sup

n→∞
sup0≤s≤n

∣∣Q(s) − Q̃(s)
∣∣

ϕ(n)
= lim sup

n→∞
o(n1/r )

ϕ(n)
= 0.

So, for all t ∈ [0, 1],

lim
n→∞

Q(nt) − Q̃(nt)

ϕ(n)
= 0, w.p.1. (36)

Note that, by (18),

Qn(t) = Q(nt) − Q̃(nt)

ϕ(n)
+ Q̃n(t).

This, and (36), implies that it suffices to prove Q̃n ⇒ KQ if one tries to prove Qn ⇒ KQ .
Similarly we define X̃n(t) in the same token of (35). It is only needed to prove X̃n ⇒ KX

if one tries to prove Xn ⇒ KX , where KX is some compact set of absolutely continuous
functions.

TheCL case. If ρ = 1, by Theorem 1, X̄(t) = 0 for all t ≥ 0, by Lemma 6, X̃(t) is a driftless
BMwith variance parameter σ 2

o (N ). Then, for all t ∈ [0, 1], X̃n(t) ⇒ G(σo(N ))w.p.1. Since
Φ is a continuousmapping under uniform topology, for all t ∈ [0, 1], Q̃n(t) ⇒ Φ(G(σo(N )))

w.p.1.
To prove (23), we note that

(1 − p)μI n(t) = 1

ϕ(n)

⎡
⎣(1 − p)μ

N∑
j=1

I j (nt) − Ψ (X̃)(nt)

⎤
⎦+ 1

ϕ(n)
Ψ (X̃)(nt).

For all t ∈ [0, 1], by (31),∣∣∣∣∣∣
1

ϕ(n)

⎡
⎣(1 − p)μ

N∑
j=1

I j (nt) − Ψ (X̃)(nt)

⎤
⎦
∣∣∣∣∣∣ ≤ n1/r

ϕ(n)
→ 0 as n → ∞,
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and by Theorem 7 (Strassen’s CMT),

1

ϕ(n)
Ψ (X̃)(nt) ⇒ Ψ (G(σo(N )))

because X̃n(t) ⇒ G(σo(N )) w.p.1 for all t ∈ [0, 1]. So, (23) holds.
The OL case. If ρ > 1, then by (32) and Theorem 1 X̃(t) is a BMwith positive drift θN > 0,
which implies that limt→∞ X̃(t) = +∞ w.p.1. So, by the definition of continuous mapping
Ψ , supt≥0 Ψ (X̃)(t) < ∞ w.p.1. As a result, for all t ∈ [0, 1], Ψ (X̃)(nt)/ϕ(n) → 0 w.p.1.

as n → ∞. This, and (31), implies that (1− p)μ
∑N

j=1 I
n
j (t) → 0 w.p.1 as n → ∞. Notice

that (1 − p)μ > 0 and I j (t) ≥ 0, then for j = 1, 2, . . . , N and t ∈ [0, 1], I nj (t) → 0
w.p.1 as n → ∞. Since Tj (t) = t − I j (t), for j = 1, 2, . . . , N and t ∈ [0, 1], T n

j (t) → 0

w.p.1 as n → ∞. For the FLIL of Q, since ρ > 1, we have Q̄(t) = X̄(t) and then
Q̃(t) − Q̄(t) = X̃(t) − X̄(t) + Ψ (X̃)(t). This follows that, for all t ∈ [0, 1],

Q̃n(t) = X̃n(t) + Ψ (X̃)(nt)

ϕ(n)
⇒ G(σo(N )), w.p.1,

because that X̃(t) − X̄(t) is a driftless BM with variance parameter σ 2
o (N ). ��

5.2 Proof of Theorem 3

As in the proof of Theorem 2, we define Ỹ n(t), Ĩ n(t), B̃n(t), Z̃ n(t), D̃n(t) in the same token
of (35), andwe transfer the original problem (19) for theGI B/GI/1 queue into the following
problem:

(Q̃n, Z̃ n, Ĩ n, B̃n, D̃n) ⇒ K∗, w.p.1, (37)

where K∗ is given in (19).

The UL case. If ρ < 1, then, ρ = mα/((1 − p)μ), and by (16),(
Q̄, Z̄ , X̄ , Ȳ , T̄ , Ī , D̄

)
(t) = (0, 0, θ1t,−θ1t, ρt, (1 − ρ)t,mαt) , (38)

and by (34), X̃(t) is a BM with negative drift θ1 < 0 and variance parameter σ 2
uc. So, Q̃ is

a reflected BM (i.e., Φ(X̃)) with negative drift θ1 < 0. Therefore, it follows from Theorem
6.3 in Chen and Yao (2001) that

sup
0≤t≤L

Q̃(t) = O(log L), w.p.1.

Because O(log L)/ϕ(L) → 0 as L → ∞, we have

sup0≤t≤L Q̃(t)

ϕ(L)
→ 0, w.p.1, as L → ∞.

Since Q̄(t) = 0 for any t ≥ 0, we have, for all t ∈ [0, 1],
Q̃n(t) → 0 w.p.1, as n → ∞, (39)

and furthermore, for all t ∈ [0, 1], Q̃n(t) ⇒ 0 w.p.1 as n → ∞. For the FLIL of workload
Z , since Z̃ n(t) = Q̃n(t)/μ from (34), we have, for all t ∈ [0, 1], Z̃ n(t) = Q̃n(t)/μ ⇒ 0
w.p.1. as n → ∞.

For the FLIL of the idle time I , since Q̃(t) = X̃(t) + Ỹ (t), we have

Ỹ (t) − Ȳ (t) = Q̃(t) − X̃(t) − Ȳ (t) = Q̃(t) − [
X̃(t) − X̄(t)

]
.

123

Author's personal copy



170 Ann Oper Res (2018) 264:157–191

This, and Remark 7, implies that, for all t ∈ [0, 1],

Ỹ n(t) = Q̃n(t) − X̃(nt) − X̄(nt)

ϕ(n)
⇒ G(σuc), w.p.1,

because Q̃n(t) ⇒ 0, where σuc is defined in (26). So, for all t ∈ [0, 1],

Ĩ n(t) = 1

μ(1 − p)
Ỹ n(t) ⇒ 1

μ(1 − p)
G(σuc), w.p.1.

For the FLIL of the busy time T , since T̃ (t) − T̄ (t) = Ī (t) − Ĩ (t), it follows that, for all
t ∈ [0, 1],

T̃ n(t) = − Ĩ n(t) ⇒ − 1

μ(1 − p)
G(σuc), w.p.1.

For the FLIL of departure D, since, by (16) and (34),

D̃(t) − D̄(t)

= (1 − p)
{
μ
[
T̃ (t) − T̄ (t)

]+ μ1/2csWs(ρt)
}−√

p(1 − p)W f (μT̄ (t))

= (1 − p)
{
μ
[
Ī (t) − Ĩ (t)

]+ μ1/2csWs(ρt)
}−√

p(1 − p)W f (μρt)

= [
Q̄(t) − Q̃(t)

]+ [
X̃(t) − X̄(t)

]+ (1 − p)μ1/2csWs(ρt) −√
p(1 − p)W f (μρt)

= −Q̃(t) + mα1/2caWa(t) + mcbWb(αt),

we have, for all t ∈ [0, 1],

D̃n(t) = −Q̃n(t) + mα1/2caWa(nt) + mcbWb(αnt)

ϕ(n)
⇒ G

(√
αm2

(
c2a + c2b

))
, w.p.1,

because Q̃n(t) → 0 w.p.1. and mα1/2caWa(t)+mcbWb(αt) is a driftless BM with variance
m2α

(
c2a + c2b

)
.

The CL case. If ρ = 1, then mα = (1 − p)μ and(
Q̄, Z̄ , X̄ , Ȳ , T̄ , Ī , D̄

)
(t) = (0, 0, 0, 0, t, 0, (1 − p)μt) , (40)

and as in the proof of Theorem 2, for all t ∈ [0, 1],

X̃n(t) = X̃(nt)

ϕ(n)
⇒ G(σo), w.p.1,

where σo is defined in Theorem 3. By continuous mapping theorem (CMT) B.3, for all
t ∈ [0, 1], w.p.1,

Q̃n(t) ⇒ Φ(G(σo)) and Ỹ n(t) ⇒ Ψ (G(σo)).

For the FLILs of I, T and Z , we have, for all t ∈ [0, 1], w.p.1,

Ĩ n(t) = 1

μ(1 − p)
Ỹ n(t) ⇒ 1

μ(1 − p)
Ψ (G(σo)),

T̃ n(t) = − Ĩ n(t) ⇒ − 1

μ(1 − p)
Ψ (G(σo)),

Z̃ n(t) = 1

μ
Q̃n(t) ⇒ 1

μ
Φ(G(σo)).

123

Author's personal copy



Ann Oper Res (2018) 264:157–191 171

For the FLIL of D, we note that, from (34),

D̃(t) − D̄(t)

= (1 − p)
[−μ Ĩ (t) + μ1/2csWs(t)

]−√
p(1 − p)W f (μT̄ (t))

= − sup
0≤s≤t

[−X̃(s)] + (1 − p)μ1/2csWs(t) −√
p(1 − p)W f (μt)

= inf
0≤s≤t

[X̃(s)] + (1 − p)μ1/2csWs(t) −√
p(1 − p)W f (μt)

= inf
0≤s≤t

[
mα1/2caWa(s) + mcbWb(αs) − (1 − p)μ1/2csWs(s) +√

p(1 − p)W f (μs)
]

+(1 − p)μ1/2csWs(t) −√
p(1 − p)W f (μt)

= h(mα1/2caWa(t) + mcbWb(αt), (1 − p)μ1/2csWs(t) −√
p(1 − p)W f (μt)).

By CMT B.3, for all t ∈ [0, 1],
D̃n(t)

= h(mα1/2caWa(nt) + mcbWb(αnt), (1 − p)μ1/2csWs(nt) − √
p(1 − p)W f (μnt))

ϕ(n)

⇒ h(G2(σo)), w.p.1,

because, by Corollary 2.2 in Iglehart (1971), for all t ∈ [0, 1], w.p.1,
(
mα1/2caWa(nt) + mcbWb(αnt)

ϕ(n)
,
(1 − p)μ1/2csWs(nt) − √

p(1 − p)W f (μnt)

ϕ(n)

)
⇒ G2(σo).

The OL case. If ρ > 1, then by (6), ρ = (mα + pμ)/μ and(
Q̄, Z̄ , X̄ , Ȳ , T̄ , Ī , D̄

)
(t) = (θ1t, (ρ − 1)t, θ1t, 0, t, 0, (1 − p)μt) , (41)

where Q̄(t) = θ1t = μ(ρ − 1)t = μZ̄(t). As in the proof of Theorem 2, supt≥0 Ỹ (t) =
supt≥0 Ψ (X̃)(t) < ∞ w.p.1., and Ỹ n(t) → 0 w.p.1. as n → ∞. Hence Ĩ n(t) = Ỹ n(t)/[(1−
p)μ] ⇒ 0 as n → ∞. For the FLIL of T , since T̃ (t) − T̄ (t) = − Ĩ (t), we have, for all
t ∈ [0, 1], T̃ n(t) = − Ĩ n(t) ⇒ 0 w.p.1.

For the FLIL of Q, as in the proof of Theorem 2, Q̃(t) − Q̄(t) = X̃(t) − X̄(t) + Ỹ (t),
and, for all t ∈ [0, 1],

Q̃n(t) = X̃(nt)

ϕ(n)
+ Ỹ n(t) ⇒ G(σo), w.p.1.

For the FLIL of Z , since, by (16) and (34),

Z̃(t) − Z̄(t)

= 1

μ

[
Q̃(t) + μ1/2cs(Ws(t) − Ws(ρt))

]− 1

μ
Q̄(t)

= 1

μ

[
X̃(t) + Ỹ (t) − X̄(t) + μ1/2cs(Ws(t) − Ws(ρt))

] ≡ 1

μ
WZ ,o(t) + 1

μ
Ỹ (t),
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where

WZ ,o(t) ≡ mα1/2caWa(t) + mcbWb(αt) + pμ1/2csWs(t) − μ1/2csWs(ρt)

+√
p(1 − p)W f (μt).

Notice that pμ1/2csWs(t)−μ1/2csWs(ρt)
d= cs(pμ1/2−(mα+ pμ)1/2)Ws(t), thenWZ ,o(t)

is a driftless BMwith variance parameter σ 2
Z ,o defined in (26). This, and Ỹ

n(t)/μ ⇒ 0 w.p.1
for all t ∈ [0, 1], implies that, for all t ∈ [0, 1],

Z̃ n(t) = 1

μ

WZ ,o(nt)

ϕ(n)
+ 1

μ
Ỹ n(t) ⇒ 1

μ
G(σZ ,o), w.p.1.

For the FLIL of D, since

D̃(t) − D̄(t) = (1 − p)
[
μ
(
T̃ (t) − T̄ (t)

)+ μ1/2csWs
(
T̄ (t)

)]−√
p(1 − p)W f (μT̄ (t))

= (1 − p)

[
−μ Ĩ (t) + μ1/2csWs(t) −

√
p

1 − p
W f (μt)

]
,

we have, for all t ∈ [0, 1],

D̃n(t) = (1 − p)

⎡
⎣−μ Ĩ n(t) +

μ1/2csWs(nt) −
√

p
1−pW f (nμt)

ϕ(n)

⎤
⎦

⇒ (1 − p)G(σD,o), w.p.1,

where σD,o is defined in (26).
Hence, the result is proved. ��

5.3 Proofs of Theorems 4 and 5

Since the proof of Theorem 4 is similar to that of Theorem 5, we only prove Theorem 5.

(i) Case ρ < 1. By (24), sinceKQ = KZ = {0}, we have Q∗
sup = Q∗

in f = Z∗
sup = Z∗

in f = 0.
For I, T and D, we firstly observe that supx∈G(δ) x(1) = δ and infx∈G(δ) x(1) = −δ for any
δ > 0, where the supremum and infimum are actually attained for the functions x(t) = δt
and x(t) = −δt respectively. This and (24) imply that (28) holds.

(ii) Case ρ = 1. By (24), KQ = Φ(G(σo)). As Corollary 3.1 and 3.2 in Iglehart (1971), we
have

sup
x∈Φ(G(σo))

x(1) = σo and inf
x∈Φ(G(σo))

x(1) = 0,

where the supremum and the infimum are actually attained for the functions x(t) = σot and
x(t) = 0 respectively. That is, Q∗

sup = σo and Q∗
in f = 0. Notice that KZ = Φ(G(σo))/μ

from (24), we get Z∗
sup and Z∗

in f in (29).
For I , we firstly note that KI = (1/(1 − p)μ)Ψ (G(σo)). On the one hand, Strassen has

shown that G(δ) is compact in C
1[0, 1] for any δ > 0 and that |x(b) − x(a)| ≤ δ(b − a)1/2
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for any y ∈ G(δ) and 0 ≤ a ≤ b ≤ 1. Reader can also see Iglehart (1971). This follows
|y(b)| ≤ δ

√
b ≤ δ for any y ∈ G(δ) and 0 ≤ b ≤ 1, then,

sup
x∈Ψ (G(σo))

x(1) = sup
y∈G(σo)

sup
0≤s≤1

{−y(s)} = σo,

where the supremum is attained for the function y(s) = −s. On the other hand, notice
y(0) = 0 for any y ∈ G(δ), then

inf
x∈Ψ (G(σo))

x(1) = inf
y∈G(σo)

sup
0≤s≤1

{−y(s)} = 0,

where the infimum is attained for the function y(s) = 0. From above, I ∗
sup = σo/[(1− p)μ]

and I ∗
in f = 0.

For T , we note that KT = −KI = −Ψ (G(σo))/[(1 − p)μ], which follows the desired
T ∗
sup and T ∗

in f in (29).

Case ρ > 1. The analysis is similar with the case ρ < 1 and omitted. ��

6 Numerical examples

We now consider numerical examples to gain insights into our LIL limits. In particular, we
study the sensitivity of our LIL limits to the model input parameters, including the number
of servers N , the traffic intensity ρ and the variability parameters (ca , cb and cs). Additional
numerical examples appear in Sect. E of “Appendix” section.

Example 1 (Sensitivity to the traffic intensity ρ) We first consider a GI B/GI F/1 model
with fixed variability parameter ca = cb = cs = 1. We study the sensitivity to the traffic
intensity ρ, by varying of parameters in (6): α,m, μ and p. The idea is to vary the value of
ρ so that we can cover all UL, CL and OL cases.

We consider the following four cases:

(i) Varying α with others fixed at m = 1, μ = 1, p = 1/2, ca = cb = cs = 1.
(ii) Varying m with others fixed at α = 1/2, μ = 1, p = 1/2, ca = cb = cs = 1.
(iii) Varying μ with others fixed at α = 1/2,m = 1, p = 1/2, ca = cb = cs = 1.
(iv) Varying p from 0 to 1 and let α = 1/2,m = 1, μ = 1, ca = cb = cs = 1.

For case (i), we plot the key LIL limits as functions of α in Fig. 1. We observe that the LIL
limits jump at α = 0.5 which correspond to the CL case (ρ = 1). For cases (ii)–(iv), we plots
the key LIL limits in Figs. 2, 3 and 4 in Sect. E of “Appendix” section.

Example 2 (Sensitivity to variability parameters) We next consider a GI B/GI F/1 model
with α,m, μ, p fixed and study the sensitivity of the LIL limits to the variability parameters
ca, cb, cs . We consider the following two cases:

(i) Arrival variability We fix m = 2, μ = 1, cs = cb = p = 0 and study the dependence
on ca when the system is UL (α = 1/4), CL (α = 1/2) and OL (α = 1).

(ii) Service variabilityWefixα = 1/2,m = 2, ca = cb = p = 0 and study the dependence
on cs when the system is OL (μ = 1/2), CL (μ = 1) and UL (μ = 2).

For case (i) we give the LIL limits as functions of ca in Table 1. We give the numerical
results in Sect. E of “Appendix” section for case (ii).
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Q*
sup( )

Q*
inf ( )

1O 0.5

Q*( )

-   1.5
-   2.5

1.5
2.5

I*sup( )
I*inf ( )

0.5O 

I*( )

-2   1.5

2   1.5

T*
sup( )

T*
inf ( )

0.5O 

T*( )

-2   1.5

2   1.5

Z*
sup( )

Z*
inf ( )

1O 0.5

Z*( )

-   1.5

-   2.78

1.5

2.78

Fig. 1 LIL limits of (i) of Example 1 as functions of α, with m = 1, μ = 1, p = 1/2, ca = cb = cs = 1

Table 1 The superior and
inferior LIL limits as functions of
ca for case (i) of Example 2

α Q∗
sup(ca) Z∗

sup(ca) I∗sup(ca) T ∗
sup(ca) D∗

sup(ca)

1
4 0 0 ca ca ca
1
2

√
2ca

√
2ca

√
2ca 0 0

1 2ca 2ca 0 0 0

α Q∗
inf (ca) Z∗

inf (ca) I∗inf (ca) T ∗
inf (ca) D∗

inf (ca)

1
4 0 0 −ca −ca −ca
1
2 0 0 0 −√

2ca 0

1 −2ca −2ca 0 0 0
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Example 2 shows that the LIL limits are either zero or linear functions of variability
parameters ca and cs . See Sects. D and E in “Appendix” section for more discussions on the
sensitivity analysis to the input model parameters.

7 Conclusions

Using a strong approximation approach, we have developed a FLIL and its LIL for
GI B/GI F/N queue with Bernoulli feedback by focusing on five key performance pro-
cesses: queue length, workload, busy time, idle time and departure processes. The FLIL and
its LIL results cover all three important cases UL, CL and OL categorized by the traffic inten-
sity. Refining the FSLLNs and the corresponding limiting fluid functionswhich are often used
to approximate the mean values, the FLIL and LIL provide an estimate for the asymptotic
rate of the increasing stochastic variability of these performance functions in functional set
version and numerical version. We have identified these FLIL and LIL as explicit mathemat-
ical expressions of the first and second moments of the batch, batch-interarrival, service time
and feedback. Comprehensive discussions and numerical experiments have been provided to
gain insights of these FLIL and LIL limits.

Our SA-based approach can be a viable tool to establish FLIL and LIL limits for more
general queueing systems, especially network models having a multi-dimensional state pro-
cess, such as the generalized Jackson network, reentrant models and feekforward systems
(Liu and Whitt 2014b). To do so, the first step is to obtain the heavy-traffic fluid limits of
the designated network queue model (Liu and Whitt 2014a). Based on the fluid model, we
need to next develop the strong approximations (Mandelbaum andMassey 1995). Depending
on the values of the traffic intensities in a queueing network, the SA results can be multi-
dimensional reflected BMs with different drift (positive, zero or negative). We plan to next
develop the FLIL and LIL results for the reentrant network queueing system.

Acknowledgements The first author acknowledge support from NSFC Grant 11471053. The second author
also acknowledges support from NSF Grant CMMI 1362310.

Appendix

Overview. This appendix contains additional materials supplementing the main paper. In
Sect. A, we summarize all acronyms used in this paper. In Sect. B, we give additional
preliminary results, including one-dimensionalORM(Sect. B.1), discussions on queue length
and idle times (Sect. B.2) and the continuousmapping theorem for FLIL (Sect. B.3). In Sect. C
we give additional proofs, including the proofs of Theorem 1 (Sect. C.1) and Lemmas 6
(Sect. C.2). In Sect. D, we study the sensitivity of the FLIL and LIL limits to the input
parameters. In Sect. E, additional numerical examples are given to supplement Sect. 6.

A Summary of the abbreviated words

We give a glossary of all acronyms used in the main paper in Table 2.
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Table 2 Summary of all
acronyms used in the main paper
(in the alphabetic order)

Acronyms Meanings

BM Brownian motion

CL Critically loaded

CMT Continuous mapping theorem

FLIL Functional law of the iterated logarithm

FSLLN Functional strong law of large numbers

i.i.d. Independent and identically distributioned

LIL Law of the iterated logarithm

OL Overloaded

u.o.c. Uniformly over compact sets

ORM Oblique reflection mapping

SA Strong approximation

SCV Squared coefficient of variation

UL Underloaded

w.p.1 With probability 1

B Additional preliminary results

In this section, we give additional preliminary results that will be used in the proofs.

B.1 The oblique reflection mapping

We now provide an alternative definition of the ORM. Define Db ≡ {x ∈ D[0,∞) : x(0) ≥
b} for any b ∈ R, and D↑ ≡ {x ∈ D0 : x is non-decreasing}.
Definition 1 (The one-dimensional ORM Harrison 1985) For any function x ∈ D0, if there
exists a unique pair of functions (z, y) ∈ D

2
0 satisfying

(i) z(t) = x(t) + y(t) ≥ 0;
(ii) y is nondecreasing and y(0) = 0;
(iii)

∫∞
0 z(t)dy(t) = 0,

then the map from x to (y, z) is called the one-dimensional oblique reflection mapping,
denoted by (z, y) = (Φ,Ψ )(x).

B.2 Analysis of queue length and idle times

This section facilitates the treatment of (11). Define

H1 ≡ {y ∈ D↑ : x(t) + y(t) ≥ 0,∀t ≥ 0},
H2 ≡ {y ∈ D↑ : [x(t) + y(t)]dy(t) ≥ 0,∀t ≥ 0}.

For x ∈ D0, it is proved in Reiman (1984) that, Ψ (x) is the least element of H1, that is,
for any y ∈ H1, y(t) ≥ Ψ (x)(t); and in Chen and Shanthikumar (1994) that Ψ (x) is the
maximum element of H2, that is, for any y ∈ H2, y(t) ≤ Ψ (x)(t).

Let x ∈ Db with b ∈ R+, y ∈ D↑, z ∈ D, and suppose that

z = x + y ≥ 0, (b − z(t))dy(t) ≥ 0, ∀t ≥ 0. (42)
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Then, together with Theorem 2.2 in Chen and Shanthikumar (1994), we have

Ψ (x)(t) ≤ y(t) ≤ Ψ (x − b)(t), ∀t ≥ 0. (43)

Comparing (8) and (11) with (42) and (43), we have

Ψ (X)(t) ≤ (1 − p)μ
N∑
j=1

I j (t) ≤ Ψ (X − N )(t). (44)

B.3 The continuous mapping theorem for FLIL

The following result is a Corollary of Theorem 3 in Strassen (1964).

Theorem 7 (Strassen’s CMT) Let {xn : n ≥ 1} be a relatively compact sequence inCk[0, 1]
endowed with the uniform norm and with the compact set Gk as its set of limit points. If
f is a continuous function on C

k[0, 1] into some metric space S with Borel sets ψ , then
the sequence { f (xn) : n ≥ 1} is relatively compact in (S, ψ) and the set of its limit points
coincides with f (Gk), a compact set.

C Additional proofs

C.1 Proof of Theorem 1

We only prove (i) because (ii) is similar to Sect. 6.3 in Chen and Yao (2001). Since 0 ≤
T̄ (n)
j (t)− T̄ (n)

j (s) ≤ t − s for any 0 ≤ s ≤ t , {T̄ (n)
j , n ≥ 1} is uniformly Lipschitz continuous

and hence equicontinuous. Therefore, the proof of the u.o.c. convergence reduces to the proof
that all convergent subsequences must converge to the same limit. That is, it is sufficient to
show that T̄ (nl )

j (t) → T̄ j (t) u.o.c. as l → ∞, which implies that T̄ (n)
j (t) → T̄ j (t) u.o.c. as

n → ∞, where {nl , l ≥ 1} is a sequence of integers convergent to infinity. To simplify the
notation, we assume without loss of generality that nl = l.

For the case ρ ≥ 1, by FSLLN, we have X̄ (n)(t) → θN t ≥ 0 u.o.c. w.p.1 as n → ∞,
which implies that, as n → ∞, w.p.1,

Ψ
(
X̄ (n)

)
(t) → 0, u.o.c., and Ψ

(
X̄ (n) − N

n

)
(t) → 0, u.o.c.

This, together with (44), yields the convergence below:

(1 − p)μ
N∑
j=1

Ī (n)
j (t) → 0 ≡ (1 − p)μ

N∑
j=1

Ī j (t), u.o.c., w.p.1.

Because Īi (t) ≥ 0 by definition, Īi (t) = 0 for any i = 1, 2, . . . , N . This implies that
T̄i (t) = t for any i . Therefore, Ī (t) = 0, T̄ (t) = t and Q̄(t) = θN t . ��
C.2 Proof of Theorem 6

Lemma 2 Suppose ρ ≥ 1. If (3) holds, then, for all j ,

sup
0≤t≤L

|Tj (t) − t | = O
(√

L log log L
)

w.p.1.
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Proof Since (3) holds, we have, w.p.1.

sup
0≤t≤L

|A(t) − αt | = O
(√

L log log L
)

, sup
0≤t≤L

|S j (t) − μt | = O
(√

L log log L
)

,

sup
0≤t≤L

|Vj (t) − t/μ| = O
(√

L log log L
)

, sup
0≤t≤L

|B(t) − mt | = O
(√

L log log L
)

,

sup
0≤t≤L

|Γ j (t) − pt | = O
(√

L log log L
)

, j = 1, 2, . . . , N ,

where Vj (t) = Vj (	t
), B(t) = B(	t
) and Γ j (t) = Γ j (	t
) for all t ≥ 0.
If ρ ≥ 1, then, by Lemma 1, T̄ j (t) = t − Ī j (t) = t for all j , and by (9),

sup
0≤t≤L

|X (t) − X̄(t)|

≤ sup
0≤t≤L

|B(A(t)) − mαt | +
N∑
j=1

sup
0≤t≤L

∣∣Γ j (S j (Tj (t))) − pS j (Tj (t))
∣∣

+
N∑
j=1

p sup
0≤t≤L

∣∣S j (Tj (t)) − μTj (t)
∣∣+ N∑

j=1

sup
0≤t≤L

∣∣S j (Tj (t)) − μTj (t)
∣∣

≤ sup
0≤t≤L

|B(A(t)) − mA(t)| + m sup
0≤t≤L

|A(t) − αt | +
N∑
j=1

sup
0≤t≤(μ+1)L

∣∣Γ j (t) − pt
∣∣

+
N∑
j=1

p sup
0≤t≤L

∣∣S j (t) − μt
∣∣+ N∑

j=1

sup
0≤t≤L

∣∣S j (t) − μt
∣∣

= O
(√

L log log L
)

, w.p.1.

Because Ψ is continuous under uniform norm, then, w.p.1,

sup
0≤t≤L

∣∣Ψ (X)(t) − Ψ (X̄)(t)
∣∣ = O

(√
L log log L

)
,

sup
0≤t≤L

∣∣Ψ (X − N )(t) − Ψ (X̄)(t)
∣∣ = O

(√
L log log L

)
.

Since Ψ (X̄)(t) = Ψ (θN t) = 0, and with (44), we have

sup
0≤t≤L

∣∣∣∣∣∣(1 − p)μ
N∑
j=1

I j (t)

∣∣∣∣∣∣ = O
(√

L log log L
)

, w.p.1.

Notice that (1 − p)μ > 0, Ii (t) ≥ 0 for all i , then, w.p.1,

sup
0≤t≤L

|(1 − p) μIi (t)| ≤ sup
0≤t≤L

∣∣∣∣∣∣(1 − p)μ
N∑
j=1

I j (t)

∣∣∣∣∣∣ = O
(√

L log log L
)

,

which implies that sup0≤t≤L |Ii (t)| = O
(√

L log log L
)
w.p.1. This follows that, for all j ,

sup
0≤t≤L

∣∣Tj (t) − t
∣∣ = sup

0≤t≤L

∣∣I j (t)∣∣ = O
(√

L log log L
)

, w.p.1.

��
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Proof of Theorem 6 By the SA in Csörgő and Révész (1981), w.p.1,

sup
0≤t≤L

|B(t) − mt − mcbWb(t)| = o
(
L1/r ) ,

sup
0≤t≤L

∣∣A(t) − αt − α1/2caWa(t)
∣∣ = o

(
L1/r ) . (45)

By Lemma 2.3 (vi) of Chen and Shen (2000), we have, w.p.1,

sup
0≤t≤L

∣∣B(A(t)) − mαt − mα1/2caWa(t) − mcbWb(αt)
∣∣ = o

(
L1/r ) . (46)

(i) Suppose that N ≥ 1 and ρ ≥ 1. If ρ ≥ 1, then T̄ j (t) = t for all j . With (32), we have

X (t) − X̃(t) = [
B(A(t)) − mαt − mα1/2caWa(t) − mcbWb(αt)

]
−

N∑
j=1

[
S j (Tj (t)) − μTj (t) − μ1/2cs, jWs, j (Tj (t))

]

−
N∑
j=1

μ1/2cs, j
[
Ws, j (Tj (t)) − Ws, j (T̄ j (t))

]

+
N∑
j=1

[
Γ j (S j (Tj (t))) − pS j (Tj (t)) −√

p(1 − p)W f, j (S j (Tj (t)))
]

+
N∑
j=1

√
p(1 − p)

[
W f, j (S j (Tj (t))) − W f, j (μT̄ j (t))

]

+
N∑
j=1

p
[
S j (Tj (t)) − μTj (t) − μ1/2cs, jWs, j (Tj (t))

]

+
N∑
j=1

pμ1/2cs, j
[
Ws, j (Tj (t)) − Ws, j (T̄ j (t))

]
. (47)

ByLemma2andLemma6.21 inChen andYao (2001), sup0≤t≤L

∣∣Ws, j (Tj (t)) − Ws, j (T̄ j (t))
∣∣

= o
(
L1/r

)
w.p.1. By Lemma 2, since

sup
0≤t≤L

∣∣Sk(Tk(t)) − μT̄k(t)
∣∣ ≤ sup

0≤t≤L
|Sk(Tk(t)) − μTk(t)| + μ sup

0≤t≤L

∣∣Tk(t) − T̄k(t)
∣∣

= O
(√

L log log L
)

, w.p.1,

we have

sup
0≤t≤L

∣∣W f, j (S j (Tj (t))) − W f, j (μT̄ j (t))
∣∣ = o

(
L1/r ) , w.p.1.

Since Tk(t) ≤ t for all t ≥ 0, then

sup
0≤t≤L

∣∣Sk(Tk(t)) − μTk(t) − μ1/2cs,kWs,k(Tk(t))
∣∣ = o

(
L1/r ) , w.p.1.
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Using Sk(Tk(t)) ≤ Sk(t) ≤ (μ + 1)t w.p.1 for large t , we have

sup
0≤t≤L

∣∣∣Γ j (S j (Tj (t))) − pS j (Tj (t)) −√
p(1 − p)W f, j (S j (Tj (t)))

∣∣∣ = o
(
L1/r ) , w.p.1.

Hence, sup0≤t≤L

∣∣X (t) − X̃(t)
∣∣ = o

(
L1/r

)
w.p.1.

Since Ψ is a continuous function under uniform norm, we have, w.p.1,

sup
0≤t≤L

∣∣Ψ (X)(t) − Ψ (X̃)(t)
∣∣ = o

(
L1/r ) and

sup
0≤t≤L

∣∣Ψ (X − N )(t) − Ψ (X̃)(t)
∣∣ = o

(
L1/r ) .

This, together with (44), implies that sup0≤t≤L

∣∣(1 − p)μI (t) − Ψ (X̃)(t)
∣∣ = o

(
L1/r

)
. For

the SA of Q, we note by (44) that Ψ (X)(t) + X (t) ≤ Q(t) ≤ Ψ (X − N )(t) + X (t), and

Φ(X)(t) ≤ Q(t) ≤ Φ(X − N )(t) + N .

Since Ψ is a continuous function under uniform norm, similarly with the analysis for X , we
have sup0≤t≤L |Q(t) − Q̃(t)| = o

(
L1/r

)
. So (31) follows.

(ii) Next, we suppose N = 1. Like (47), we have

X (t) − X̃(t) = [
B(A(t)) − mαt − mα1/2caWa(t) − mcbWb(αt)

]
− (1 − p)

[
S(T (t)) − μT (t) − μ1/2csWs(T (t))

]
− (1 − p)μ1/2cs

[
Ws(T (t)) − Ws(T̄ (t))

]
+
[
Γ (S(T (t))) − pS(T (t)) −√

p(1 − p)W f (S(T (t)))
]

+√
p(1 − p)

[
W f (S(T (t))) − W f (μT̄ (t))

]
,

where S(t) = S1(t). Similarly with Theorem 6.11 in Chen and Yao (2001), we have
sup0≤t≤L

∣∣T (t) − T̄ (t)
∣∣ = O(

√
L log log L) w.p.1. This, and Lemma 6.21 in Chen and Yao

(2001), gives sup0≤t≤L

∣∣Ws(T (t)) − Ws(T̄ (t))
∣∣ = o

(
L1/r

)
w.p.1. Since sup0≤t≤L |S(T (t))

−μT̄ (t)
∣∣ = O(

√
L log log L) w.p.1, we have

sup
0≤t≤L

∣∣W f (S(T (t))) − W f (μT̄ (t))
∣∣ = o

(
L1/r ) , w.p.1.

Since T (t) ≤ t for all t ≥ 0, then

sup
0≤t≤L

∣∣S(T (t)) − μT (t) − μ1/2csWs(T (t))
∣∣ = o

(
L1/r ) , w.p.1.

Using S(T (t)) ≤ S(t) ≤ (μ + 1)t w.p.1 for large t , we have

sup
0≤t≤L

∣∣∣Γ (S(T (t))) − pS(T (t)) −√
p(1 − p)W f (S(T (t)))

∣∣∣ = o
(
L1/r ) , w.p.1.

Hence, sup0≤t≤L

∣∣X (t) − X̃(t)
∣∣ = o

(
L1/r

)
w.p.1. This yields the SAs of Q, Y, I, T (which

is similar to Theorem 6.16 and 7.19 in Chen and Yao (2001)). For the SA of Z , we have, by
(12),

Z(t) − Z̃(t) =
[
V (Q(t) + S(T (t))) − 1

μ
(Q(t) + S(T (t)))

+ 1

μ
μ1/2csWs

(
1

μ
(Q(t) + S(T (t)))

)]
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+ 1

μ

[
Q(t) − Q̃(t)

]+ 1

μ

[
S(T (t)) − μT (t) − μ1/2csWs(T (t))

]
+ 1

μ
μ1/2cs

[
Ws(T (t)) − Ws(T̄ (t))

]
− 1

μ
μ1/2cs

[
Ws

(
1

μ
(B(A(t)) + Γ (S(T (t))))

)

− Ws

(
1

μ
(mαt + pμT̄ (t))

)]
,

where

Ws

(
1

μ

(
mαt + pμT̄ (t)

)) = Ws(ρt),

because, if ρ < 1, then

T̄ (t) = ρt = mα

(1 − p)μ
t and

1

μ

(
mαt + pμT̄ (t)

) = mα

μ

(
1 + p

1 − p

)
t = ρt,

and if ρ ≥ 1,

ρt = mα + pμ

μ
, T̄ (t) = t and

1

μ

(
mαt + pμT̄ (t)

) = ρt.

Notice that, by FSLLN, for a large t ,

B(A(t)) + Γ (S(T (t))) = Q(t) + S(T (t)) ≤ (mα + pμ + 1)t, w.p.1,

sup
0≤t≤L

∣∣∣∣ 1μ(B(A(t)) + Γ (S(T (t))) − 1

μ
(mαt + pμT̄ (t))

∣∣∣∣ = O
(√

L log log L
)

w.p.1.

The proof of the SA of Z is similar to that of X .
For the SA of D, by its definition we have

D(t) − D̃(t) = (1 − p)
[
S(T (t)) − μT (t) − μ1/2csWs(T (t))

]
+ (1 − p)μ

[
T (t) − T̃ (t)

]+ (1 − p)μ1/2cs
[
Ws(T (t)) − Ws(T̄ (t))

]
−
[
Γ (S(T (t))) − pS(T (t)) −√

p(1 − p)W f (S(T (t)))
]

−√p(1 − p)
[
W f (S(T (t))) − W f (μT̄ (t))

]
.

Similar to the treatment of the SA of X , we have sup0≤t≤L

∣∣D(t) − D̃(t)
∣∣ = o

(
L1/r

)
. ��

D Sensitivity analysis for FLIL and LIL limits

In this section we conduct sensitivity analysis for the FLIL and LIL limits given in Theorem
3 as functions of all model parameters.

D.1 Sensitivity analysis of FLIL limits

For the function h in KD in the CL case, we note that, in the proof of Theorem 3 in Sect. 5,
we use the function h(x, y) with

x(t) = mα1/2caWa(t) + mcbWb(αt), y(t) = (1 − p)μ1/2csWs(t) −√
p(1 − p)W f (μt).
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Then, we have

h(x, y)(t) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ha(mα1/2caWa(t)), if cb = cs = p = 0,

ha(mcbWb(αt)), if ca = cs = p = 0,

ha(x(t)), if cs = p = 0,

hs(μ1/2csWs(t)), if ca = cb = p = 0,

hs(−√
p(1 − p)W f (μt)), if ca = cb = cs = 0,

hs(y(t)), if ca = cb = 0,

where, for function x ′,

ha(x
′)(t) ≡ inf

0≤s≤t
[x ′(s)], hs(x

′)(t) ≡ x ′(t) + inf
0≤s≤t

[−x ′(s)].

Then, by Theorem 7 (Stransen’s CMT), w.p.1,

h(x, y)(nt)

ϕ(n)
⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ha
(
α1/2mca

)
, if cb = cs = p = 0,

ha
(
α1/2mcb

)
, if ca = cs = p = 0,

ha
(√

αm2
(
c2a + c2b

))
, if cs = p = 0,

hs(μ1/2cs), if ca = cb = p = 0,

hs
(√

p(1 − p)μ
)
, if ca = cb = cs = 0,

hs
(√

(1 − p)2μc2s + p(1 − p)μ
)

, if ca = cb = 0.

The above functions are used to explain the FLIL limits for forGI B/GI F/1 in the following
cases.

For the FLILs of the GI B/GI F/1 queue in Theorem 3 , we first note that all the FLILs
mainly depend on all the variance parameters. In deed, if all variances are zero, that is,
c2a = c2b = c2s = p = 0, then KQ = KZ = KI = KT = KD = {0}, which implies that all
process Qn, Zn, I n, T n, Dn converge to zero w.p.1.

Variability in batch arrivals

(i) Let c2a = c2s = p = 0, that is, all deviations are assumed to be from the batches B, then

σuc = σo = σD,u = σZ ,o =
√

αm2c2b, σD,o = 0, (48)

and

K∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(
0, 0, σuc

μ
x,− σuc

μ
x, σucx

)
: x ∈ G(1)

}
, if ρ < 1,{(

Φ(x), 1
μ
Φ(x), 1

μ
Ψ (x),− 1

μ
Ψ (x), ha(x)

)
: x ∈ G(σuc)

}
, if ρ = 1,{(

σucx,
σuc
μ
x, 0, 0, 0

)
: x ∈ G(1)

}
, if ρ > 1.

(49)

(ii) Let c2b = c2s = p = 0, that is, all deviations are assumed to be from the arrival process
A, then K∗ satisfies (49) with

σuc = σo = σD,u = σZ ,o =
√

αm2c2a, σD,o = 0. (50)

123

Author's personal copy



Ann Oper Res (2018) 264:157–191 183

(iii) The joint impact from the batch B and the arrival process A. Let c2s = p = 0, then (49)
holds with

σuc = σo = σD,u = σZ ,o =
√

αm2
(
c2a + c2b

)
, σD,o = 0. (51)

Variability in service times Let c2a = c2b = p = 0, that is, the variability stems only from
the random service process S, then

σuc = σZ ,o =
√

αmc2s , σo = σD,o =
√

μc2s , σD,u = 0, (52)

and

K∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(
0, 0, σuc

μ
x,− σuc

μ
x, 0

)
: x ∈ G(1)

}
, if ρ < 1,{(

Φ(x), 1
μ
Φ(x), 1

μ
Ψ (x),− 1

μ
Ψ (x), hs(x)

)
: x ∈ G(σo)

}
, if ρ = 1,{(

σox,
σuc
μ
x, 0, 0, σox

)
: x ∈ G(1)

}
, if ρ > 1.

(53)

Variability in Bernoulli feedback Let c2a = c2b = c2s = 0, that is, the variability stems only
from the stochastic feedback process γ , then

σuc = √
pmα, σD,u = 0, (1 − p)σD,o = σo = σZ ,o = √

p(1 − p)μ, (54)

and K∗ =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(
0, 0, σuc

(1−p)μ x,− σuc
(1−p)μ x, 0

)
: x ∈ G(1)

}
, if ρ < 1,{(

Φ(x), 1
μ
Φ(x), 1

(1−p)μΨ (x),− 1
(1−p)μΨ (x), hs(x)

)
: x ∈ G(σo)

}
, if ρ = 1,{(

σox,
σo
μ
x, 0, 0, σox

)
: x ∈ G(1)

}
, if ρ > 1.

(55)

Variability in service times and feedback Let c2a = c2b = 0, that is, the variability comes
from the service S and the feedback γ .We have the FLILs (24)with the following parameters:

σuc =
√

(1 − p)mαc2s + pmα, σZ ,o =
√
c2s (pμ

1/2 − (mα + pμ)1/2)2 + p(1 − p)μ,

σD,u = 0, σD,o =
√

μc2s + pμ

1 − p
, σo =

√
(1 − p)2μc2s + p(1 − p)μ. (56)

From (49)–(56), we find that, different from processes B, A and joint B(A), the service S,
feedback Γ and joint Γ (S) affect the FLIL in a different way.

D.2 Sensitivity analysis for LIL limits

Following Sect. D.1, we now consider the impact of parameters upon their corresponding LIL
limits for GI B/GI F/1. Specifically, we study how variabilities in different model compo-
nents affect the LIL limits. If c2a = c2b = c2s = p = 0, that is, all precesses are deterministic,
then all the superior and inferior limits in (28)–(30) are zeros. Hence, it is said that all the
superior and inferior limits are determined by the variances.

Variability in batch arrivals If c2a = c2s = p = 0, that is, LIL is only affected by the random
batch size B, then all superior and inferior limits in (28)–(30) hold with parameters given in
(48). Similarly, if c2b = c2s = p = 0 ( c2s = p = 0 ), then the limits (28)–(30) hold with
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parameters given in (50) [(51)]. These three cases describe the impact of the arrival process
on the LIL limits. For example, under condition c2s = p = 0, we have

Q∗
sup = μZ∗

sup =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if ρ < 1,√
αm2

(
c2a + c2b

)
, if ρ = 1,√

αm2
(
c2a + c2b

)
, if ρ > 1,

Q∗
inf = μZ∗

inf =
⎧⎨
⎩
0, if ρ ≤ 1,

−
√

αm2
(
c2a + c2b

)
, if ρ > 1,

wherewe note thatαm2
(
c2a + c2b

)
is the variance parameter of the compound renewal process

B(A(t)), and it entirely determines the LIL limits for Q and Z . If we furthermore assume
that ca = 0 or cb = 0, then we get the LIL limits similar with the above respectively, that

is, characterized by
√

αm2c2b or
√

αm2c2a . In this sense, the impacts from the batch and the
arrival are separable.

Variability in Bernoulli feedback If c2a = c2b = c2s = 0, that is, LIL is only impacted by the
random Bernoulli feedback process Γ , then all superior and inferior limits in (28)–(30) hold
with parameters given in (54). For example,

Q∗
sup = μZ∗

sup =

⎧⎪⎪⎨
⎪⎪⎩
0, if ρ < 1,
√
pmα, if ρ = 1,

√
p(1 − p)μ, if ρ > 1,

Q∗
inf = μZ∗

inf =
{
0, if ρ ≤ 1,

−√
p(1 − p)μ, if ρ > 1,

where we note that p(1− p) is the variance parameter of the feedback Γ . We also note that,
if ρ = 1, then λ = mα/(1− p) and Q∗

sup = μZ∗
sup = √

λp(1 − p). In this sense, we can say

that the variance of the feedback p(1− p) determines the LIL limits under c2a = c2b = c2s = 0.

Variability in service times If c2a = c2b = p = 0, that is, LIL is only determined by the
randomness in the service times S, then the limits (28)–(30) hold with parameters given in
(52), for example,

Q∗
sup =

⎧⎪⎪⎨
⎪⎪⎩
0, if ρ < 1,√

μc2s , if ρ = 1,√
μc2s , if ρ > 1,

Q∗
inf =

{
0, if ρ ≤ 1,

−√μc2s , if ρ > 1,

and

Z∗
sup =

⎧⎪⎪⎨
⎪⎪⎩
0, if ρ < 1,

1
μ

√
μc2s , if ρ = 1,

1
μ

√
mαc2s , if ρ > 1,

Z∗
inf =

{
0, if ρ ≤ 1,

− 1
μ

√
mαc2s , if ρ > 1.
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We note that these LIL limits are determined by the SCV c2s , and the Little’s law fails in this
case, i.e., Q∗

sup 
= μZ∗
sup and Q∗

in f 
= μZ∗
in f if cs 
= 0.

Variability in service times and feedback If c2a = c2b = 0, that is, LIL is characterized
by both the random service time S and the random feedback mechanism Γ , then the limits
(28)–(30) hold with parameters given in (56), for example, since λ = mα/(1 − p) when
ρ = 1, we have

Q∗
sup =

⎧⎪⎪⎨
⎪⎪⎩
0, if ρ < 1,√

(1 − p)mαc2s + λp(1 − p), if ρ = 1,√
(1 − p)2μc2s + p(1 − p)μ, if ρ > 1,

Q∗
inf =

{
0, if ρ ≤ 1,

−√(1 − p)2μc2s + p(1 − p)μ, if ρ > 1,

and

Z∗
sup =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if ρ < 1,

1
μ

√
(1 − p)mαc2s + λp(1 − p), if ρ = 1,

1
μ

√
c2s
(
pμ1/2 − (mα + pμ)1/2

)2 + p(1 − p)μ, if ρ > 1,

Z∗
inf =

⎧⎨
⎩
0, if ρ ≤ 1,

− 1
μ

√
c2s
(
pμ1/2 − (mα + pμ)1/2

)2 + p(1 − p)μ, if ρ > 1.

Compared with the impact from the batch and the arrival, the impact from the service and the
feedback is not separable and is more complicated. This is so because the feedback adheres
its own deviation to the service process S. We also note that the Little’s law fails here too,
i.e., Q∗

sup 
= μZ∗
sup and Q∗

inf 
= μZ∗
inf .

We conclude that the LIL limits are non-linear functions of the mean parameters but linear
functions of the variability parameters.

E Additional numerical examples

E.1 A new example

Example 3 (Impact of N on the queue length LIL limits) We consider a sequence of the
queueing models {GI B/GI F/N , N = 1, 2, . . . , 5}. Let α = 2.5,m = 1, μ = 1, p =

Table 3 Impact of N on the
queue length LIL limits for
Example 3

N 1 2 3 4 5

ρ 3 3.5
2

4
3

4.5
4 1

Q∗
sup

√
5.5

√
6

√
6.5

√
7

√
7.5

Q∗
inf −√

5.5 −√
6 −√

6.5 −√
7 0
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0.5, ca = cb = cs, j = 1. In this setting, we compute the values of the LIL limits ρ, Q∗
sup and

Q∗
inf in Table 3; they are monotone functions in N .
In Example 3, we find that Q∗

sup and Q∗
inf are increasing and decreasing recepectively in

N except Q∗
inf = 0 in the CL case: N = 5.

E.2 More on Example 1

To supplement the main paper, here we plot the key LIL limits in Figs. 2, 3 and 4 for cases
(i i)–(iv). We also provide the explicit functions for the LILs in all 4 cases.

(i) Increase α from 0 and let m = 1, μ = 1, p = 1/2, ca = cb = cs = 1. In this case,
ρ = 2α if α ≤ 1/2, and α + 1/2 otherwise. Then, we get the superior and the inferior
limits in Table 4, which gives Fig. 1.

Q*
sup (m)

Q*
inf (m)

m21O 

Q*(m)

1.5

4.5

1.5

4.5

Z*
sup (m)

Z*
inf (m)

m21O 

Z*(m)

- 1.5

-

-

- 4.78

1.5

4.78

I*sup(m)
I*inf (m)

m1O 

I*(m) T*
sup (m)

T*
inf (m)

m1O 

T*(m)

-2 1.5 -2 1.5

2 1.5 2 1.5

Fig. 2 LIL limits of (ii) of Example 1 as functions of m, with α = 1/2, μ = 1, p = 1/2, ca = cb = cs = 1
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Q*
sup( )

Q*
inf ( )

1

-1

Q*( )

- 1.5

1.5

O 1

Z*
sup( )

Z*
inf ( )

- 1.5

1.5

O 1

Z*( )

I*sup( )
I*inf ( )

21O 

I*( )

- 1.5

1.5

2 1.5

-2 1.5

T*
sup( )

T*
inf ( )

21O 

T*( )

- 1.5

1.5

2 1.5

-2 1.5

Fig. 3 LIL limits of (iii) of Example 1 as functions of μ, with α = 1/2,m = 1, p = 1/2, ca = cb = cs = 1

(ii) Increase m from 0 and let α = 1/2, μ = 1, p = 1/2, ca = cb = cs = 1. In this case,
ρ = m if m ≤ 1 and m/2 + 1/2 otherwise. Then, we get the superior and the inferior
limits in Table 5, which gives Fig. 2.

(iii) Increase μ from 0 and let α = 1/2,m = 1, p = 1/2, ca = cb = cs = 1. In this case,
ρ = 1/μ if μ ≥ 1 and 1/(2μ) + 1/2 otherwise. Then, we get the superior and the
inferior limits in Table 6, which gives Fig. 3.

(iv) Increase p from 0 to 1, and let α = 1/2,m = 1, μ = 1, ca = cb = cs = 1. In this
case, ρ = 1/[2(1 − p)] if p ≤ 1/2 and 1/2 + p otherwise. Then, we get the superior
and the inferior limits in Table 7, which gives Fig. 4.
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Q*
sup(p)

Q*
inf (p)

p10.5O 

Q*(p)

-1

- 1.5

1
1.5

Z*
sup(p)

Z*
inf (p)

p10.5O 

Z*(p)

1.06
1.5

T*
sup(p)

T*
inf (p)

p10.5O 

T*(p)

1.5

I*sup(p)
I*inf (p)

p10.5O 

I*(p)

- 1.06
- 1.5

-2 1.5

- 1.5

2 1.5

-2 1.5

- 1.5

2 1.5

1.5

Fig. 4 LIL limits of (iv) of Example 1 as functions of p, with α = 1/2,m = 1, μ = 1, ca = cb = cs = 1

Table 4 The LIL limits for (i) of
Example 1 with α varying α < 1

2 = 1
2 > 1

2

Q∗
sup(α) 0

√
3
2

√
2α + 1

2

Z∗
sup(α) 0

√
3
2

√
3α + 1 −

√
α + 1

2

I∗sup(α) 2
√
3α 2

√
3
2 0

T ∗
sup(α) 2

√
3α 0 0

Q∗
inf (α) 0 0 −

√
2α + 1

2

Z∗
inf (α) 0 0 −

√
3α + 1 −

√
α + 1

2

I∗inf (α) −2
√
3α 0 0

T ∗
inf (α) −2

√
3α −2

√
3
2 0

123

Author's personal copy



Ann Oper Res (2018) 264:157–191 189

Table 5 The LIL limits for (ii)
of Example 1 with m varying

m <1 =1 >1

Q∗
sup(m) 0

√
3
2

√
m2 + 1

2

Z∗
sup(m) 0

√
3
2

√
m2 + 1

2m + 1 −
√

1
2m + 1

2

I∗sup(m) 2
√
m2 + 1

2m 2
√

3
2 0

T ∗
sup(m) 2

√
m2 + 1

2m 0 0

Q∗
inf (m) 0 0 −

√
m2 + 1

2

Z∗
inf (m) 0 0 −

√
m2 + 1

2m + 1 −
√

1
2m + 1

2

I∗inf (m) −2
√
m2 + 1

2m 0 0

T ∗
inf (m) −2

√
m2 + 1

2m −2
√

3
2 0

Table 6 The LIL limits for (iii)
of Example 1 with μ varying

μ >1 =1 <1

Q∗
sup(μ) 0

√
3
2

√
1 + 1

2μ

Z∗
sup(μ) 0

√
3
2

1
μ

√
μ −

√
1
2μ(1 + μ) + 3

2

I∗sup(μ) 2
μ

√
3
2 2

√
3
2 0

T ∗
sup(μ) 2

μ

√
3
2 0 0

Q∗
inf (μ) 0 0 −

√
1 + 1

2μ

Z∗
inf (μ) 0 0 − 1

μ

√
μ −

√
1
2μ(1 + μ) + 3

2

I∗inf (μ) − 2
μ

√
3
2 0 0

T ∗
inf (μ) − 2

μ

√
3
2 −2

√
3
2 0

Table 7 The LIL limits for (iv)
of Example 1 with p varying p < 1

2 = 1
2 > 1

2

Q∗
sup(p) 0

√
3
2

√
2 − p

Z∗
sup(p) 0

√
3
2

√
2p − 2p

√
1
2 + p + 3

2

I∗sup(p) 1
1−p

√
3
2 2

√
3
2 0

T ∗
sup(p)

1
1−p

√
3
2 0 0

Q∗
inf (p) 0 0 −√

2 − p

Z∗
inf (p) 0 0 −

√
2p − 2p

√
1
2 + p + 3

2

I∗inf (p) − 1
1−p

√
3
2 0 0

T ∗
inf (p) − 1

1−p

√
3
2 −2

√
3
2 0
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E.3 More on Example 2

To supplement Sect. 6, we provide numerical results for case (ii) of Example 2 in Table 8.

Table 8 The LIL limits for (ii)
of Example 2 with cs varying

μ Q∗
sup(ca) Z∗

sup(ca) I∗sup(ca) T ∗
sup(ca) D∗

sup(ca)

2 0 0 1
2 cs

1
2 cs 0

1 cs cs cs 0
1
2

√
1/2cs 2cs 0 0

√
1/2cs

μ Q∗
inf (ca) Z∗

inf (ca) I∗inf (ca) T ∗
inf (ca) D∗

inf (ca)

2 0 0 − 1
2 cs − 1

2 cs 0

1 0 0 0 −cs
1
2 −√

1/2cs −2cs 0 0 −√
1/2cs
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