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1 Introduction

Many empirical studies have revealed that service-time and abandonment-time dis-
tributions in service systems (for example, call centers and health care) are far from
exponentially distributed, and yet researchers prior to 2006 had to assume Markovian
structure (with exponential distributions) in order to gain mathematical tractability. In
2006, Ward Whitt [38] introduced a new framework to study many-server queues
having nonexponential service times and abandonment times. Specifically, Whitt
developed thefluidmodel,which is proven to be themany-server heavy-traffic (MSHT)
functional weak law of large numbers (FWLLN) limit, for the G/GI/n +GI queue-
ing model having stationary arrivals (the G), independent and identically distributed
(i.i.d.) nonexponential service times (the GI ), n servers, customer abandonment
according to i.i.d. patience times following a nonexponential distribution (the +GI ),
and a first-come first-served (FCFS) service rule.

Since 2006, Whitt’s pioneering work [38] opened a new line of research on non-
Markovian queues which successfully brought more practical models within the reach
of tractability. As his academic descendants, we are pleased to be able to contribute to
this special issue. In this paper, we will extend results in [38] by developing an MSHT
functional central limit theorem (FCLT) for the G/GI/n + GI model operating in
the efficiency-driven (ED) regime. We will prove that properly scaled performance
functions, such as the waiting time, number in system, and queue length, converge in
distribution to Gaussian processes as n increases.

MSHT literature onEDmodelsThere is a large body of literature onMSHT limits for
queueing models. We hereby only review the related work on the ED regime, or equiv-
alently, the overloaded case. A fluid model for the G/GI/n+GI queue is developed
byWhitt [38] using two-parameter performance functions keeping track of elapsed ser-
vice and waiting time of customers; in addition, an FWLLN is established in [38] in a
discrete-time framework. This fluidmodel has subsequently been extended to incorpo-
rate time-varying arrivals and staffing levels in [23] and network fluid models [22,25].
FWLLN results for the G/GI/n + GI queue have been obtained in [15,24,39].

We next review FCLT results for queueing systems in the ED regime. Whitt [37]
showed that the queue-length process of the Markovian M/M/s + M queue has an
Ornstein–Uhlenbeck (OU) FCLT limit.Mandelbaum et al. [28] developed the FWLLN
and FCLT limits for queueing networks having Markovian probability structure. Dai
et al. [8] established a multidimensional diffusion FCLT limit for the GI/Ph/n + M
queue with exponential abandonment times and phase-type service times (the Ph). A
stochastic partial differential equation (SPDE) limit was established in [17] for general
many-server queueing models using measure-valued processes. Liu and Whitt [26]
studied the time-varyingGt/M/st +GI system alternating between underloaded and
overloaded time intervals. They have obtained a stochastic differential equation driven
by independent Brownian motions for the waiting time process; they also established
limits for the number in system, the queue length, the virtual waiting time, and the
number of abandonments. In a recent paper byHuang et al. [14], the authors developed
an FCLT limit for the ED G/M/n + GI model under the hazard rate scaling and
applied their FCLT results in the context of delay announcements. It is evident that
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the FCLT limits for the performance processes are bound to become non-Markovian
for fully non-Markovian queueing systems (having especially nonexponential service
times), under the standard FCLT scaling. See [13,27] for performance approximation
formulas for the overloaded G/GI/n + GI queue. In particular, He [13] obtained
an OU process FCLT limit for the queue-length process, with the mean patience time
going to infinity. This mean-patience-time scaling has been proposed and studied
by [37] for the Markovian M/M/n + M model (see Sect. 4 therein). In [13], the
customers’ individual behavior disappears in the limit (for example, patience time
approaches infinity, service time distribution function beyond its first two moments
no longer plays a role). In addition, the approximation formulas based on the new
patience-time-scaled FCLT limits in [13] may become ineffective for systems having
small or medium mean patience times.

In this paper, we develop an FCLT for the G/GI/n + GI queue under the con-
ventional scaling. Specifically, we only apply spatial scaling (no temporal scaling);
we scale the queue length, but we do not scale the waiting times (nor the distribution
functions of service and patience times) so that customer behavior (characterized by
their distribution functions) can be fully preserved in the limit; the full distribution
of service (patience) time plays a role in the MSHT FCLT limit beyond its first and
second moments. Compared to [13], our FCLT limits may provide performance for-
mulas for models that are more customized to the customer behavior and those with a
wider range of model inputs (especially when the mean abandonment time is not too
large). However, the trade-off here is that our FCLT limits is more complex than those
of [13]. (Our limits are not Markovian.)

Main difficulty of GI service For models with exponential service times as in [14,
26], the service-completion process can be formulated as a nonhomogeneous Poisson
process (NHPP) which nicely converges to a time-changed Brownian motion. This
helps develop convenient FCLT limits for other performance functions. For instance,
the FCLT limit for thewaiting-time process solves a simpleBrownian driven stochastic
differential equation (SDE) with a linear drift:

d ̂W (t) = h(t)̂W (t)dt + Iλ(t)dBλ(t) + Ia(t)dBa(t) + Is(t)dBs(t), (1.1)

where Bλ, Ba and Bs are three independent Brownian motions corresponding to the
FCLT limits of the arrivals, abandonments and service completions, and h, Iλ, Ia and
Is are determinisitic functions of the model inputs. See (4.9) and (6.64) in [26] for
details.

For GI service, the main difficulty is that the service-completion process is no
longer an NHPP so it does not converge to a convenient Brownian limit. In this paper,
we show that the service-completion process converges to a non-Brownian zero-mean
Gaussian process with a known covariance function. Unlike (1.1), we will obtain an
SDE for the waiting-time process driven by both Brownian motions and a Gaussian
process.

We prove an FCLT for key performance functions of the G/GI/n + GI queueing
model; we identify the FCLT limits and fully describe their distributions. To charac-
terize the limiting processes we construct a stochastic integral with respect to centered
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Gaussian processes with almost surely Hölder continuous sample paths where the
integrand is a two-parameter deterministic function. We show that such stochastic
integrals can be defined pathwise, and they satisfy an integration-by-parts formula.
Integrals with respect to non-Brownian Gaussian processes have been studied by [5]
(fractional Brownian motions) and [1,19] (Volterra processes).

Our proofs are based on the careful analysis of the number of customers entering
service from the queue. Unlike [14,26,31], we introduce a new representation for the
enter-service process, based on which we derive an SDE, indexed by n, for the prelimit
waiting-time process, and we prove its convergence to a limiting SDE. The main steps
of our proof involves a martingale FCLT, Gronwall’s inequality, and the continuous
mapping theorem. Unlike [14,26], we do not take the commonly used compactness
approach (see, for example, [36]) to proveweak convergence. An advantage of our new
proof is that we can avoid having to prove tightness, which is often quite complicated
(for example, see [14,26] for the complex treatment of tightness, even forM service). In
particular, using the n-indexed SDE, we prove stochastic boundedness of the waiting
time and then prove the weak convergence by applying Gronwall’s inequality. We
further characterize the FCLT limits by computing the covariance function of the
Gaussian solution to the limiting SDE. Convergence of other processes is established
by applying the continuous mapping theorem. In addition, the martingale FCLT in this
paper is different from those in [9,14].

Organization of the paper In Sect. 2 we describe a sequence of the G/GI/n +
GI queueing systems and specify all model assumptions. In Sect. 3 we give some
preliminary results that are building blocks of the main results. In Sect. 4, we present
our main results: We first give our FCLT limits in Sect. 4.1; we next characterize the
distributions of the FCLT limits in Sects. 4.2 and 4.3. Proofs of the main results are
given in Sect. 5.Additional proofs appear inAppendixA.Generalizing themain results
in Sect. 4, we consider a more general staffing function in Appendix B. Additional
results dealing with positive initial queue content appear in a longer online appendix
[2].

2 A sequence of overloaded G/GI/n+ GI queues

We consider a sequence of G/GI/n + GI queueing systems, which is indexed by
the number of servers n, having i.i.d. nonexponential service times with cumulative
distribution function (cdf)G, complementary cdf (ccdf)Gc = 1−G, probability den-
sity function (pdf) g and mean service time 1/μ < ∞, and non-exponential patience
times (the +GI ) with cdf F , ccdf Fc = 1 − F , pdf f , and hazard rate hF = f/Fc.
All random variables and processes are defined on a common probability space. We
next define relevant system functions and give assumptions on our model primitives.
These assumptions will be enforced throughout the paper.

Service times and patience times We impose the following regularity conditions:
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(i) The patience-time pdf f satisfies

0 < f (x) ≤ f ↑ ≡ sup
x≥0

f (x) < ∞, x ≥ 0.

(ii) The service-time cdf G and pdf g satisfy

lim sup
t↓0

G(t) − G(0)

t
< ∞, and g↑ ≡ sup

x≥0
g(x) < ∞. (2.1)

Remark 2.1 (Necessity of assumptions on service and patience distributions) The
first condition in (2.1) is necessary to obtain Gaussian limits for service-completion
processes; see Theorem 5 in [35], see also [11,36]. Existence of densities g and f are
required to obtain appropriate fluid limits (see [38]); and their finiteness is required to
facilitate our proofs, specifically in Proposition 4.2 and (5.14).

Arrival process Let Nn(t) be the number of customer arrivals in the interval [0, t].
We assume Nn satisfies an FCLT

̂Nn(t) ≡ n−1/2(Nn(t) − nΛ(t)) ⇒ ̂N (t) = cλBλ(Λ(t)) in D as n → ∞,

(2.2)

where Bλ is a standard Brownian motion (BM), Λ(t) = λt , λ and cλ > 0 measure the
(average) arrival rate and stochastic variability of the arrival process Nn asymptotically.
One way to construct an Nn satisfying (2.2) is to simply apply a time change with
function nΛ(t) to a rate-1 renewal process with interrenewal times having variance c2λ
(see [12,20] for examples). A benchmark case is the Poisson arrival with cλ = 1. Here
the notation “⇒” denotes weak convergence (i.e., convergence in distribution). We
denote byD ≡ D([0, T ];R) the space of real-valued right-continuous functions with
left limits on the interval [0, T ], and by C ≡ C([0, T ];R) the subset of D consisting
of continuous functions. Convergence in D is characterized through the Skorokhod
J1-topology; J1-convergence to a continuous limit implies uniform convergence over
all compact sets. See [6,36] for details of weak convergence in D and C.

We remark that our analysis allows the FCLT limit ̂N to be a more general process
having a continuous sample-path and independent increments (so ̂N is not restricted
to a Brownian motion). An immediate corollary of the FCLT (2.2) is an FWLLN. In
particular,

N̄n(t) ≡ n−1Nn(t) ⇒ Λ(t) in D as n → ∞.

Since ourmodel operates in theED regime,we assume the traffic intensityρ ≡λ/μ>1.

System functions Let En(t), Dn(t) and An(t) be the total number of customers who
have entered service, completed service, and abandoned from the queue in [0, t],
respectively. Let the two-parameter process Bn(t, y) (Qn(t, y)) denote the number of
customers in service (in queue) at time t for at most y units of time in the nth system.
In addition, let Bn(t) ≡ Bn(t,∞), Qn(t) ≡ Qn(t,∞), and Xn(t) = Bn(t) + Qn(t)
be the number of customers in service, number waiting in the queue, and total number
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in the system at time t . LetWn(t) denote the head-of-line waiting time (HWT), i.e., the
elapsed waiting time of the customer at the head of line at time t , i.e., the waiting time
of the customer who has been waiting the longest (if there is any); Wn(t) = 0 if there
is no customer waiting in the queue. Finally, we let Vn(t) be the potential waiting
time (PWT) at time t , i.e., the waiting time of an arriving customer at t assuming
the customer has infinite patience. When the system is overloaded, Wn(t) and Vn(t)
informally satisfy the relations

Vn(t − Wn(t)) = Wn(t) + O(1/n) (2.3)

Vn(t) = Wn(t + Vn(t) + O(1/n)) + O(1/n), (2.4)

where (2.3) suggests that the virtual waiting time at the time of arrival of the head-
of-line customer at time t is the head-of-line customer’s elapsed waiting time in line
at time t plus the additional time until one of the n busy servers becomes idle. (The
additional time is O(1/n) if there are n busy servers.) The equality in (2.4) is obtained
by a change of variable.

Initial content At time 0, we assume the system is initially critically loaded, that
is, Qn(0) = Wn(0) = 0 and Xn(0) = Bn(0) = n for all n ≥ 1. Letting ν be a
generic service time, we assume that customers initially in service at time 0 have i.i.d.
remaining service times ν

(0)
1 , . . . , ν

(0)
n following cdf Ge, the equilibrium version of

G, given by

Ge(x) =
∫ x
0 Ḡ(s) ds

E[ν] , x ≥ 0. (2.5)

The above assumption has been commonly used in the literature [11,13,17,29,33].
Because the system is asymptotically overloaded for all t ≥ 0, the service-completion
process associatedwith each server forms an independent equilibrium renewal process.
The assumption is not too restrictive because we plan to later focus on characterizing
the long-run behavior on which initial conditions have little impact.

MSHT scalings For En , Dn , An , Bn , Qn and Xn , we define their corresponding LLN-
scaled versions

Ēn ≡ En

n
, D̄n ≡ Dn

n
, Ān ≡ An

n
, B̄n ≡ Bn

n
, Q̄n ≡ Qn

n
, X̄n ≡ Xn

n
,

(2.6)

and their CLT-scaled versions

̂En ≡ En − nE√
n

, ̂Dn ≡ Dn − nD√
n

, ̂An ≡ An − nA√
n

,

̂Bn ≡ Bn − nB√
n

, ̂Qn ≡ Qn − nQ√
n

, ̂Xn ≡ Xn − nX√
n

. (2.7)
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For PWT Vn and HWT Wn , we define their CLT-scaled version as

̂Wn ≡ √
n (Wn − w) and ̂Vn ≡ √

n (Vn − v). (2.8)

The centering terms E , D, A, B, Q, X , w and v are the fluid limits, given in Sect. 4.

3 Preliminaries

Wenowpresent some preliminary results which are the building blocks of our analysis.
In Sect. 3.1, we first provide convenient representations for prelimit processes. Next,
in Sect. 3.2 we define a class of stochastic integrals with respect to Gaussian processes
which will be used to analyze our FCLT limits.

3.1 Prelimit processes

First define the LLN- and CLT-scaled sequential empirical processes

Ūn(t, x) ≡ 1

n

�nt�
∑

i=1

1(ξi ≤ x), t ≥ 0, 0 ≤ x ≤ 1,

̂Un(t, x) ≡ √
n
(

Ūn(t, x) − E
[

Ūn(t, x)
]) = 1√

n

�nt�
∑

i=1

(1(ξi ≤ x) − x) , (3.1)

where ξ1, ξ2, . . . are i.i.d. random variables uniformly distributed on [0, 1]. It has been
shown in [18] that ̂Un ⇒ ̂U inDD ≡ D([0,∞);D([0, 1];R)), as n → ∞, where the
two-parameter process ̂U is the standard Kiefer process. See [18,31] and references
therein for more details.

Enter-service process Based on the sequential empirical process in (3.1), we give a
stochastic integral representation for En , the number of customers entering service in
the interval [0, t]. Let random variables 0 ≤ τ n1 ≤ τ n2 ≤ · · · denote the customers’
arrival times, and γ1, γ2, . . . denote the i.i.d. patience times with cdf F . Then, the
enter-service process is given by

En(t) ≡
Nn(t−Wn(t))
∑

i=1

1(γi > Vn(τ
n
i −))

= n
∫ t−Wn(t)

0

∫ 1

0
1(y > F(Vn(s−))) dŪn(N̄n(s), y). (3.2)

Our new representation in (3.2) is more convenient than those in [26]; it helps simplify
the proofs (see Sect. 5 for details). To see why Equation (3.2) holds: First, by the
definition of Wn(t), all arrivals before time t − Wn(t) have already entered service
provided that they do not abandon; Next, the condition γi > Vn(τ ni −) guarantees that
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Fig. 1 Graphic demonstration of En(t)

customer i arriving time τ ni will not abandon (because its patience time γi is bigger
than its offered waiting time wn

i = Vn(τ ni −)). Here En(t) is the random measure
counting the number of points in the top left shaded area in Fig. 1. Following [18,31],
we obtain the equivalent stochastic integral representation in (3.2).

The process En(t) in (3.2) can be decomposed into the sum of three terms, which
can be quickly verified by the definitions of Ūn and ̂Un (also see [31]). Specifically,

En(t) ≡ En,1(t) + En,2(t) + En,3(t), (3.3)

where

En,1(t) ≡ √
n
∫ t−Wn(t)

0
Fc(Vn(s−)) d̂Nn(s), (3.4)

En,2(t) ≡ √
n
∫ t−Wn(t)

0

∫ 1

0
1(y > F(Vn(s−))) d̂Un(N̄n(s), y), (3.5)

En,3(t) ≡ nλ

∫ t−Wn(t)

0
Fc(Vn(s−)) ds. t ≥ 0. (3.6)

We remark that the decomposition (3.3) nicely separates the variability of the nth
system: Given the waiting times Vn andWn , (3.4) captures the variability in the arrival
process through ̂Nn ; (3.5) includes the variability in the abandonment times through
̂Un ; and (3.6) represent the average value of En . In addition, the “−” in Vn(·) will
disappear as n → ∞, because both the FWLLN limit v(s) and FCLT limit ̂V (s) are
continuous in time s.

Queue-length process Similar to En , the number of customer waiting in line at time
t can be represented as
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Qn(t) =
Nn(t)
∑

i=Nn(t−Wn(t))+1

1(γi + τ ni > t)

= n
∫ t

t−Wn(t)

∫ 1

0
1(y > F(t − s)) dŪn(N̄n(s), y). (3.7)

To wit, a customer i is waiting in queue at t if it arrives after time t − Wn(t) and its
patience time γi > t − τ ni . See the shaded area on the right in Fig. 1. Similar to (3.2),
(3.7) can be represented as the sum of three terms, i.e,

Qn(t) ≡ Qn,1(t) + Qn,2(t) + Qn,3(t), t ≥ 0,

where Qn,1(t) ≡ √
n
∫ t

t−Wn(t)
Fc(t − s) d̂Nn(s), (3.8)

Qn,2(t) ≡ √
n
∫ t

t−Wn(t)

∫ 1

0
1(x > F(t − s)) d̂Un(N̄n(s), x), (3.9)

Qn,3(t) ≡ nλ

∫ t

t−Wn(t)
Fc(t − s) ds, t ≥ 0. (3.10)

3.2 Gaussian integrals

Definition 3.1 (Hölder continuity) A real-valued function φ defined on [a, b] is
Hölder continuous of order 0 < α < 1 if there is a constant c such that

|φ(s) − φ(t)| ≤ c|s − t |α for all a < s < t < b.

Let Z(ω, t) be a Gaussian process with Hölder continuous sample paths for almost
all ω ∈ Ω , zero mean, and covariance function CZ (s, t) ≡ Cov(Z(s), Z(t)). We next
consider the stochastic integral

L(ω, t) ≡
∫ t

0
J (t, u) dZ(ω, u), t ≥ 0, (3.11)

where J (t, u) is a two-parameter function which is differentiable with respect to u.
We next illustrate that (3.11) can be defined via an integration-by-parts formula for a
Riemann–Stieltjes integral, following (2.3) of Chapter IV in [34].

Proposition 3.1 (A Gaussian integral) Suppose (Z(ω, t) : t ≥ 0) is a centered Gaus-
sian process on the interval [0, T ]with almost surely Hölder continuous sample paths,
and, for each fixed t, the deterministic integrand J (t, u) is continuously differentiable
with respect to u. Then the stochastic integral L(ω, t) in (3.11) is well defined and

L(ω, t) =
∫ t

0
J (t, u) dZ(ω, u) = J (t, t)Z(ω, t) − J (t, 0)Z(ω, 0)
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−
∫ t

0
Z(ω, u)Ju(t, u) du, (3.12)

where Ju(t, u) ≡ ∂ J (t, u)/∂u, the equality holds almost surely, and the integral on
the right-hand side is understood as the Riemann–Stieltjes integral.

In addition, for 0 ≤ t1 < t2, L(ω, t) in (3.11) is a centered Gaussian process with
the covariance function

CL(t1, t2)

= J (t1, t1)J (t2, t2)CZ (t1, t2) + J (t1, 0)J (t2, 0)CZ (0, 0)

− J (t2, t2)J (t1, 0)CZ (0, t2) − J (t1, t1)J (t2, 0)CZ (0, t1)

−
∫ t1

0
J (t2, t2)Js(t1, s)CZ (s, t2) ds +

∫ t1

0
J (t2, 0)Js(t1, s)CZ (0, s) ds

−
∫ t2

0
J (t1, t1)Js(t2, s)CZ (t1, s) ds +

∫ t2

0
J (t1, 0)Js(t2, s)CZ (0, s) ds

+
∫ t1

0

∫ t2

0
Js(t1, s)Jr (t2, r)CZ (s, r) dsdr. (3.13)

The proof of Proposition 3.1 is given in Appendix A.

4 Main results

We present our FCLT results for the overloaded G/GI/n + GI model in Sect. 4.1;
we establish the process-level convergence of the CLT-scaled system functions. In
Sect. 4.2, we further characterize the distributions of the Gaussian FCLT limits and
give steady-state performance approximation formulas.

4.1 An FCLT for the G/GI/n+ GI queue and Gaussian limits

We first give an FWLLN for the overloaded G/GI/n + GI model; we show that the
LLN-scaled processes in (2.6) converge to their fluid limits.

Theorem 4.1 (FWLLN for the overloaded G/GI/n +GI model) If all assumptions
in Sect. 2 hold, then, as n → ∞,

(W̄n, V̄n, D̄n, Ēn, B̄n, Q̄n, X̄n, N̄n, Ān) ⇒ (w, v, D, E, B, Q, X,Λ, A) in D9,

(4.1)

where B(t) = 1, Λ(t) = λt , w and v satisfy

w(t) =
∫ t

0

(

1 − μ

λFc(w(u))

)

du, (4.2)

v(t) = w(t + v(t)) and w(t) = v(t − w(t)), (4.3)
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and D, E, Q, X and A are given by

D(t) = E(t) = μt, Q(t) = λ

∫ t

t−w(t)
Fc(t − s) ds, X (t) = Q(t) + 1, (4.4)

and A(t) = Λ(t) − E(t) − Q(t).

The limiting fluid functions here are special cases of those of the more general
Gt/GI/st +GI model in [23]. We give the proof of Theorem 4.1 in Appendix A; the
proof follows from the proofs in [24,26].

Next we establish an FCLT result showing that the CLT-scaled system functions in
(2.7) and (2.8) converge to their corresponding Gaussian FCLT limits.

Theorem 4.2 (FCLT for the overloaded G/GI/n +GI model) If all assumptions in
Sect. 2 hold, as n → ∞,

(̂Wn, ̂Vn, ̂Dn, ̂En, ̂Bn, ̂Qn, ̂Xn, ̂Nn, ̂An) ⇒ (̂W , ̂V , ̂E, ̂E, ̂B, ̂Q, ̂Q, ̂N , ̂A) in D9,

(4.5)

where ̂B(t) = 0, and ̂A(t) = ̂N (t) − ̂Q(t) − ̂E(t).
The FCLT limit for the enter-service process ̂E(t) is a centered Gaussian process

with covariance

CE (s, t) ≡ Cov(̂E(s), ̂E(t)) = E[S0(s)S0(t)] − μ2s t, s, t ≥ 0, (4.6)

where S0 is an equilibrium renewal process (ERP) with interrenewal cdf G and the
first renewal cdf Ge in (2.5).

The FCLT limit for the HWT ̂W (t) uniquely solves the SDE

̂W (t) = − 1

Fc(w(t))

∫ t

0
f (w(s)) ̂W (s) ds + 1

λFc(w(t))
̂G(t), (4.7)

where w is given in (4.2), f is the pdf of F,

̂G(t) ≡
∫ t

0
Fc(w(s)) d̂N (s − w(s)) + Ba

(

λ

∫ t

0
Fc(v(u))F(v(u)) du

)

− ̂E(t)

=
∫ t

0
cλF

c(w(s))dBλ(Λ(s − w(s)))

+ Ba

(

λ

∫ t

0
Fc(v(u))F(v(u)) du

)

− ̂E(t), (4.8)

with Ba being a standard Brownian motion independent of the processes ̂N and ̂E.
The FCLT limit for the PWT satisfies

̂V (t) = ̂W (t + v(t))

1 − ẇ(t + v(t))
, t ≥ 0, (4.9)
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where ẇ is the derivative of w.
The FCLT limit for the queue-length process is the sum of three terms, i.e.,

̂Q(t) ≡ ̂Q1(t) + ̂Q2(t) + ̂Q3(t),

̂Q1(t) ≡
∫ t

t−w(t)
Fc(t − s) d̂N (s) =

∫ t

t−w(t)
cλF

c(t − s) dBλ(Λ(s)),

̂Q2(t) ≡
∫ t

t−w(t)

∫ 1

0
1(x > F(t − s)) d̂U (λs, x)

d=
∫ t

t−w(t)

√

Fc(t − s))F(t − s) dBa (Λ(s))

d= Ba

(∫ t

t−w(t)
Fc(t − s)F(t − s)λ ds

)

,

̂Q3(t) ≡ λFc(w(t))̂W (t), (4.10)

where ̂U is a standard Kiefer process.

Remark 4.1 (Separation of variability and special case of M service) The process
̂G in (4.8) is characterized by three independent terms. The first term captures the
variability of the arrival process (as a function of ̂N ); the second term accounts for
the randomness of the patience times of customers waiting in queue; and the third
term stems from the variability of the service process (through ̂E). Independence of
the three processes follows from mutual independence of arrivals, service times, and
patience times.

For the G/M/n + GI model with exponential service, we remark that the FCLT
limit of the enter-server process is a Brownian motion, i.e., ̂E(t) = Bs(μt), where Bs

is an independent standard BM, because S0 becomes a Poisson process with rate μ.
This is consistent with the SDE (1.1) and results in [26].

4.2 Characterizing the distributions of the FCLT limits

We now further characterize the distributions of the FCLT limits given in Theorem 4.2.
We first give a Gaussian integral representation for the FCLT limit for HWT ̂W which
is an integral of ̂E . Because the covariance of ̂E is related to the covariance of an ERP
(4.6), we first discuss how to compute the variance and covariance for ERPs.

Proposition 4.1 (Covariance of an equilibrium renewal process) Suppose N 0 is a
stationary renewal counting process (having stationary increments with N 0(0) = 0)
with interrenewal-time cdf G having pdf g and mean μ−1. Then, for t < u,

Cov(N 0(t), N 0(u)) = Var(N 0(t)) + Cov(N 0(t), N 0(u) − N 0(t)), (4.11)
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where

Var(N 0(t)) = 2μ
∫ t

0
(M(s) − μs + 0.5) ds = 2μ

∫ t

0
M(s) ds − μ2t2 + μt,

(4.12)

Cov(N 0(t), N 0(u) − N 0(t))

= μ

∫ t

0
da
∫ u−t

0
db g(a + b)[1 + M(t − a)][1 + M(u − t − b)] − μ2t (u − t),

(4.13)

where M(t) is the renewal function of the associated ordinary renewal process, satis-
fying the renewal equation

M(t) = G(t) +
∫ t

0
M(t − x)g(x) dx . (4.14)

Proof The proof of (4.12) is given on p. 57 of [7]. See also Theorem 7.2.4 of [36]. (We
point out that there is a mistake in the proof of Theorem 7.2.4 of [36] so the covariance
formulas there are incorrect. We give the correct versions here.) For (4.13), consider
the first renewal occurring after t ; it falls at t + b with the stationary-excess pdf
ge(b) ≡ μGc(b). Conditional on that renewal being at t + b, the last renewal by t
occurs at t−a with pdf g(a+b)/Gc(b). Conditional on the time of these two renewals
at t − a and t + b, we have

E[N 0(t)(N 0(u) − N 0(t))]
=
∫ t

0
da
∫ u−t

0
dbE

[

N 0(t)(N 0(u) − N 0(t))|SN (t)

= t − a, SN (t)+1 = t + b

]

μ f (a + b)

= μ

∫ t

0
da
∫ u−t

0
db [M(t − a) + 1][M(u − t − b) + 1]g(a + b).

Because N 0 is an ERP, E[N 0(t)]E[(N 0(u) − N 0(t))] = (μt) · (μ(u − t)), which
yields (4.13). ��

To prove that the Gaussian integral is a well-defined stochastic integral, we justify
that ̂E in (4.6) has almost surely Hölder continuous sample paths.

Proposition 4.2 The FCLT limit for the enter-service process {̂E(t) : t ≥ 0} is Hölder
continuous for almost all ω ∈ Ω for some θ > 0.

Proof Let Y (t) be a centered Gaussian process with covariance function φ(s, t) ≡
E[Y (s)Y (t)]. According to Corollary 25.6 of [34], we know that a sufficient condition
for Y (t) to be continuous is that φ should be locally Hölder continuous, that is, for
each N ∈ N there exists θ = θ(N ) > 0 and C = C(N ) such that, for |s|, |t | ≤ N ,
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|φ(s, t) − φ(t, t)| ≤ C |s − t |θ . (4.15)

Wenext validate the condition (4.15) for ̂E(t). Combining (4.11) and (4.13),we obtain,
for u > t ,

|φ(u, t) − φ(t, t)| = |Cov(̂E(t), ̂E(u) − ̂E(t))|
=
∣

∣

∣

∣

μ

∫ t

0
da
∫ u−t

0
db g(a + b)[1 + M(t − a)][1 + M(u − t − b)] − μ2t (u − t)

∣

∣

∣

∣

,

where μ is the service rate and g is service-time pdf. Then, for any 0 ≤ t < u ≤ N
and a ∈ [0, t], b ∈ [0, u − t],

φ(u, t) − φ(t, t) ≤ μ

∫ t

0
da
∫ u−t

0
dbg↑[1 + M(N )]2 + μ2t (u − t)

= μt (u − t)g↑[1 + M(N )]2 + μ2t (u − t)

≤
(

μNg↑[1 + M(N )]2 + μ2N
)

(u − t),

which satisfies the sufficient condition (4.15) after taking the absolute value of both
sides. Hence, ̂E has a version with continuous sample paths. Then, by Kolmogorov’s
continuity theorem, we deduce that the version is Hölder continuous of some order
θ > 0. ��

Having proved that the Gaussian process ̂E has the desired sample-path properties,
we next provide a closed-form solution ̂W to the SDE (4.7).

Corollary 4.1 (Gaussian integrals for ̂W ) The FCLT limit for the HWT is given by

̂W (t) ≡̂W1(t) + ̂W2(t) + ̂W3(t)

=
∫ t

0
cλ

Fc(w(u))H(t, u)

q(t, w(t))
dBλ(Λ(u − w(u)))

+
∫ t

0

√
λFc(v(u))F(v(u))H(t, u)

q(t, w(t))
dBa(u) −

∫ t

0

H(t, u)

q(t, w(t))
d̂E(u),

(4.16)

where the first term on the right-hand side is defined in Lemma 5.1, the third term is
defined in Sect. 3.2; q(t, w(t)) = λFc(w(t)), and

H(t, u) ≡ e
∫ t
u h(r) dr with h(r) ≡ − λ f (w(r))

q(t, w(t))
= − f (w(r))

Fc(w(t))
, 0 ≤ r ≤ t.

(4.17)

Proof To verify (4.16) is indeed the unique strong solution to (4.7), we apply Itô’s
rule. Note that the non-Brownian integrals are Riemann–Stieltjes integrals with deter-
ministic integrands for almost all ω ∈ Ω . Moreover, the integrators Bλ, Ba and ̂E are
all independent. Letting q(t, w(t)) = λFc(w(t)), we rewrite (4.7) as
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̂W (t) = −
∫ t

0

λ f (w(u))

q(u, w(u))
̂W (u) du +

∫ t

0

√
λFc(v(u))F(v(u))

q(u, w(u))
dB(u)

−
∫ t

0

1

q(u, w(u))
d̂E(u) +

∫ t

0
cλ

Fc(w(u))

q(u, w(u))
dBλ(Λ(u − w(u))), (4.18)

where the time-changed Brownian term in (4.7) is replaced with an equivalent Itô
integral. The uniqueness and existence of a solution to (4.18) immediately follows
from Itô theory because the last two terms of (4.18) do not involve ̂W (t) and are
independent of the Brownian motion in the second term. Furthermore, the last two
integrals are Riemann–Stieltjes integrals for almost all ω ∈ Ω . Consequently, we
can use Itô’s formula to solve (4.18). In particular, using the differential form, we
have

d̂W (t) = h(t)̂W (t) dt + K1(t)dBa(t) + K2(t)d̂E(t) + K3(t) dBλ(t − w(t)),

which implies

d
(

e− ∫ t0 h(r) dr
̂W (t)

)

= ˜K1(t)dBa(t) + ˜K2(t)d̂E(t) + ˜K3(t) dBλ(t − w(t)),

where ˜Ki (t) ≡ H(t, 0)Ki (t), i = 1, 2, 3,

K1(t) ≡
√

λFc(v(u))F(v(u))

q(u, w(u))
, K2(t) ≡ − 1

q(u, w(u))
, K3(t) ≡ cλ

Fc(w(u))

q(u, w(u))
.

Integrating both sides and multiplying through by H(t, 0) yields (4.16). ��

Covariance formulas for the Gaussian limits Since all the FCLT limits are Gaussian
processes, it suffices to compute their means and covariances. We next give closed-
form covariance formulas for the FCLT limits ̂Q, ̂W and ̂X . Our covariance formulas
are explicit functions of the covariance of ̂E . The proof of the next theorem is given
in Appendix A.

Theorem 4.3 (Further characterization of the FCLT limits) The FCLT limits ̂W, ̂V
and ̂Q are all centered Gaussian processes with the covariance functions

Cov(̂W (t), ̂W (t ′)) ≡ C
̂W (t, t ′) = C

̂W1
(t, t ′) + C

̂W2
(t, t ′) + C

̂W3
(t, t ′)

Cov(̂V (t), ̂V (t ′)) ≡ C
̂V (t, t ′) = C

̂W (t, t ′)
(1 − ẇ(t))(1 − ẇ(t ′))

,

Cov(̂Q(t), ̂Q(t ′)) ≡ C
̂Q(t, t ′) = C

̂Q1
(t, t ′) + C

̂Q2
(t, t ′) + C

̂Q3
(t, t ′),
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for t, t ′ ≥ 0, where

C
̂W1

(t, t ′) = λc2λ

∫ t∧t ′

0

Fc(w(u))2H(t, u)2

q(u, w(u))2
(1 − ẇ(u)) du,

C
̂W2

(t, t ′) = λ

∫ t∧t ′

0

Fc(v(u))F(v(u))H(t, u)2

q(u, w(u))2
du,

C
̂W3

(t, t ′) = C
̂E (t, t ′) −

∫ t ′

0
Ju(t

′, u)C
̂E (u, t)du −

∫ t

0
Ju(t, u)C

̂E (u, t ′)du

+
∫ t

0

∫ t ′

0
Ju(t, u)Ju(t

′, v)C
̂E (u, v)dvdu,

C
̂Q1

(t, t ′) = λc2λ

∫ t∧t ′

(t−w(t))∨(t ′−w(t ′))
Fc(t − s)Fc(t ′ − s)ds,

C
̂Q2

(t, t ′) = λ

∫ t∧t ′

(t−w(t))∨(t ′−w(t ′))
F(t ∧ t ′ − s)Fc(t ∨ t ′ − s)ds,

C
̂Q3

(t, t ′) = λ2 Fc(w(t)) Fc(w(t ′))C
̂W (t, t ′), (4.19)

where C
̂E (u, v) ≡ Cov(̂E(u), ̂E(v)) is the covariance function for ̂E in (4.6),

J (t, u) ≡ H(t, u)/q(u, w(u)), H(t, u) and q(u, w(u)) are as in (4.17), and

Ju(t, u) ≡∂ J (t, u)

∂u
= −h(u)H(t, u)

q(u, w(u))
− q(u, w(u))H(t, u)

q(u, w(u))2

= (1 − ẇ(u))hF (w(u))e− ∫ tu (1−ẇ(s))hF (w(s)) ds

λFc(w(u))

+ f (w(u))e− ∫ tu (1−ẇ(s))hF (w(s)) ds

λFc(w(u))2
. (4.20)

4.3 Steady-state distributions of the FCLT limits

We now characterize the steady-state distributions of the FCLT limits as t → ∞. In
particular, we show that the steady state of the FCLT limits are centered Gaussian
random variables, and we compute their variances to fully characterize their distribu-
tions. Consequently, we obtain approximations for the long-run performance of the
nth queueing system, i.e.,

Qn(∞) ≈ nQ(∞) + √
n̂Q(∞), Wn(∞) ≈ w(∞) + 1√

n
̂W (∞), (4.21)

where Q(∞) and w(∞) are the steady states of the fluid functions in Theorem 4.1,
̂Q(∞) and ̂W (∞) are the steady states of ̂Q(t) and ̂W (t). A more rigorous argument
to support (4.21) involves the validation of the interchange of the two limits “n → ∞”
and “t → ∞”. However, this is beyond the scope of this paper.
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Fig. 2 Extension of ̂E on (−∞, 0]

First, Theorem 3.1 of [38] and Theorem 4.1 of [23] show that the overloaded fluid
queueing system has the following steady state functions:

w ≡ w(∞) = F−1
(

1 − 1

ρ

)

, v ≡ v(∞) = w, q(t, w(t)) = λFc(w) and

Q ≡ Q(∞) = λ

∫ w

0
Fc(x)dx . (4.22)

Next, we characterize the steady state of the FCLT limits in Theorem 4.2 by letting
t → ∞. We first obtain the variance for ̂W (∞), which is necessary for ̂V (∞) and
̂Q(∞).
The convergence, as t → ∞, of the variance function of ̂Wi (t) in Theorem 4.3 is

straightforward for i = 1, 2. However, the treatment of ̂W3(t) is not straightforward
because the covariance formula for ̂W3(t) in (4.19) involves several integrals; the
negative term in (4.19) goes to −∞ and the positive term goes to ∞ as t → ∞
(because Var(̂E(t)) = C

̂E (t, t) → ∞ as t → ∞).
To derive convenient steady-state formulas, we propose a technique which extends

the Gaussian limit ̂E given in Theorem 4.2 to the interval (−∞, 0]. Specifically, we
define another Gaussian process ˜E in Lemma 4.1 that can be understood as a two-sided
extension of ̂E to the negative half line to resolve this issue (see Fig. 2). We imagine
the stationary FCLT limit is associated with a queueing system starting infinitely far
in the past (which is in steady state at time 0).

The proof of Lemma 4.1 is given in Appendix A.

Lemma 4.1 (Extending ̂E to the negative half line) There exists a Gaussian process
{˜E(t) : −∞ < t ≤ 0} such that (i) ˜E(0) = 0; (i i)E[˜E(t)] = 0 for all−∞ < t ≤ 0;
and (i i i) the covariance function

Cov
(

˜E(−x), ˜E(−y)
) = ˜C(−x,−y) ≡ C

̂E (x ∨ y, x ∨ y) − C
̂E (x ∨ y, |x − y|)

(4.23)

for x ≥ 0, y ≥ 0, with C
̂E being the covariance function in (4.6). In addition, ˜E has

the same stationary increment distribution as ̂E. In particular, for any t > 0,

{˜E(s − t) − ˜E(−t) : 0 ≤ s ≤ t} d= {̂E(s) : 0 ≤ s ≤ t}. (4.24)

Using the extended version ˜E , we next obtain a more convenient expression for
Var(̂W3(t)) in Theorem 4.4. The proof of Theorem 4.4 is in Appendix A.
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Theorem 4.4 (Steady state of the FCLT limits) The steady-state versions ̂W (∞),
̂V (∞) and ̂Q(∞) for the FCLT limits of ̂W (t), ̂V (t) and ̂Q(t) are Gaussian random
variables with means 0 and variances

σ 2
W ≡ Var(̂W (∞)) = Var(̂V (∞))

≡ c2λ
2hF (w)λ

+ F(w)

2λ f (w)
+ 2

hF (w)2

λ2Fc(w)2

∫ ∞

0

∫ x

0
e−hF (w)(x+y)

˜C(−x,−y) dydx

(4.25)

σ 2
Q ≡ Var(̂Q(∞)) ≡ λc2λ

∫ w

0
Fc(u)2du + λ

∫ w

0
F(u)Fc(u) du + λ2Fc(w)2σ 2

W ,

(4.26)

where ˜C(−x,−y) is as in (4.23), and w is given in (4.22).

We next show that our formulas degenerate to special cases of M service. The proof
of Corollary 4.2 is in Appendix A.

Corollary 4.2 (The M service special cases)

(i) For the G/M/n +GI queue having exponential service times, steady-state vari-
ances of ̂W and ̂Q reduce to

σ 2
W = (c2λ − 1) + 2ρ

2λhF (w)
and

σ 2
Q = λ

∫ w

0

(

(c2λ − 1)Fc(u) + 1
)

Fc(u)du + λ2Fc(w)2
(c2λ − 1) + 2ρ

2λhF (w)
.

(4.27)

(ii) For the fully Markovian M/M/n+ M queue, the steady-state variance of ̂W and
̂Q reduce to

σ 2
W = 1/μθ and σ 2

Q = λ/θ, (4.28)

where θ > 0 is the abandonment rate (1/θ is the mean abandonment time).

5 Proofs

The proof of Theorem 4.1 is given in Sect. A.2. To prove Theorem 4.2, we first prove
the FCLT for ̂Wn (Sect. 5.1). Given the FCLT for ̂Wn , we establish FCLTs for the other
processes in Sect. 5.2. Proofs of all other results are given in Appendix A.

Remark 5.1 (Extending to nonstationary arrivals) Although both Theorems 4.1 and
4.2 are stated under the assumption of stationary arrivals withΛ(t) = λt , our proof can
be easily generalized to the case of nonstationary arrivals with a time-varying arrival
rate λ(t), as long as the system is asymptotically overloaded. Because real service
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systems (such as health care) are often overloaded with time-varying arrivals, the
more general FCLT results with time-varying arrivals may stimulate future research
(for example, conducting transient analysis and controls).

5.1 FCLT for HWT

It might be possible to prove the FCLT for ̂Wn using the standard compactness
approach: (i) tightness (which implies that every subsequence has a further convergent
subsubsequence); and (ii) uniqueness of the limit of every convergent subsequence
[13,14,26,31]. But that approach would involve a complicated treatment of tightness.
For example, see [26,31] for details (the tightness proofs for the CLT-scaled processes
there are somewhat tricky and lengthy). We hereby adopt a new approach: (i) we
show that the prelimit ̂Wn satisfies an SDE indexed by n; (ii) using the prelimit SDE,
we establish the full convergence ̂Wn ⇒ ̂W using the continuous mapping theorem,
martingale convergence theorem and Gronwall’s inequality. We show that the limit
process ̂W uniquely solves the SDE in (4.7), which generalizes the SDE given in (6.64)
of [26]. The extension from M service toGI service replaces the Brownian motionBs

therein by a centered Gaussian process. Our new approach has two advantages: First, it
is simpler (because it nicely avoids having to prove the tightness in spaceD); Second,
this method may be used to treat other processes and models in future research.

5.1.1 Overview of the proof

The FCLT of ̂Wn draws heavily on the careful analysis of ̂En and its convergence as
n → ∞. To wit, the HWT Wn ought to increase (decrease) if the flow-into-service
En is big (small); and the variability of HWT (represented by ̂Wn) largely depends on
the variability of En (i.e., ̂En). On the one hand, we will prove that ̂En converges to a
Gaussian process ̂E by taking advantage of the structure of the superposition of many
ERPs.

On the other hand, following the decomposition given in (3.3)–(3.6), we write

̂En(t) = En,1(t)√
n

+ En,2(t)√
n

+ En,3(t) − nE3(t)√
n

≡ ̂En,1(t) + ̂En,2(t) + ̂En,3(t).

(5.1)

We establish the convergence of ̂En,1 and ̂En,2 separately, andwe express the third term
̂En,3 as a function of the desired ̂Wn . This will result in an SDE for ̂Wn (this is our key
step). To establish the convergence of (5.1), we will show their joint convergence and
apply the continuous mapping theoremwith addition. We know that joint convergence
of two random elements is equivalent to the individual convergence of both terms if
they are independent. Although ̂En,1, ̂En,2 and ̂En,3 are not independent, because they
all involve the arrival-time sequence τ ni (or equivalently Nn), HWT Wn and PWT
Vn , they are conditionally independent given

(

N̄n,Wn, Vn
)

. Hence, in order to treat
the three terms separately, we can condition upon (N̄n,Wn, Vn) (which converges
according to the FWLLN result) and then uncondition. See Lemma 4.1 of [3] for a
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reference, which is a variant of Theorem 7.6 of [32]. The proof of the next lemma is
given in Sect. A.7 of Appendix A.

Lemma 5.1 (Convergence of the first two terms in (5.1)) As n → ∞,

̂En,1(t) ⇒ ̂E1(t) ≡
∫ t−w(t)

0
cλF

c(v(u)) dBλ(Λ(u))

=
∫ t

0
cλF

c(w(s)) dBλ(Λ(s − w(s))), (5.2)

̂En,2(t) ⇒ ̂E2(t) ≡
∫ t−w(t)

0

∫ 1

0
1(y > F(v(s))) d̂U (Λ(s), y)

d=
∫ t−w(t)

0

√

Fc(v(u))F(v(u)) dBa (Λ(u))

d= Ba

(

∫ t−w(t)

0
Fc(v(u))F(v(u))λ du

)

= Ba

(∫ t

0
Fc(w(s))F(w(s)) (1 − ẇ(s)) λ ds

)

. (5.3)

5.1.2 Treating the third term in (5.1)

According to the FWLLN, we have Ēn,i (t) ≡ (1/n)En,i (t) ⇒ 0 for i = 1, 2, and

Ēn,3(t) ≡ 1

n
En,3(t) ⇒ E(t) = E3(t) ≡

∫ t−w(t)

0
Fc(v(s)) dΛ(s) as n → ∞.

(5.4)

Following (3.6) and (5.4), we have

En,3(t) − nE3(t)

= n
∫ t−Wn(t)

0
Fc(Vn(s−)) dΛ(s) − n

∫ t−w(t)

0
Fc(Vn(s−)) dΛ(s)

+ n
∫ t−w(t)

0
[Fc(Vn(s−)) − Fc(v(s−))] dΛ(s)

= n
∫ t−Wn(t)

t−w(t)
Fc(Vn(s−)) dΛ(s) + n

∫ t−w(t)

0
[Fc(Vn(s−)) − Fc(v(s−))] dΛ(s)

= −√
nFc(θ1,n(t))λ̂Wn(t) − √

n
∫ t−w(t)

0
f (θ2,n(s))̂Vn(s−) dΛ(s) + o(

√
n)

= −√
nFc(θ1,n(t))λ̂Wn(t) − √

n
∫ t−w(t)

0
f (θ2,n(s))̂Vn(s) dΛ(s) + o(

√
n),

(5.5)
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where f is the pdf of F , the last equality holds because v(s−) = v(s) and |Vn(s) −
Vn(s−)| = O(1/n) (note there are n busy servers), and θ1,n(t) and θ2,n(t) satisfy

Vn(t − Wn(t)) ∧ Vn(t − w(t)) ≤ θ1,n(t) ≤ Vn(t − Wn(t)) ∨ Vn(t − w(t)), (5.6)

Vn(t) ∧ v(t) ≤ θ2,n(t) ≤ Vn(t) ∨ v(t). (5.7)

From Lemma 5.1 and (5.5), we have

En(t) = √
n̂En,1(t) + √

n̂En,2(t) + (En,3(t) − nE3(t)
)+ nE3(t)

= √
n
∫ t

0
cλF

c(w(s)) dBλ(Λ(s − w(s)))

+ √
n Ba

(∫ t

0
Fc(v(u))F(v(u)) dΛ(u)

)

− √
nFc(θ1,n(t))λ̂Wn(t)

− √
n
∫ t−w(t)

0
f (θ2,n(s))̂Vn(s) dΛ(s) + nE3(t) + o(

√
n). (5.8)

Deriving an SDE for ̂Wn We observe that the desired ̂Wn now appears in (5.8). To
derive an SDE for ̂Wn , it remains to relate the PWT ̂Vn in (5.7) to ̂Wn . Let ΔVn(t) ≡
Vn(t)− v(t) and ΔWn(t) ≡ Wn(t)−w(t), where w(t) and v(t) are as the fluid limits
given in Theorem 4.1. Using (2.4) we write

ΔVn(t) = ΔWn(t + Vn(t) + O(1/n)) + w(t + Vn(t)) − w(t + v(t)) + O(1/n)

= ΔWn(t + Vn(t) + O(1/n)) + ẇ(t + v(t))ΔVn(t) + O(1/n),

where the last equality holds because

w(t + Vn(t)) = w(t + v(t)) + ẇ(t + v(t))ΔVn(t)

+ 1

2
ẅ(t + v(t))ΔV 2

n (t) + o(ΔV 2
n (t)),

and ẅ(t) ≡ d2w(t)/dt2, which exists by (4.2) and the smoothness of F . AsΔVn(t) =
O(1/

√
n), we have w(t + Vn(t)) − w(t + v(t)) = ẇ(t + v(t))ΔVn(t) + O(1/n).

Hence, we have

ΔVn(t) = ΔWn(t + Vn(t) + O(1/n))

1 − ẇ(t + v(t))
+ o(ΔVn(t)) + O(1/n),

which implies that

sup
0≤t≤T

∣

∣

∣

∣

̂Vn(t) − ̂Wn(t + v(t))

1 − ẇ(t + v(t))

∣

∣

∣

∣

= √
n o(1/n) = o(1/

√
n). (5.9)

Note that o(ΔVn(t)) = o(1/n) since ΔVn(t) is of O(1/n). This provides a formula
to switch between the two waiting times ̂Vn(t) and ̂Wn(t).
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Applying the change-of-variable formula (5.9), the last integral in (5.8) becomes

√
n
∫ t−w(t)

0
f (θ2,n(s))̂Vn(s) dΛ(s)

= √
n
∫ t−w(t)

0
f (θ2,n(s))

(

̂Wn(s + v(s))

1 − ẇ(s + v(s))

)

dΛ(s) + o(1)

= √
n
∫ t

0
f (θ3,n(u))

(

̂Wn(u)

1 − ẇ(u)

)

(1 − ẇ(u))λ du + o(1)

= √
n
∫ t

0
f (θ3,n(u)) ̂Wn(u) λ du + o(1), (5.10)

where the second equality holds by applying the second formula in (4.3) and a change
of variable u ≡ s + v(s). To wit, first, the second equality in (4.3) implies that
t − w(t) + v(t − w(t)) = t − w(t) + w(t) = t ; second, the first equality in (4.3)
implies that w(u) = w(s + v(s)) = v(s), so that s = u − v(s) = u − w(u) and
ds = (1 − ẇ(u))du. Here θ3,n(t) satisfies

Vn(t − w(t)) ∧ v(t − w(t)) ≤ θ3,n(t) ≤ Vn(t − w(t)) ∨ v(t − w(t)). (5.11)

FCLT limits for ̂En Label all servers from 1 to n. Let Dj (t) count the number of
service completions at server j by time t , 1 ≤ j ≤ n. Because the system operates
in the ED regime with ρ > 1, all servers will be busy at all times with probability
1 as n → ∞. Hence, the total number of service completions in [0, t] is given by
Dn(t) =∑n

j=1 Dj (t) for t ≥ 0, where D1(t), D2(t), . . . are I.I.D. ERPs. (That is, Dn

is asymptotically equivalent to the superposition of n ERPs.) By Theorem 2 of [35],
we have (̂En, ̂Dn) ⇒ (̂E, ̂E) as n → ∞, where the limiting Gaussian process ̂E is
given by (4.6). Hence, we can write

En(t) = nE(t) + √
n̂E(t) + o(

√
n). (5.12)

Combining (5.10), (5.8), and (5.12) yields an SDE

̂Wn(t) = − 1

Fc(θ1,n(t))

∫ t

0
f (θ3,n(s)) ̂Wn(s) ds + 1

Fc(θ1,n(t))λ
̂G(t) + o(1),

(5.13)

where

̂G(t) ≡
∫ t

0
cλF

c(w(s)) dBλ(Λ(s − w(s)))

+ Ba

(∫ t

0
Fc(v(u))F(v(u)) dΛ(u)

)

− ̂E(t).
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To complete the proof of the FCLT for ̂Wn , we first revise (5.13) to obtain a much
neater SDE for ̂Wn . To do so, we apply Gronwall’s inequality. See Sect. 1 in the online
appendix and [28] for a reference. We first apply Gronwall’s inequality to show that
̂Wn is stochastically bounded. The SDE (5.13) implies that

∣

∣ ̂Wn(t)
∣

∣ ≤ 1

Fc(θ1,n(t))

∫ t

0
f (θ3,n(s)) |̂Wn(s)| ds + 1

Fc(θ1,n(t))λ
|̂G(t)| + o(1).

(5.14)

Applying Gronwall’s inequality leads to

∣

∣ ̂Wn(t)
∣

∣ ≤ |̂G(t)|
λFc(θ1,n(t))

+
∫ t

0

|̂G(u)|
λFc(θ1,n(u))

e
∫ t
u

f (θ3,n (r))
Fc(θ1,n (u))

dr f (θ3,n(u))

Fc(θ1,n(t))
du + o(1)

≤ |̂G(t)|
λFc(θ1,n(t))

+ e
t

Fc(θ1,n (t))

Fc(θ1,n(t))

∫ t

0

|̂G(u)| f (θ3,n(u))

λFc(θ1,n(u))
du + o(1).

Hence, the stochastic boundedness of ̂Wn follows from the stochastic boundedness of
̂G.

Inequalities (5.7) and (5.11) imply that

θ1,n(t) = v(t − w(t)) + o(1) = w(t) + o(1) and

θ3,n(t) = v(t − w(t)) + o(1) = w(t) + o(1), (5.15)

where the second and last equality follows from (4.3). Replacing θ1,n(t) and θ3,n(t)
by w(t) in the SDE (5.13) yields the much cleaner SDE

̂Wn(t) = − 1

Fc(w(t))

∫ t

0
f (w(s)) ̂Wn(s) ds + 1

Fc(w(t))λ
̂G(t) + o(1). (5.16)

Note that the stochastic boundedness of ̂Wn plays a key role here because it keeps the
errors caused by the approximations in (5.15) under control.

Remark 5.2 (Formulas for time-varying arrival rate λ(t)) If the arrival rate λ(t) is a
time-varying function, then the SDEs (5.13) and (5.16) generalize to

̂Wn(t) = − 1

g̃n(t)

∫ t

0
f (θ3,n(s)) ̂Wn(s) λ(s − w(s)) ds + 1

g̃n(t)
̂G(t) + o(1)

= − 1

Fc(w(t))λ(t − w(t))

∫ t

0
f (w(s)) ̂Wn(s) λ(s − w(s)) ds

+ 1

Fc(w(t))λ(t − w(t))
̂G(t) + o(1),

where g̃n(t) ≡ Fc(θ1,n(t))λ(t − w(t)).
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Finishing the proof of the FCLT of ̂Wn In order to show that ̂Wn ⇒ ̂W , where ̂W
satisfies the SDE (4.7), we match both sides of the two SDEs (5.16) and (4.7):

∣

∣ ̂Wn(t) − ̂W (t)
∣

∣ ≤ 1

Fc(w(t))

∫ t

0
f (w(s)) |̂Wn(s) − ̂W (s)| ds + o(1)

≡
∫ t

0
|̂Wn(s) − ̂W (s)| μ̃(s) ds + o(1),

with μ̃(s) = f (w(s))/Fc(w(t)). Applying Gronwall’s inequality once again yields
that

∣

∣ ̂Wn(t) − ̂W (t)
∣

∣ ≤ e

∫ t
0 f (w(s))ds
Fc(w(t))

∫ t

0
o(1)

f (w(u))

Fc(w(t))
du + o(1),

which implies that
∥

∥̂Wn − ̂W
∥

∥

T ⇒ 0 as n → ∞.

Remark 5.3 (If we were to take the compactness approach) The key step in our new
approach is the development of the convenient SDEs (5.13) and (5.16).We remark that
our newSDE representationwill provide a simple proof even ifwewere to take the con-
ventional compactness approach. The first step of the compactness approach requires
tightness of ̂Wn , which can be shown by establishing (i) that ̂Wn is stochastically
bounded (already shown here) and (ii) that ̂Wn has controlled modulus of continu-
ity (see [36] for the necessary and sufficient condition for tightness in D). However,
our new SDE (5.16) provides a simple proof for step (ii). Indeed, with the integral
representation (5.16) for ̂Wn , the stochastic boundedness can be used to control the
modulus of continuity, that is, we can show that

∣

∣ ̂Wn(t + δ) − ̂Wn(t)
∣

∣ ≤ C(t)
∫ t+δ

t
f (w(s))

∣

∣ ̂W (s)
∣

∣ ds + o(1),

for some finite C(t). The stochastic boundedness of ̂Wn implies that
∣

∣ ̂Wn(t + δ)

−̂Wn(t)
∣

∣ is asymptotically bounded by ˜Cδ for some ˜C < ∞ for all 0 ≤ t ≤ T ,
which concludes the C-tightness for ̂W .

Next, given tightness for ̂Wn , we assume that there exists a convergent subsequence
̂Wnk . We can easily use the SDE (5.16) to show that the subsequence ̂Wnk converges
to some ̂W ∗ which solves the SDE (4.7).

5.2 FCLT for other processes

That (̂Nn, ̂Dn, ̂En, ̂Wn) ⇒ (̂N , ̂E, ̂E, ̂W ) follows from the convergence-together
theorem (see Theorem 11.4.7. of [36]) and the continuous mapping theorem. The
convergence ̂Wn ⇒ ̂W and (5.9) implies that ̂Vn ⇒ ̂V with

̂V (t) = ̂W (t + v(t))

1 − ẇ(t + v(t))
.
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We next prove the FCLT for the queue-length process ̂Qn based on the FCLT for
̂Wn and the continuous mapping theorem. First, the FWLLN implies that

Q1(t) = Q2(t) = 0, Q3(t) =
∫ t−w(t)

0
Fc(t − s)λ ds.

Following (3.8)–(3.10), as n → ∞,

̂Qn,1(t) ≡ 1√
n
Qn,1(t) ⇒ ̂Q1(t) ≡

∫ t

t−w(t)
cλF

c(t − s) dBλ(Λ(s)), (5.17)

̂Qn,2(t) ≡ 1√
n
Qn,2(t) ⇒ ̂Q2(t) ≡

∫ t

t−w(t)

∫ 1

0
1(x > F(t − s)) d̂U (Λ(s), x)

d=
∫ t

t−w(t)

√

Fc(t − s)F(t − s) dBa (Λ(s))

d= Ba

(∫ t

t−w(t)
Fc(t − s)F(t − s)λ ds

)

= Ba

(

∫ w(t)

0
Fc(u)F(u)λ du

)

,

(5.18)

̂Qn,3(t) ≡ 1√
n

(

Qn,3(t) − n Q3(t)
) = √

n
∫ t−w(t)

t−Wn(t)
Fc(t − s)λ ds

= ̂Wn(t)F
c(w(t))λ + o(1) ⇒ ̂Q3(t) ≡ ̂W (t)Fc(w(t))λ. (5.19)

Here the proofs for the convergence in (5.17) and (5.18) are similar to the proof
of Lemma 5.1. Note that ̂Q3 in (5.19) involves ̂W given in (4.16), which involves
stochastic integrals with respect toBλ and ̂E , and theKiefer integral of ̂U (or Brownian
motion Ba). A careful analysis reveals that the Kiefer integral of ̂E2 in Lemma 5.1
involves ̂U in the time interval [0, t − w(t)], while ̂Q2 in (5.18) involves ̂U in [t −
w(t), t]. So ̂Q2 and ̂Q3 are independent because a Kiefer process has independent
increments with respect to the first (time) component. Similarly, because ̂E1 in Lemma
5.1 involves Bλ in [0, t − w(t)], while ̂Q1 in (5.17) involves Bλ in [t − w(t), t], ̂Q1
and ̂Q3 are independent. In summary, all three terms ̂Q1, ̂Q2 and ̂Q3 are independent.

The above analysis enables us to obtain an alternative representation for ̂Q by
regrouping the integrals, writing ̂Q as a sum of three new independent integrals:

̂Q(t) =
∫ t

0
Kλ(t, u) dBλ(Λ(u)) +

∫ t

0
Ka(t, u) dBa(u) +

∫ t

0
Ks(t, u) d̂E(u),

where the integrands Kλ(t, u), Ka(t, u) and Ks(t, u) are analytic functions, with
Kλ(t, u) and Ka(t, u) being piecewise functions (having different forms for 0 ≤
u ≤ t − w(t) and t − w(t) ≤ u ≤ t). This alternative formula nicely separates the
variabilities in the arrival process (through Bλ), abandonment times (through Ba or
̂U ) and service times (through ̂E).
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Appendix

A Additional Proofs

A.1 Proof of Proposition 3.1

To make sure (3.11) is well defined and to be able to characterize its distribution, we
define a sequence of discrete versions of (3.11), that is, {L(m) : m ≥ 1}, where

L(m)(t) ≡
m−1
∑

i=0

J (t, ui ) (Z(ω, ui+1) − Z(ω, ui )) , t ≥ 0, (A.1)

for a given partition on the interval [0, t], 0 = u0 < u1 < · · · < um = t . Suppose
ω ∈ Ω is such that (Z(ω, t) : t ≥ 0) has Hölder continuous sample paths. For
simplicity, we suppress ω hereafter. For m > 0, consider the partition 0 = u0 < u1 <

· · · < um = t and

L(m)(t) =
m−1
∑

i=0

J (t, ui ) (Z(ui+1) − Z(ui ))

=
m
∑

i=1

J (t, ui−1)Z(ui ) −
m−1
∑

i=0

J (t, ui )Z(ui )

=J (t, um−1)Z(um) − J (t, 0)Z(0)

−
m−1
∑

i=1

[

J (t, ui ) − J (t, ui−1)
]

Z(ui ). (A.2)

Because Z(t) is continuous, the summation converges to the Riemann–Stieltjes inte-
gral as the partition mesh goes to 0 if J (t, u) is monotone in the second component
for each t . Moreover, if J (t, u) is differentiable for each t , we can replace the inte-
grator dJ (t, u) of the Riemann–Stieltjes integral with Ju(t, u)du, where the subscript
denotes derivative with respect to the second component. The Riemann–Stieltjes inte-
gral is well defined if the derivative as a function of u for fixed t is continuous. (In
general, finitely many jumps are allowed.) Therefore,

∫ t

0
J (t, u) dZ(u) ≡ lim

m→∞ L(m)(t)
a.s.= J (t, t)Z(ω, t) − J (t, 0)Z(ω, 0)

−
∫ t

0
Z(ω, u) dJ (t, u).
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Moreover, with Δ ≡ max{ui − ui−1 : 1 ≤ i ≤ m}, we have
m−1
∑

i=1

[

J (t, ui ) − J (t, ui−1)
]

Z(ui ) −
∫ t

0
Ju(t, u)Z(u) du

=
m−1
∑

i=1

∫ ui

ui−1

[

J (t, ui ) − J (t, ui−1)

ui − ui−1
− Ju(t, u)

]

(Z(u) − Z(ui )) du

≤ 1

Δ
· c1Δ · c2Δα → 0

as Δ → 0, where the inequality holds because Ẑ has Hölder continuous sample paths
and J (t, u) is differentiable with respect to the second component.

We prove Proposition 3.1 in two steps. First, we show in Lemma A.1 that if the
sequence of covariance functions associated with the processes {L(m) : m ≥ 1}
converges to some limit function, then the sequence {L(m) : m ≥ 1} converges in
distribution to a Gaussian process. Moreover, the covariance function of the limit
Gaussian process coincides with the limit of the covariance function associated with
{L(m) : m ≥ 1}. Then, in the second step, we show that the covariance functions
associated with {L(m) : m ≥ 1} indeed converge.

Lemma A.1 Let X (m) ≡
(

X (m)
1 , . . . , X (m)

l

)

be a sequence of centered Gaussian

random vector in R
l and let Σ(m) be the covariance matrix of X (m). If Σ(m) → Σ

as m → ∞, then X (m) ⇒ X, where the limit X is Gaussian with mean zero and
covariance Σ .

Proof Consider the characteristic function φm(θ) ≡ E

[

eiθ
T X (m)

]

of the vector X (m).

The convergence Σ(m) → Σ implies the convergence of characteristic functions

φm(θ) = e− 1
2 θT Σ(m)θ → φ(θ) ≡ e− 1

2 θT Σθ

due to continuity of φm . Then the result follows from Lévy’s continuity theorem. ��
We next show that the covariance functions associated with the sequence {L(m) :

m ≥ 1} in (A.1) converge. We consider a partition of the interval [0, t2] such that there
are a total of m2 intervals partitioning [0, t2] and m1 intervals partitioning [0, t1]. We
use the form in (A.2) to compute the covariance of L(m)(t). Let CZ (·, ·) be the covari-
ance function associated with the process Z . Then, for 0 ≤ t1 < t2 and the partition
0 = s0 < s1 < · · · < sm1−1 < sm1 = t1 < sm1+1 < · · · < sm2−1 < sm2 = t2,

E[L(m)(t1)L
(m)(t2)]

= E

[(

J (t1, sm1−1)Z(t1) − J (t1, 0)Z(0) −
m1−1
∑

i=1

(J (t1, si ) − J (t1, si−1))Z(si )

)

×
(

J (t2, sm2−1)Z(t2) − J (t2, 0)Z(0) −
m2−1
∑

i=1

(J (t2, si ) − J (t2, si−1))Z(si )

)]
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= J (t1, sm1−1)J (t2, sm2−1)CZ (t1, t2) + J (t1, 0)J (t2, 0)CZ (0, 0)

− J (t2, sm2−1)J (t1, 0)CZ (0, t2) − J (t1, sm1−1)J (t2, 0)CZ (0, t1)

−
m1−1
∑

i=1

J (t2, sm2−1)(J (t1, si ) − J (t1, si−1))CZ (si , t2)

+
m1−1
∑

i=1

J (t2, 0)(J (t1, si ) − J (t1, si−1))CZ (0, si )

−
m2−1
∑

i=1

J (t1, sm1−1)(J (t2, si ) − J (t2, si−1))CZ (t1, si )

+
m2−1
∑

i=1

J (t1, 0)(J (t2, si ) − J (t2, si−1))CZ (0, si )

+
m1−1
∑

i=1

m2−1
∑

j=1

(J (t1, si ) − J (t1, si−1))(J (t2, s j ) − J (t2, s j−1))CZ (si , s j ).

Convergence of the first four terms follows from continuity of u �→ J (t, u) for each
fixed t as sm1−1 → t1 and sm2−1 → t2 as m → ∞. Convergence of the last four sum-
mations follows from the fact that CZ is bounded over compact intervals and J (t, u)

is differentiable and, therefore, bounded for each t over compact intervals. Hence the
limits of these terms are the Riemann–Stieltjes integrals given in (3.13). Finally, the
last summation term converges to the two-dimensional Riemann–Stieltjes integral in
(3.13) due to similar reasoning. ��

A.2 Proof of Theorem 4.1

We first establish a FWLLN for Wn following the compactness approach, i.e., (i) the
sequence Wn is C-tight, which implies that every subsequence has a convergent sub-
sequence with a limit in C; and (i i) every convergent subsequence converges to the
same limit, which in our case uniquely solves the ODE in (4.2). Finally, we establish
convergence for the other processes and characterize their limits. We remark that the
tightness for Wn is quite straightforward, but the tightness for the CLT-scaled pro-
cesses (for example, ̂Wn) is complicated (which is why we adopt a new approach to
prove the FCLT).

The proof closely follows the arguments in [24] and Sect. 6.6 of [26]. We, hereby,
redo the steps therein for the new representation of the enter-service process En ; we use
the decomposition in (3.3)–(3.6) that is different than the expressions for En in [26].

Tightness of {Wn} To prove tightness, first we show thatWn is stochastically bounded
and then show that Wn has controlled modulus of continuity, that is, for each T > 0
and ε > 0,

lim
δ↓0 lim sup

n→∞
P(w(Wn, δ, T ) > ε) = 0, (A.3)
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where w(Wn, δ, T ) is the modulus of continuity of Wn , i.e., sup{w(Wn, [t1, t2]) : 0 ≤
t1 < t2 ≤ (t1 + δ) ∧ T } with w(Wn, A) ≡ sup{Wn(s1) − Wn(s2) : s1, s2 ∈ A}.

The stochastic boundedness is obvious, because, in any finite interval [0, T ], we
immediately see that HOL satisfies 0 ≤ Wn(t) ≤ T for all n ≥ 1, t ∈ [0, T ].

To treat the modulus of continuity, we first see that Wn(t + δ) − Wn(t) ≤ δ for
δ > 0 and 0 ≤ t ≤ T , because the HWT can increase at most at rate 1. Therefore, it
remains to find a bound on Wn(t) − Wn(t + δ). To this end, define

Ēn,3(t, δ) ≡ Ēn,3(t + δ) − Ēn,3(t) =
∫ t+δ−Wn(t+δ)

t−Wn(t)
Fc(Vn(s))λ ds. (A.4)

Because the ccdf Fc(x) > 0 for all x ≥ 0, let c ≡ inf x∈[0,T ]{Fc(x)} > 0. Hence,
the integrand in (A.4) is bounded below by a constant cλ > 0, which yields a lower
bound on Ēn,3(t, δ):

Wn(t) − Wn(t + δ) + δ ≤ Ēn,3(t, δ)

cλ
, t ≥ 0.

From the FCLT in Theorem 2 of [35], we know that D̄n(t) ⇒ D(t) = μt so that
Ēn,3(t) → E3(t) = D(t) = μt . Therefore, we have lim supn→∞{Wn(t) − Wn(t +
δ)} ≤ μδ/cλ so that

lim sup
n→∞

|Wn(t + δ) − Wn(t)| ≤ c∗δ, c∗ ≡ max (μ/cλ, 1) . (A.5)

Hence, Wn is tight. In addition, (A.5) also implies that the limit of every convergent
subsequence of Wn is in C and is Lipschitz continuous.

Limit of Convergent Subsequence of {Wn} The C-tightness implies that every subse-
quence of Wn has a convergent subsequence. Let Wnk be a convergent subsequence
with the limit w∗, i.e., Wnk ⇒ w∗. From (2.3) and (2.4), we deduce that the PWT on
the subsequence also converges, that is, Vnk ⇒ v∗, with the limit v∗ satisfying

v∗(t) = w∗(t + v∗(t)) and v∗(t − w∗(t)) = w∗(t), t ≥ 0. (A.6)

We now show thatw∗ solves the ODE (4.2). On the one hand, the FCLT in Theorem
2 of [35] implies that (Ēn, D̄n) ⇒ (D, D) with D(t) = μt . On the other hand, (3.3)
implies that Ēn along the subsequence associated with Wnk and Vnk converges to a
limit E∗. Specifically,

Ēnk (t) ⇒ E∗(t) = E∗
3 (t) ≡

∫ t−w∗(t)

0
Fc(v∗(s))λ ds = D(t) = μt. (A.7)

Because the prelimit process is C-tight, we know the derivative ẇ∗(t) exists. Taking
derivative in (A.7) yields
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μ = (1 − ẇ∗(t))Fc(v∗(t − w∗(t)))λ = (1 − ẇ∗(t))Fc(w∗(t))λ, (A.8)

which coincides with the ODE (4.2).

FWLLN for the other processes To prove full convergence of Vn , we write

|Vn(t − Wn(t)) − v(t − w(t))|
≤ |Vn(t − Wn(t)) − Vn(t − w(t))| + |Vn(t − w(t)) − v(t − w(t))|
= |Wn(t) − w(t) + O(1/n)| + |w(t) + O(1/n) − w(t)|
≤ |Wn(t) − w(t)| + O(1/n) (A.9)

Apply the change of variable to (A.9) with un ≡ t −Wn(t) and u ≡ t −w(t) to obtain

‖Vn − v‖ ≤ ‖Wn − w‖
γ

+ O(1/n) = O(1/n) (A.10)

for a constant γ > 0, where the equality holds because un = u + o(1).
The limit of the sequences of processes (3.8)–(3.10) can be obtained the same way

it is done in [26], which makes use of Theorem 3.1. of [31] and then applies the
continuous mapping theorem given Wn ⇒ w. From (6.17) of [26], we immediately
write

Q̄n,i ⇒ 0 for i = 1, 2; Q̄n,3 ⇒ Q3(t) ≡
∫ t

t−w(t)
Fc(t − s)λ ds, as n → ∞.

(A.11)

A.3 Proof of Theorem 4.3

The expressions for C
̂W1

(t, t ′) and C
̂W2

(t, t ′) are obtained by applying rules of the Itô
integral. Derivation of these functions follows from standard arguments and therefore
the details are omitted.

To compute C
̂W3

(t, t ′) we make use of (3.13) with J (t, u) ≡ H(t, u)/q(u, w(u)),
where H(t, u) and q(u, w(u)) are as in (4.17). In particular, for 0 ≤ t < t ′,

C
̂W3

(t, t ′) =J (t, t)J (t ′, t ′)CE (t, t ′) −
∫ t ′

0
J (t, t)Ju(t

′, u)CE (t, u)du

−
∫ t

0
J (t ′, t ′)Ju(t, u)CE (t ′, u)du

+
∫ t

0

∫ t ′

0
Ju(t, u)Jv(t

′, v)CE (u, v)dvdu

= 1

λ2Fc(w(t))Fc(w(t ′))
CE (t, t ′) − 1

λFc(w(t))

∫ t ′

0
Ju(t

′, u)CE (t, u)du
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− 1

λFc(w(t))

∫ t

0
Ju(t, u)CE (t ′, u)du

+
∫ t

0

∫ t ′

0
Ju(t, u)Jv(t

′, v)CE (u, v)dvdu,

where Ju(t, u) is as in (4.20).
We next derive the covariance function for the limit queue-length process. First,

C
̂Q1

(t, t ′) can be obtained from isometry property of the Itô integral. The function
C
̂Q2

(t, t ′) can be obtained by ̂U (λs, y) = W(λs, y) − yW(λs, 1), where W(·.·) is a
two-dimensional Brownian motion. We refer interested readers to the long version of
[31] and the references therein for a definition of the Kiefer process and of stochastic
integrals with respect to two-parameter martingales. The last term easily follows by
definition. ��

A.4 Proof of Lemma 4.1

First, we prove the existence of ˜E(t). It suffices to show that for any n ≥ 1 and −t1 <

−t2 < ... < −tn ≤ 0, the matrix M = (˜C(−ti ,−t j ))ni, j=1 is nonnegative definite. Let
r1 = t1 and r j = t j−1− t j for j = 2, ..., n, and define N = (CE (ri , r j ))ni, j=1. For any

z = (z1, z2, ..., zn)T ∈ R
n , define y = (y1, y2, .., yn)T such that y1 = ∑n

i=1 zi and
y j = −∑n

i= j zi for j = 2, ..., n. Given that ˜C(t, s) = CE (−t,−t) −CE (−t, s − t),
we can compute

zT Mz =
n
∑

i=1

˜C(−ti ,−ti )z
2
i + 2

∑

1≤i< j≤n

˜C(−ti ,−t j )zi z j = yT Ny.

We shall explain how to derive the above equation for n = 2.

z21˜C(−t1,−t1) + 2z1z2˜C(−t1,−t2) + z22˜C(−t2,−t2)

= z21CE (r1, r1) + 2z1z2(CE (r1, r1) − CE (r1, r2)) + z22CE (r1 − r2, r1 − r2)

= z21CE (r1, r1) + 2z1z2(CE (r1, r1) − CE (r1, r2))

+ z22(CE (r1, r1) − 2CE (r1, r2) + CE (r2, r2))

= (z1 + z2)
2CE (r1, r1) − 2z2(z1 + z2)CE (r1, r2) + z22CE (r2, r2) = yT Ny.

SinceCE is the covariance function of a Gaussian process, thematrix N is nonnegative
definite and hence yT Ny ≥ 0. As the vector z is any vector in R

n , we can conclude
that M is also nonnegative definite and the existence of ˜E follows. The argument is
similar for n ≥ 3, therefore, the details are omitted.

Next we show that (4.24) holds. Since a Gaussian process is fully characterized by
its covariance function, it suffices to show that, for any fixed t > 0 and 0 ≤ r < s ≤ t ,

Cov(˜E(−t + r) − ˜E(−t), ˜E(−t + s) − ˜E(−t)) = CE (r, s).
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By our definition of ˜C(t, s), we can compute

Cov(˜E(−t + r) − ˜E(−t), ˜E(−t + s) − ˜E(−t))

= CE (t − r, t − r) − CE (t − r, s − r) + CE (t, s) + CE (t, r) − CE (t, t).
(A.12)

By the stationary increments of ̂E , we have

CE (t − r, t − r) = Var(̂E(t − r)) = Var(̂E(t) − ̂E(r))

= CE (t, t) − 2CE (t, r) + CE (r, r),

CE (t − r, s − r) = Cov(̂E(t − r), ̂E(s − r)) = Cov(̂E(t) − ̂E(r), ̂E(s) − ̂E(r))

= CE (t, s) − CE (t, r) − CE (r, s) + CE (r, r),

which along with (A.12) implies that

Cov(˜E(−t + r) − ˜E(−t), ˜E(−t + s) − ˜E(−t)) = CE (r, s).

This completes the proof. ��

A.5 Proof of Theorem 4.4

Steady state of ̂W Let N (0, σ 2) denote the normal distribution with mean 0 and
variance σ 2. First, we treat ̂W1(t) in (4.16) by applying a change of variable with
u = s + v(s). Let κ(t) be the inverse of the function β(t) = t + v(t). We write

̂W1(t) =
∫ κ(t)

κ(0)

Fc(w(s + v(s)))H(t, s + v(s))

λFc(w(t))
cλ dBλ(Λ(s + v(s) − w(s + v(s))))

=
∫ κ(t)

0

Fc(v(s))H(t, s + v(s))

λFc(w(t))
cλ dBλ(Λ(s))

d=
∫ κ(t)

0

cλ√
λ
e−hF (w)(t−s−v(s))dBλ(s)

d= ˜Bλ

(

c2λ
λ

∫ κ(t)

0
e−2hF (w)(t−s−v(s)) ds

)

d= ˜Bλ

(

c2λ
λ

∫ t

0
e−2hF (w)(t−s) dκ(s)

)

d= ˜Bλ

(

c2λ
2hF (w)λ

(

1 − e−2t hF (w)
)

)

⇒ ̂W1(∞)
d= N

(

0,
c2λ

2hF (w)λ

)

, as t → ∞,
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where the second equality follows from (4.3). Similarly, an application of Theorem
3.4.6 of [16] yields

̂W2(t) =
∫ t

0

√
F(w)√

λFc(w)
e−hF (w)(t−u)dBa(u) + o(1)

d= ˜Ba

(

F(w)

2λ f (w)

(

1 − e−2t hF (w)
)

)

⇒ ̂W2(∞)
d= N

(

0,
F(w)

2λ f (w)

)

, as t → ∞.

Next, (4.22) and (4.16) imply that

Var(̂W3(t)) = 1

λ2Fc(w)2
Var

(∫ t

0
e−hF (w)(t−u) d̂E(u)

)

= 1

λ2Fc(w)2
Var

(

−e−hF (w)t
˜E(−t) −

∫ t

0
hF (w)e−hF (w)s

˜E(−s)ds

)

= 1

λ2Fc(w)2

[

e−2hF (w)t
˜C(−t,−t)

+ 2hF (w)e−hF (w)t
∫ t

0
e−hF (w)s

˜C(−s,−t)ds

+ 2hF (w)2
∫ t

0

∫ x

0
e−hF (w)(x+y)

˜C(−x,−y)dydx

]

, (A.13)

where the second equality follows from (4.24). Note that ˜C(−t,−s) = Cov(˜E(−s),
˜E(−t)) ≤

√

Var(˜E(t))Var(˜E(s)) =
√

Var(̂E(t))Var(̂E(s)). As Var(̂E(t)) = O(t2)
as t → ∞, we can conclude that ˜C(−t,−s) = O(st) as s, t → ∞. As a result, the
first term in (A.13) is O(e−2hF (w)t t2) → 0 and the second term is O(e−hF (w)t t2) → 0
as t → ∞. Hence, we conclude that

̂W3(t) ⇒ ̂W3(∞)
d= N (0, σ 2

W3
), as t → ∞,

where

σ 2
W3

≡ 2
hF (w)2

λ2Fc(w)2

∫ ∞

0

∫ x

0
e−hF (w)(x+y)

˜C(−x,−y)dydx, (A.14)

and ˜C(·, ·) is as defined in Lemma 4.1.
Finally, by independence, we conclude that

̂W (t) ⇒ ̂W (∞) ≡ ̂W1(∞) + ̂W2(∞) + ̂W3(∞)
d= N

(

0, σ 2
W

)

, as t → ∞,

where σ 2
W ≡ c2λ

2hF (w)λ
+ F(w)

2λ f (w)
+ σ 2

W3
.
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Steady state of ̂Q We next characterize the steady state for the queue-length process.

̂Q1(t) = cλ

∫ t

t−w

Fc(t − s)dBλ(Λ(s))
d= cλ

√
λ

∫ w

0
Fc(w − s)dBλ(t − w + s)

d= cλ

√
λ

∫ w

0
Fc(w − s)dBλ(s) ⇒ ̂Q1(∞)

d= N (0, σ 2
Q1

), as t → ∞,

where σ 2
Q1

≡ λ c2λ

∫ w

0
Fc(u)2du. (A.15)

Next, the expression in (5.18) implies that, as t → ∞,

̂Q2(t)
d= Ba

(

∫ w(t)

0
Fc(u)F(u)λ du

)

⇒ ̂Q2(∞)
d= N (0, σ 2

Q2
),

where σ 2
Q2

≡ λ
∫ w

0 F(u)Fc(u) du. Finally, (4.10) yields that

̂Q3(t) = λ Fc(w) ̂W (t) ⇒ ̂Q3(∞) ≡ λ Fc(w) ̂W (∞)

d= N
(

0, σ 2
Q3

)

, as t → ∞,

where σ 2
Q3

≡ λ2Fc(w)2σ 2
W .

The independence of ̂Q1,̂Q2 and ̂Q3 yields

̂Q(t) ⇒ ̂Q(∞)
d= N

(

0, σ 2
Q

)

, as t → ∞, where σ 2
Q ≡ σ 2

Q1
+ σ 2

Q2
+ σ 2

Q3
.

A.6 Proof of Corollary 4.2

Remaining service times are exponentially distributed due to lack of memory if the
service-time distribution is exponential. Consequently, service completions at each
server are a Poisson process with constant rate μ > 0, which implies by [35] that
the sequence ̂En converges to a centered Gaussian process with covariance function
CE (s, t) = μ(s ∧ t) for s, t ≥ 0. Then (4.23) becomes ˜C(−x,−y) = μ(x ∨ y) −
μ|x − y| for x ≥ 0, y ≥ 0. Consequently, (A.14) becomes

σ 2
W3

= 2
hF (w)2

λ2Fc(w)2

∫ ∞

0

∫ x

0
e−hF (w)(x+y)μy dydx

= 2
hF (w)2

λ2Fc(w)2

∫ ∞

0
μe−hF (w)x

∫ x

0
ye−hF (w)y dydx

= 2
hF (w)2

λ2Fc(w)2

∫ ∞

0
μe−hF (w)x

(

− x

h
e−hF (w)x + 1

h2

(

1 − e−hF (w)x
)

)

dx

= 2
hF (w)2

λ2Fc(w)2

( −μ

hF (w)

∫ ∞

0
xe−2hF (w)xdx
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+ μ

hF (w)2

∫ ∞

0
e−hF (w)x

(

1 − e−hF (w)x
)

dx

)

= 2
hF (w)2

λ2Fc(w)2

( −μ

2hF (w)2

1

2hF (w)
+ μ

hF (w)3
− μ

2hF (w)3

)

= 1

2λ f (w)
.

Summing up σ 2
W3

with σ 2
Wi

(∞) for i = 1, 2 yields (4.27).

The variance σ 2
W3

for the M/M/n + M queue can be immediately obtained by

letting c2λ = 1 and hF (w) = θ in (4.27). Finally, we obtain σ 2
Q in (4.28) as follows:

σ 2
Q(∞) = λ

∫ w

0
Fc(u)2 du + λ

∫ w

0
F(u)Fc(u)2 du + λ2Fc(w)2σ 2

W

= λ

∫ w

0
Fc(u) du + λ2Fc(w)2σ 2

W = λ

θ
(1 − e−θw) + λ

θ
· 1
ρ

= λ

θ
,

where the last equality holds becausew = F−1 (1 − 1/ρ), so that 1−1/ρ = F(w) =
1 − e−θw. ��

A.7 Proof of Lemma 5.1

A.7.1 Proof of the convergence in (5.2)

We consider the modified processes ̂E
′
n,1(t) given below. We first prove convergence

for the sequence ̂E
′
n,1 and then show that the difference between themodified sequence

̂E
′
n,1 and the desired sequence ̂En,1 is asymptotically negligible (see (A.18)), which

proves the desired convergence in (5.2).
Now define, for t ≥ 0,

̂E
′
n,1(t) ≡ 1√

n
E

′
n,1(t) =

∫ t−w(t)

0
Fc(v(s)) d̂Nn(s)

= Fc(v(t − w(t)))̂Nn(t − w(t)) − Fc(v(0))̂Nn(0)

−
∫ t−w(t)

0

̂Nn(s−) dFc(v(s))

= Fc(w(t))̂Nn(t − w(t)) − ̂Nn(0) −
∫ t

0

̂Nn(s − w(s)) dFc(w(s)).

(A.16)

The second equality holds by integration by parts. The last equality follows from (4.3).
Next we define a mapping ψ : D → D such that, for z ∈ D,

ψ(z)(t) ≡ Fc(w(t))z(t) − z(0) −
∫ t

0
z(s) dFc(w(s)), 0 ≤ t ≤ T .
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We now prove that the mapping ψ is continuous in D. Let {xn} be a sequence in D
such that ‖xn − x‖T → 0. Then

|ψ(xn)(t) − ψ(x)(t)|
=
∣

∣

∣

∣

Fc(w(t))xn(t) − xn(0) −
∫ t

0
xn(s) dF

c(w(s))

− Fc(w(t))x(t) + x(0) +
∫ t

0
x(s) dFc(w(s))

∣

∣

∣

∣

≤ Fc(w(t))|xn(t) − x(t)| + |xn(0) − x(0)|
+ ‖xn − x‖T

∣

∣

∣

∣

∫ t

0
dFc(w(s))

∣

∣

∣

∣

≤ 4 ‖xn − x‖.

Hence the mapping ψ is continuous. In general, proving convergence with respect to
the uniform topology does not necessarily imply J1 convergence because there may
be measurability issues (see, for example, [6,36]). However, we will be interested in
the case where the limit x is continuous, i.e., x ∈ C. Therefore, we will not have
any measurability issues and obtain the desired convergence in D with respect to
Skorokhod’s J1 metric.

Convergence of the modified process in (A.16) follows by the continuous map-
ping theorem with composition. In particular, let Zn(t) ≡ ̂Nn(t − Wn(t)). Then
Zn : [0, T ] → R and Zn ⇒ Z , where Z(t) ≡ ̂N (t − w(t)). Convergence of
{Zn} follows from the continuous mapping theorem with composition. Then we have
n−1/2

˜En,1(t) = ψ(Zn)(t) ⇒ ψ(Z)(t) in D with

ψ(Z) ≡
∫ t

0
Fc(w(s)) d̂N (s − w(s)) ≡ Fc(w(t))̂N (t − w(t)) − ̂N (0)

−
∫ t

0

̂N (s − w(s)) dFc(w(s))

=Fc(w(t))cλBλ(Λ(t − w(t))) − cλBλ(0)

−
∫ t

0
cλBλ(Λ(s − w(s))) dFc(w(s)).

Finally, to establish (5.2), we show that the difference between the processes
n−1/2En,1(t) and n−1/2E

′
n,1(t) is asymptotically negligible. In particular,

∣

∣

∣

̂En,1(t) − ̂E
′
n,1(t)

∣

∣

∣ (A.17)

= 1√
n

∣

∣

∣

∣

∣

∫ t−Wn(t)

0
Fc(Vn(s−)) d̂Nn(s) −

∫ t−w(t)

0
Fc(v(s)) d̂Nn(s)

∣

∣

∣

∣

∣

≤ 1√
n

∣

∣

∣

∣

∣

∫ t−Wn(t)

t−w(t)
Fc(Vn(s−)) d̂Nn(s)

∣

∣

∣

∣

∣

+ 1√
n

∫ t−w(t)

0

∣

∣Fc(Vn(s−)) − Fc(v(s))
∣

∣ d̂Nn(s)
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≤ 1√
n

∣

∣̂Nn(t − Wn(t)) − ̂Nn(t − w(t))
∣

∣+ 1√
n

∣

∣̂Nn(t − w(t)) − ̂Nn(0)
∣

∣⇒ 0.

(A.18)

A.7.2 Proof of the convergence in (5.3)

To prove convergence in (5.3), we apply the martingale FCLT in [32] (see also [9,14]
for applications of the martingale FCLT). First we define a sequence of discrete-time
processes (see (A.19)) and argue that it is a sequence of martingales adapted to a
specific filtrationH n

k as defined below. Next, we define continuous-time martingales
using the discrete-time martingales in (A.19). Then we invoke Theorem 7.1.4. on
p.339 in [10] to establish convergence and characterize the limit.

Consider the discrete-time processes

̂Hn
k ≡ 1√

n

k
∑

i=1

(

1(γ n
i > wn

i ) − Fc(wn
i )
)

for k = 1, 2, . . . . (A.19)

Also, consider the filtration H n
k ≡ σ {τ ni+1, ν

n
i , γ n

i : 1 ≤ i ≤ k}. Then E[|̂Hn
k |] ≤

k/
√
n and

E[Hn
k − Hn

k−1|H n
k−1] = 1√

n

(

E[1(γ n
k > wn

k )|H n
k−1] − Fc(wn

k )
) = 0,

which implies that the process {(̂Hn
k ,H n

k ) : k ≥ 1} is a discrete-time martingale for
each n ≥ 1.

Our next step is to replace k with �nt� for t ≥ 0 to obtain a continuous-time
martingale. By a direct application of Lemma4.2 of [9],we deduce that the continuous-
time process (̂Hn(t),H n(t) : t ≥ 0) ≡ (̂Hn�nt�,H n�nt� : t ≥ 0) is a martingale with
quadratic variation

〈̂Hn〉(t) = 1

n

�nt�
∑

i=1

(

1(γ n
i > wn

i ) − Fc(wn
i )
)2

. (A.20)

We next show that the sequence of martingales (̂Hn(t),H n(t) : t ≥ 0) satisfies the
conditions of Theorem 7.1.4. of [10]. In particular, it is required that (i) jumps of
the processes ̂Hn(y) are asymptotically negligible and (i i) the quadratic quadratic
variation of the processes converges in probability to a limit characterized in Theorem
7.1.1. of [10].

(i)Negligibility of jumps.We now show that condition (a) of Theorem 7.1.4. holds.
Let ̂Hn(t−) ≡ lims↑t ̂Hn(s). Then, for each T > 0, we have sup0≤t≤T |̂Hn(t) −
̂Hn(t−)| ≤ 1/

√
n and hence
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lim
n→∞E

[

sup
0≤t≤T

|̂Hn(t) − ̂Hn(t−)|
]

= 0,

which is the desired condition.
(i i)Convergence of quadratic variations.Wenow prove that the quadratic variation

processes given in (A.20) converges in the L2 sense as n → ∞. In particular,

E

⎡

⎢

⎣

⎛

⎝

1

n

�nt�
∑

i=1

(

1(γ n
i > wn

i ) − Fc(wn
i )
)2 −

∫ Λ−1(t)

0
Fc(v(u))Fc(v(u)) dΛ(u)

⎞

⎠

2
⎤

⎥

⎦

≤ 2E

⎡

⎢

⎣

⎛

⎝

1

n

�nt�
∑

i=1

[

(

1(γ n
i > wn

i ) − Fc(wn
i )
)2 − Fc(wn

i )F(wn
i )
]

⎞

⎠

2
⎤

⎥

⎦

+ 4E

⎡

⎢

⎣

⎛

⎝

1

n

�nt�
∑

i=1

[

Fc(wn
i )F(wn

i ) − Fc(v(τ ni −))F(v(τ ni −))
]

⎞

⎠

2
⎤

⎥

⎦

+ 4E

⎡

⎣

⎛

⎝

1

n

�nt�
∑

i=1

Fc(v(τ ni −))F(v(τ ni −))

−
∫ Λ−1(t)

0
Fc(v(u−))F(v(u−)) dΛ(u)

)2
⎤

⎦

≤ 2

n2

�nt�
∑

i=1

E

[

(

1(γ n
i > wn

i ) − Fc(wn
i )
)2
(

F(wn
i ) − Fc(wn

i )
)2
]

+ 2

n2
E

∑

i �= j

[

(

1(γ n
i > wn

i ) − Fc(wn
i )
)

(

1(γ n
j > wn

j ) − Fc(wn
j )
)

×
(

F(wn
i ) − Fc(wn

i )
)(

F(wn
j ) − Fc(wn

j )
)]

+ 4E

⎡

⎢

⎣

⎛

⎝

1

n

�nt�
∑

i=1

[

Fc(wn
i )F(wn

i ) − Fc(v(τ ni −))F(v(τ ni −))
]

⎞

⎠

2
⎤

⎥

⎦ (A.21)

+ 4E

⎡

⎣

⎛

⎝

1

n

�nt�
∑

i=1

Fc(v(τ ni −))F(v(τ ni −))

−
∫ Λ−1(t)

0
Fc(v(u)−)F(v(u)−) dΛ(u)

)2
⎤

⎦ . (A.22)
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The first sum vanishes as n → ∞ because the summands are bounded by 1 and,
therefore, the first term is bounded by 2�nt�/n2 → 0 as n → ∞. The summands of
the second term are independent. Therefore, the second term is equal to 0.

To prove convergence of (A.21), we first rewrite the summands of (A.21) as

Fc(wn
i )F(wn

i ) − Fc(v(τ ni −))F(v(τ ni −)) = Fc(wn
i ) − Fc(v(τ ni −))

−
(

Fc(wn
i )

2 − Fc(v(τ ni −))2
)

, (A.23)

Next we make use of the FWLLN for PWT Vn(t), i.e., Vn ⇒ v in D, and continuity
of the function F to show that (A.21) converges to 0. In particular, for all i ≥ 1,

Fc(wn
i ) = Fc(Vn(τ

n
i −)) = Fc(v(τ ni −) + o(1)).

Combining with (A.23), this implies that the summands in (A.21) can be bounded
above by

|Fc(v(τ ni −) + o(1)) − Fc(v(τ ni −))| + |Fc(v(τ ni −) + o(1))2

− Fc(v(τ ni −))2| ≤ |o(1)|,

where the inequality holds by continuity of cdf F . This implies that the squared sum
inside the expectation in (A.21) is bounded above by (|o(1)|�nt�/n)2 ≤ t2|o(1)| =
o(1) for all t ≥ 0. Convergence of (A.21) to 0 then follows from the dominated
convergence theorem.

The summation in (A.22) can be alternatively represented as

1

n

�nt�
∑

i=1

Fc(v(τ ni −))F(v(τ ni −)) =
∫ Λ−1

n (t)

0
Fc(v(u−))F(v(u−)) d N̄n(u)

⇒
∫ Λ−1(t)

0
Fc(v(u−))F(v(u−)) dΛ(u), (A.24)

where the convergence (A.24) follows from the continuous mapping theorem. Having
established the convergence in (A.24), convergence in mean square is obtained by
first applying the continuous mapping theorem with the function f (x) = x2 and then
applying the dominated convergence theorembyusing the fact that both the summation
and the limit integral in (A.24) are bounded by t . Hence (A.22) converges to 0. That
completes the proof of convergence of the quadratic variation (A.20).

Having proved conditions (i) and (i i) are indeed satisfied, by Theorem 7.1.4 of
[10], we deduce that ̂Hn ⇒ ̂H inD, where ̂H is a Gaussian process with independent
increments and continuous sample paths. Moreover, as implied by the proof of Theo-
rem 7.1.1. of [10], the limit ̂H is indeed a time-changed Brownian motion, where the
time change is the limit of the quadratic variation, i.e.,
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̂H(t) = Ba(〈̂H〉(t)) = Ba

(

∫ Λ−1(t)

0
Fc(v(u−))F(v(u−)) dΛ(u)

)

,

where Ba is the standard Brownian motion.
Finally, to complete the proof, we note that ̂En,2(t) = ̂Hn(N̄n(t − Wn(t))). Then,

by the convergence-together theorem, we have ̂Hn(N̄n) ⇒ ̂H(Λ) inD. Consequently,
as n → ∞,

1√
n

Nn(t−Wn(t))
∑

i=1

(

1(γ n
i > wn

i ) − Fc(wn
i )
)

⇒ Ba

(

∫ t−w(t)

0
Fc(v(u−))F(v(u−)) dΛ(u)

)

. (A.25)

We next verify the other two expressions in (5.3). The last expression is obtained
by a change of variable with u = s − w(s). (Note that, according to (4.3), we have
v(s − w(s)) = w(s).) The Kiefer integral expression holds because it is a Gaussian
process with zero mean and the same covariance function as the Brownian expression.
Specifically, for t, t ′ > 0, the first Brownian expression has the covariance

∫ (t−w(t))∧(t ′−w(t ′))

0
Fc(v(u))F(v(u)) dΛ(u). (A.26)

On the other hand, the Kiefer integral in (5.3) has the covariance

E

[

∫ t−w(t)

0

∫ 1

0
1(y > F(v(s)))d̂U (s, y)

×
∫ t ′−w(t ′)

0

∫ 1

0
1(y > F(v(s)))d̂U (s, y)

]

= E

[

∫ t−w(t)

0

∫ ∞

0
1(x > v(s))d̂U (s, F(x))

×
∫ t ′−w(t ′)

0

∫ ∞

0
1(x > v(s))d̂U (s, F(x))

]

=
∫ (t−w(t))∧(t ′−w(t ′))

0

∫ ∞

0
1(x > v(s))dF(x)dΛ(s)

+
∫ (t−w(t))∧(t ′−w(t ′))

0
Fc(v(s))Fc(v(s))dΛ(s)

− 2
∫ (t−w(t))∧(t ′−w(t ′))

0

∫ ∞

0
1(x > v(s))Fc(v(s))dF(x)dΛ(s)
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=
∫ (t−w(t))∧(t ′−w(t ′))

0
Fc(v(s))dΛ(s) +

∫ (t−w(t))∧(t ′−w(t ′))

0

(

Fc(v(s))
)2 dΛ(s)

− 2
∫ (t−w(t))∧(t ′−w(t ′))

0
Fc(v(s))Fc(v(s))dΛ(s)

=
∫ (t−w(t))∧(t ′−w(t ′))

0
Fc(v(s))dΛ(s) −

∫ (t−w(t))∧(t ′−w(t ′))

0

(

Fc(v(s))
)2 dΛ(s)

=
∫ (t−w(t))∧(t ′−w(t ′))

0
Fc(v(s))

(

1 − Fc(v(s))
)

dΛ(s),

which coincides with (A.26).

B Refined staffing levels

In this section, we consider a refined staffing function given by

sn ≡ �ns1 + √
ns2�, where s1, s2 > 0. (B.1)

The general form of (B.1) enables us to recover two of the staffing functions consid-
ered in [30] that, respectively, lead to the ED and ED+QED operating regimes. More
specifically, the two staffing functions in [30] are given by

nED = �(1 − γ )Rn�, (B.2)

nED+QED = �(1 − γ )Rn + δ
√

Rn�, (B.3)

where 0 < γ < 1 and Rn is the offered load, defined as Rn = nλ/μ. Letting
s1 = (1 − γ )λ/μ and s2 = 0 yields (B.2), whereas letting s1 = (1 − γ )λ/μ and
s2 = δ

√
λ/μ yields (B.3). See also [21] and Sect. 10 in [26] for time-varying versions

of the refined staffing (B.1).
We next briefly discuss the changes resulting from considering the staffing function

sn instead of n. In the previous sections, the staffing function happens to coincide with
our scaling factor n, i.e., sn = n. In this section, we let n and

√
n be the scaling factors

for FWLLN and FCLT, respectively, and let the staffing function have a more general
form sn = �ns1 + √

ns2�, where s1, s2 > 0. To indicate the processes associated with
the new staffing function, we use a superscript r , whereas to indicate the processes
associated the case where sn = n, we use notation without a superscript. Because the
arrival process is independent of the staffing level, it holds that ̂Nr

n (t) = ̂Nn(t) for all
n ≥ 1 and t ≥ 0, and hence, ̂Nr (t) = ̂N (t). The FWLLN limit and the FCLT limit
for the service-completion process, on the other hand, becomes Dr (t) = s1D(t), and
̂Dr (t) = √

s1̂D(t) + s2D(t), respectively, where ̂D(t) is a centered Gaussian process
with covariance functionCE in Theorem 4.2, and D(t) = μt as in (4.4). Hence, ̂Dr (t)
is a Gaussian process with covariance function Cr (·, ·) = s1CE (·, ·) and mean s2μt .
Consequently, the enter-service process satisfies ̂Er (t) = √

s1̂D(t) + s2μt .
The following theorem is an analog of Theorems 4.1 and 4.2 for theG/GI/n+GI

model having the refined staffing function sn in (B.1).

123

Author's personal copy



Queueing Syst

Theorem B.1 (FWLLN and FCLTwith refined staffing)Consider the G/GI/n+GI
with staffing level sn given by (B.1) and ρr = λ/μs1 > 1.

(i) Under the conditions of Theorem 4.1, an analog of joint convergence in (4.1)
holds as n → ∞, where Λr (t) = λt ,

Dr (t) = Er (t) = s1μt, wr (t) =
∫ t

0

(

1 − s1μ

λFc(wr (u))

)

du,

vr (t) = wr (t + vr (t)). (B.4)

The limits Qr (t), Xr (t) and Ar (t) have the same mathematical form as their counter-
parts in Theorem 4.1 with modified components.

(ii) Under the conditions of Theorem 4.1, an analog of joint convergence in (4.5)
holds as n → ∞, where

̂Wr (t) =
∫ t

0

Fc(wr (u))Hr (t, u)

q(t, wr (t))
cλ dBλ(Λ(u − wr (u)))

+
∫ t

0

√
λFc(vr (u))F(vr (u))Hr (t, u)

q(t, wr (t))
dBa(u)

− √
s1

∫ t

0

Hr (t, u)

q(t, wr (t))
d Ê(u) − s2μ

∫ t

0

Hr (t, u)

q(t, wr (t))
du, (B.5)

wr (t) and vr (t) are as in (B.4), Hr (·, ·) and q(·, wr (·)) are as in (4.17) with w(t)
replaced bywr (t). The virtual waiting time ̂Vr (t) and the queue-length process ̂Qr (t)
have the same mathematical forms as in (4.9) and (4.10), with w(t), v(t) and ̂W (t)
replaced by their counterparts wr (t), vr (t) and ̂Wr (t). The FCLT limit for the aban-
donment process is ̂Ar (t) = ̂N (t) − ̂Qr (t) − ̂Er (t).

Proof of Theorem B.1 The proof closely follows the arguments in the proofs of The-
orem 4.1, Theorem 4.2, Corollary 4.1 and Theorem 4.4. Therefore, we mostly refer to
proofs of those results in the proofs below and argue in what way the new staffing func-
tion sn = �ns1 + √

ns2� changes the arguments. We skip lengthy details. Throughout
this subsection, the processes with a superscript r correspond to those associated with
staffing level sn , whereas the processes without a superscript r correspond to those
associated with staffing level n.

The LLN- and CLT-scaled departure process

D̄r
n(t) ≡

∑sn
j=1 Dj (t)

n
= sn

n
·
∑sn

j=1 Dj (t)

sn
⇒ Dr (t) ≡ s1D(t) = s1μt, (B.6)

̂Dr
n(t) ≡

∑sn
j=1 Dj (t) − nDr (t)√

n
=

√
sn√
n

·
∑sn

j=1 Dj (t) − snμt√
sn

+ snμt − nDr (t)√
n

=
√

s1 + s2√
n

·
∑sn

j=1 Dj (t) − snμt√
sn

+ s2μt + O(1/
√
n) ⇒ ̂Dr (t)

≡ √
s1̂D(t) − s2μt, (B.7)
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where O(1/
√
n) in the second equality accounts for the error caused by dropping �·�

in sn , and ̂D(t) is the Gaussian process in Theorem 4.2. Hence, we deduce from (B.7)
that D̂r (t) is a Gaussian process with negative drift −s2μt and covariance function
Cr (·, ·) = s1CE (·, ·), with CE being the covariance function in Theorem 4.2.

Having obtained the modified fluid limits in (B.6) and established the joint con-
vergence, we deduce that the proof in Sect. A.2 continues to hold with minor
modifications. But the limit in (A.7) changes because the fluid limit of the depar-
ture process is now given by Dr (t) = s1μt . Consequently, the ODE in Theorem 4.1
has s1μt in the numerator instead of μt .

Similarly, given the joint convergence (̂Nr
n ,
̂Dr
n,
̂Er
n) ⇒ (̂Nr , ̂Dr , ̂Er ), we can

prove the FCLT with a slightly modified proof. The arguments in Sect. 5 continue to
hold for modified fluid limits and cause only minor changes in the final expressions. In
particular, (5.4)–(5.7) have the same mathematical form with fluid limits and prelimit
stochastic process replaced with their counterparts with a superscript r . Hence the
steps of the proof in Sect. 5.1.2 can be replicated with counterpart processes. The
only step that requires careful treatment is that the limit of the enter-service process
is now ̂Er (t) ≡ √

s1̂E(t) − s2μt . Since the additional term −s2μt is deterministic
and

√
s1̂E(t) is a centered Gaussian process, we can use similar arguments to proof

of Corollary 4.1 to deduce that (B.5) is indeed the desired solution. ��
Note that (B.5) is different than (4.16) in that the third term on the right-hand side

is scaled by
√
s1 and that there is an additional deterministic term. This implies that

both the variance and mean of HWT change and so do those of the PWT and queue
length. The corresponding steady-state formulas are given in the following corollary.

Corollary B.1 (Steady state of limits with refined staffing) Under the assumptions of
Theorem 4.4, the steady-state random variables Ŵ r (∞), V̂ r (∞) and Q̂r (∞) have
Gaussian distributions with means and variances given below:

μWr ≡ E
[

̂Wr (∞)
] = E

[

̂V r (∞)
] = − s2μ

λ f (wr )
,

E
[

̂Qr (∞)
] = λFc(wr )E

[

̂Wr (∞)
] = − s2μ

hF (wr )
,

Var(̂Wr (∞)) = Var(̂V r (∞)) ≡ σ 2
Wr ≡ c2λ

2hF (wr )λ
+ F(wr )

2λ f (wr )
+ s1σ

2
Wr

3
,

where σ 2
Wr

3
≡ 2

hF (wr )2

λ2Fc(wr )2

×
∫ ∞

0

∫ x

0
e−hF (wr )(x+y)

˜C(−x,−y) dydx,

the covariance function ˜C(−x,−y) is as in (4.23), and wr = F−1(1 − 1/ρr ). The
variance of the steady-state queue length ̂Q(∞) has the same mathematical form with
w and ̂W replaced by wr and ̂Wr .

Remark B.1 (Optimal staffing problems)Heavy-traffic FWLLN and FCLT limits have
proven useful in solving optimal staffing problems with respect to service-level con-
straints in large scale service systems [4,30]. A general framework for this type of
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approach has two steps: First, a corresponding optimal staffing problem is formulated
and solved using analytic FWLLN or FCLT limits (which are often more convenient
than their corresponding stochastic versions); Next, an asymptotic optimality result
is established by showing that the FWLLN- or FCLT-based optimal staffing problem
is asymptotically equivalent to its desired stochastic version as the scale n → ∞.
We advocate that our new FCLT limit with refined staffing functions provides a basis
for solving optimal staffing problems in G/GI/n + GI queueing systems (note that
two control factors s1 and s2 for the staffing function are preserved in the limit). For
example, in the FCLT-based optimal staffing problem, we may choose the optimal
s∗
1 and s∗

2 in order to minimize certain performance functions, for example, the mean
waiting time, queue length, or abandonment probability; see the formulation in [4].
We leave this to future research.

Proof of Corollary B.1 We first derive the mean of ̂W (∞) from (B.5). Since the first
three terms in (B.5) have zero means, E[̂W (∞)] is the limit of the last term in (B.5)
as t → ∞:

E[̂Wr (∞)] = lim
t→∞ −s2μ

∫ t

0

Hr (t, u)

q(t, wr (t))
du = lim

t→∞ −s2μ
∫ t

0

e−hF (wr )(t−u)

λFc(wr )
du

= lim
t→∞

−s2μ

λ f (wr )

(

1 − e−hF (wr )t
)

.

Having establishedE[̂W (∞)], it is easy to establishE[̂V (∞)] andE[̂Q(∞)] by letting
t → ∞ in

̂V r (t) = ̂Wr (t)

1 − ẇr (t + vr (t))
and ̂Qr (t) = λFc(wr (t))̂Wr (t).

Computation of variance is standard and as given in Sect. A.4. ��
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