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Abstract

Analytic formulas are developed to set the time-dependent number of servers in order 
to stabilize the tail probability of customer waiting times for the Gt/GI/st +GI queueing 
model, which has a non-stationary non-Poisson arrival process (the Gt), non-exponential 
service times (the first GI), and allows customer abandonment according to a non-
exponential patience dis-tribution (the +GI). Specifically, for any delay target w > 0 and 
probability target α ∈ (0, 1), we determine appropriate staffing levels (the st) so that the 
time-varying probability that the waiting time exceeds a maximum acceptable value w is 
stabilized at α at all times. In addition, effective approximating formulas are provided for 
other important performance functions such as the probabilities of delay and 
abandonment, and the means of delay and queue length. Many-server heavy-traffic limit 
theorems in the efficiency-driven regime are developed to show that

(i) the proposed staffing function achieves the goal asymptotically as the scale increases, and
(ii) the proposed approximating formulas for other performance measures are asymptotically
accurate as the scale increases. Extensive simulations show that both the staffing functions and
the performance approximations are effective, even for smaller systems having around 3 servers.
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Acronym Meaning

ccdf complementary cumulative distribution function
cdf cumulative distribution function
DIS delayed infinite server
DIS-MOL delayed infinite-server modified-offered-load approximation
FCLT functional central limit theorem
ED efficiency driven
ERP equilibrium renewal process
FWLLN functional weak law of large numbers
TTGA Two-Term Gaussian approximation
i.i.d. independent and identically distributed
MPS marginal price of staffing
MSHT many-server heavy-traffic
NHPP non-homogeneous Poisson process
NNPP nonstationary non-Poisson process
OL overloaded
pdf probability density function
PoA probability of abandonment
PoD probability of delay
PWT potential waiting time
QED quality-and-efficiency driven
QoS quality of service
SCV squared coefficient of variation
TPoD tail probability of delay

Table 1: Summary of useful acronyms used in the main paper.

1 Overview

This appendix provides additional supplementary material to the main paper. In §2 we present
a full Markovian model. In §3 we present an example with long service times with mean service
time E[S] = 4. In §§4–5 we present additional results of the examples with large and small arrival
rates supplementing §5.3 of the main paper. In §§6–7, we present additional details of the lightly-
loaded and heavily-loaded systems considered in §5.4 of the main paper. In §8, we confirm that
the TTGA staffing works well for real-world examples, including realistic arrival rates estimated
from real hospital data and call-center data in the SEEStat database (SEE Center [2014]). In §9
we supplement §5.6 of the main paper by presenting additional examples with other arrival-rate
functions (e.g., constant, piecewise linear and on-and-off arrival rates). In §10 we provide addition
examples with non-exponential service to supplement §5.7 in the main paper. In §11 we provide
proofs that are omitted in the main paper. In §12, we provide the final explicit expressions for the
approximating formulas in §4 of the main paper. In §13, we present the explicit form of the TTGA
formula for the example in §2 of the main paper. In §14 we provide the implementation details of
simulations.
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Figure 1: Performance measures of the Mt/M/st + M example with λ(t) = 100 + 20 sin t, mean
service time E[S] = 1/µ = 1, abandonment rate θ = 0.5 and QoS targets w = 0.5, α = 0.1, . . . , 0.9
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2 A Full Markovian Example

In this section we consider an Mt/M/st + M full Markovian example, having an NHPP arrival
process, exponential service times with rate µ and exponential patience times with rate θ. In this
case, the staffing formulas (2), (9) and (10) in the main paper simplifies to

s(1)
w (t) = ew(µ−θ)−µt

∫ t−w

0
λ(u)eµudu and s(2)

w,α(t) = zαe
−µt
(
Z(t)− (µ− θ)

∫ t∨w

w
Z(u)du

)
where

Z(t) = e(µ−θ)t

√∫ t∨w

w
e2θx(2µs

(1)
w (x) + ṡ

(1)
w (x))dx.

We have the model parameters: λ(t) = 100 + 20 sin t, µ = 1, and θ = 0.5. Figure 1 reports shows
that TPoDs are stabilized at desired levels for w = 0.5, α = 0.1, 0.2, . . . , 0.9, and other performance
measures are well approximated.

3 Long Service Times

Service systems such as hospitals have long service times, which is usually more difficult to treat.
We now confirm that TTGA works well for systems with long service times. We consider the
H2(t)/M/st +H2 model having all parameters given in §2 except for a modified mean service time
E[S] = 1/µ = 4. Figure 2 shows that TTGA continue to perform well. The TPoDs are even
smoother because the case of longer service times requires more servers, thus larger system size,
which reduces discretization errors. We recognize that the staffing levels for E[S] = 4 (between
200 and 350, as shown in the last subplot of Figure 2) are much higher comparing with the case
E[S] = 1 (between 60 and 100, as shown in the last plot of Figure 1 in the main paper). Therefore,
this result also supplement our discussion on large-scale systems in §4.

Targets Avg (diff. to target) Max (diff. to target) Min (diff. to target)
0.9 0.9040 (+0.0040) 0.9184 (+0.0184) 0.8878 (-0.0122)
0.8 0.7991 (-0.0009) 0.8154 (+0.0154) 0.7804 (-0.0196)
0.7 0.6989 (-0.0011) 0.7122 (+0.0122) 0.6832 (-0.0168)
0.6 0.5968 (-0.0032) 0.6146 (+0.0146) 0.5750 (-0.0250)
0.5 0.5033 (+0.0033) 0.5250 (+0.0250) 0.4852 (-0.0148)
0.4 0.4042 (+0.0042) 0.4254 (+0.0254) 0.3808 (-0.0192)
0.3 0.3034 (+0.0034) 0.3174 (+0.0174) 0.2812 (-0.0188)
0.2 0.2023 (+0.0023) 0.2170 (+0.0170) 0.1862 (-0.0138)
0.1 0.1026 (+0.0026) 0.1146 (+0.0146) 0.0900 (-0.0100)

Table 2: Comparison with TPoD targets (average, min and max), with w = 0.5 and λ̄ = 1000.

4 Large-Scale Systems

We now consider large arrival rates to supplement the Theorems 2-3 and the arguments in §5.3 of
the main paper. We repeat the H2(t)/M/st + H2 example in §2 with λ̄ = 1000. Figure 3 shows
that TPoD is stabilized at all desired targets and PoA, mean queue length and mean delay all
closely match with their approximating formulas. The PoD and utilization are both close to 1
(thus omitted here). Table 2 summarizes the minimum, maximum and the average values of the
TPoD and compare to the associated TPoD targets. This example helps visualize the asymptotic
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Figure 2: Performance measures of the H2(t)/M/st +H2 example with λ(t) = 100 + 20 sin t, large
mean service time E[S] = 1/µ = 4, and QoS targets w = 0.5, α = 0.1, . . . , 0.9
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stability of the TTGA staffing and the asymptotic accuracy of the performance functions as the
scale increases.

5 Small-Scale Systems

Supplementing §5.3 in the main paper, here we present more details of the example with λ̄ = 10.
We have seen in Figure 4 of the main paper that TPoD of this example has much bigger fluctuation
due to higher sensitivity to staffing discretization. Mimicking Table 1 in the main paper, Table 3
shows the average, maximum, and minimum of the TPoD using ceiling and flooring, and compares
them with the associated TPoD targets.

Avg Max Min
(diff. to target) (diff. to target) (diff. to target)

Targets ceiling flooring ceiling flooring ceiling flooring

0.9
0.9204 0.9381 0.9438 0.9658 0.8910 0.9124

(+0.0204) (+0.0381) (+0.0438) (+0.0658) (-0.0090) (+0.0124)

0.8
0.7940 0.8381 0.8410 0.8782 0.7538 0.7968

(-0.0060) (+0.0381) (+0.0410) (+0.0782) (-0.0462) (-0.0032)

0.7
0.6858 0.7383 0.7414 0.7894 0.6384 0.6894

(-0.0142) (+0.0383) (+0.0414) (+0.0894) (-0.0616) (-0.0106)

0.6
0.5875 0.6351 0.6406 0.6846 0.5344 0.5862

(-0.0125) (+0.0351) (+0.0406) (+0.0846) (-0.0656) (-0.0138)

0.5
0.4875 0.5312 0.5460 0.5876 0.4238 0.4762

(-0.0125) (+0.0312) (+0.0460) (+0.0876) (-0.0762) (-0.0238)

0.4
0.3908 0.4328 0.4418 0.4880 0.3392 0.3786

(-0.0092) (+0.0328) (+0.0418) (+0.0880) (-0.0608) (-0.0214)

0.3
0.2910 0.3312 0.3354 0.3912 0.2470 0.2874

(-0.0090) (+0.0312) (+0.0354) (+0.0912) (-0.0530) (-0.0126)

0.2
0.1968 0.2342 0.2498 0.2824 0.1540 0.1946

(-0.0032) (+0.0342) (+0.0498) (+0.0824) (-0.0460) (-0.0054)

0.1
0.1020 0.1310 0.1324 0.1584 0.0780 0.0968

(+0.0020) (+0.0310) (+0.0324) (+0.0584) (-0.0220) (-0.0032)

Table 3: Comparison with TPoD targets (average, min and max), with w = 0.5 and λ(t) =
10 + 2 sin t.

Simulation estimates of the performance measures are displayed in Figure 4. Notice that for
small systems, the utilization can be as low as 0.7 and the PoD can reach 0.4, which indicate that
the system is closer to the critically loaded state or the QED regime. Performance approximations
degrade with smaller arrival rates, but are still acceptable.

The spikes (jumps) of TPoD are synchronized with the changes of the staffing level at future
times. Figure 5 plots the TPoD of target α = 0.9 and the corresponding staffing function. There
is a time lag with length 0.5 between jumps of the TPoD and jumps in opposite directions of the
staffing function, because the delay of an arrival at time t will be realized approximately 0.5 time
unit later when this arrival enters service, so it is linked to future changes of staffing levels. The
TPoD will drop straight down immediately at t if there an extra server is added at time t+ 0.5.

6 Lightly Loaded Systems

In the main paper, we have already shown examples with delay target w = 0.05. In this section, we
present two examples: (i) delay target w = 0 and α = 0.1, . . . , 0.9, and (ii) moderate delay target
w = 0.3 and very small TPoD target α = 0.02, 0.04, 0.06, 0.08, 0.1.

We remark that the case w = 0 is not supported by the asymptotic stability theorem in the
main paper (Theorem 2) which clearly requires w > 0. Nevertheless, Figure 6 confirms that TTGA
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Figure 3: Performance measures of the H2(t)/M/st + H2 model with λ(t) = 1000 + 200 sin t, and
QoS targets w = 0.5, α = 0.1, . . . , 0.9
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Figure 4: Performance measures of the H2(t)/M/st +H2 model with λ(t) = 10 + 2 sin t, and QoS
targets w = 0.5, α = 0.1, . . . , 0.9
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Figure 5: The jumps of TPoD caused by the future jumps of staffing levels, α = 0.9, w = 0.5,
λ̄ = 10.

performs well for w = 0.
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Figure 6: Stabilized TPoDs of the H2(t)/M/st +H2 model with λ(t) = 100 + 20 sin t, QoS targets
w = 0, α = 0.1, 0.2, . . . , 0.9

When w and α are small, it is expected that the PoD will not be close to 1 and the system will
be in QED regime (instead of ED regime which is required for TTGA perform well). Nevertheless,
Figure 7 confirms the good performance of TTGA. We note that the PoD is between 0.4 and 0.8
so the system is indeed in the QED regime.

7 Heavily Loaded Systems

Supplementing §5.4 of the main paper, we provide additional results for large dealys w = 3 and 6.
Figure 8 provides the performance approximations for w = 3, which is omitted in §5.4 of the main
paper. We observe that large delay causes (i) high PoAs, (ii) long waiting lines, and (iii) small
number number of servers.

Keeping all other parameters unchanged, we now consider an even bigger delay target w = 6.
See Figure 9 for the TPoDs under the TTGA staffing function by ceiling and flooring. A big w
reduces the fluctuation of the staffing levels (thus resulting in a flatter and slowly changing TTGA

formula), this can be understood from the staffing function s
(1)
w (t) in Corollary 3. As a result, the

TPoD becomes more sensitive to the staffing discretization. For example, if it takes a long time
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Figure 7: Performance measures of the H2(t)/M/st + H2 model with λ(t) = 100 + 20 sin t, QoS
targets w = 0.3, α = 0.02, 0.04, . . . , 0.1
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Figure 8: Performance measures of the H2(t)/M/st + H2 model with λ(t) = 100 + 20 sin t, QoS
targets w = 3, α = 0.1, . . . , 0.9
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Figure 9: TPoDs of the H2(t)/M/st + H2 model with w = 6, λ(t) = 100 + 20 sin t using ceiling
(left) and flooring (right) for discretization

for the staffing level to increase from 6 to 7 before discretization, and we choose ceiling, then the
system will be over staffed for a long time. This naturally makes stabilizing TPoD for large w very
difficult.

8 Additional Examples with Real Hospital and Call-Center Data

We consider some additional realistic examples: The first one has the arrival rate estimated from
the emergency room records in the SEEStat database (SEE Center [2014]). The second example
has arrival rates estimated from a call center of a U.S. bank, obtained from SEEStat center (SEE
Center [2014]).

8.1 Another Example with Real-Hospital Arrival Rates

We now consider an Mt/M/st +M model with an arrival rate, obtained from the emergency room
records in the SEEStat database (SEE Center [2014]), see Figure 10. This arrival rate is computed
by averaging hourly arrival rates during weekdays from January 2004 to October 2007. Because
the waiting times are long and abandonment is low in hospitals, we set the delay target w = 2
hours, mean service time 1/µ = 2 hours, mean patience time 1/θ = 4 hours.

Figure 10 reports the the TTGA staffing levels and the associated time-dependent TPoDs,
with α = 0.1, 0.3, 0.5, 0.7, 0.9. Despite the drastically changing arrival rate and low staffing levels
(e.g., the average staffing level between time 2 and 10 is 3 for α = 0.9), we conclude that the
TTGA staffing method successfully achieves time-stable performance for TPoD at desired targets
for arrival rates estimated from real-hospital data.

8.2 Additional Examples with Real Call-Center Arrival Rates

We now consider another realistic example having arrival rates estimated from a real call center,
obtained from SEEStat center (SEE Center [2014]). Comparing to the health care systems, the
delay target, mean service and mean patience times are muchh smaller in call centers. Suggested by
Feldman et at. [2008], we let both the mean service time and mean patience time be 6 minutes and
delay target w be 3 minutes, i.e., µ = θ = 10, w = 0.05 as we measure the time by hours. Figure
11 reports the arrival rate, TPoD, and staffing functions with α = 0.1, 0.3, 0.5, 0.7, 0.9. Figure 11
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Figure 10: Arrival rate, TPoD, and staffing functions of the EW model, w = 2, α =
0.1, 0.3, 0.5, 0.7, 0.9

once again confirms that the TTGA staffing method can indeed be applied to real service systems,
where arrival rates vary significantly (here from 0 to 100).

During the hours 0 to 6, the TPoD cannot be well stabilized because the arrival rate is too
small (close to 0) so the call center can only staff either 1 or 0 agent. As the arrival rate rapidly
increases after hour 6 (from 0 to 100), the TPoD can be well stabilized. Again, the big fluctuations
in TPoD are caused by the smaller system size (note the average staffing levels for the 5 targets
are from 2 to 7).

9 Other Arrival Rates

We next the H2(t)/M/st +H2 example in §2 with other arrival rate functions, including

(i) Quadratic: λ(t) = 90 + 5t− 0.15t2 (topleft in Figure 12);

(ii) Piecewise constant: λ(t) alternates between 80 and 120 in every 5 time units (topright in
Figure 12);

(iii) Constant: λ(t) = 100 (topleft in Figure 13);

(iv) Piecewise linear: λ(t) varies linearly between 80 and 120 in every 5 time units (topright in
Figure 13);
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Figure 11: Arrival rate, TPoDs, and TTGA staffing functions for the model with real call-center
arrival rate, with w = 3 minutes, α = 0.1, 0.3, . . . , 0.9.

(iv) On-and-off: λ(t) alternates between 100 and 0 in every 2 time units (Figure 15).

See Figure 12 for Cases (i) and (ii), and Figure 13 for Cases (iii) and (iv). These results show
that TTGA continues to perform well. In right-hand plot of Figure 12, we observe that when the
arrival rate is low with λ(t) = 80 (high with λ(t) = 120), the mean queue length is low (high),
but countering to intuition, both the PoA and mean delay are high (low). Similarly, In right-hand
plot of Figure 13, when the arrival rate increases (decreases), the mean queue length increases
(decreases), but both the PoA and mean delay decrease (increase).

We remark that all performance measures quickly achieve time-stable performances for the
case of constant arrival rate (Case (iii)), which is consistent with Corollary 1 in the main paper.
Supplementing Corollary 1, the next Corollary provides the long run performance approximation
formulas for models with constant arrival rates. Its proof directly follows from Theorem 3.

Corollary 9.1 (Long-run performance approximation formulas for the G/M/st+GI model) If the
arrival rate is a constant λ̄, then as t → ∞, the performance approximation formulas in Theorem
3 simplifies to

Ṽ (t)→ E[(w + (Z − zα)σV ∗)+], Q̃(t)→ E[(X∗ − sw,α + σX∗Z)+],

p̃de(t)→ Φ

(
w

σV ∗
− zα

)
, p̃ab(t)→

∫ ∞
0

Φ

(
w − x
σV ∗

− zα
)
f(x)dx, and

ũ(t)→ E[(X∗ + σX∗Z)+ ∧ sw,α]

sw,α
, as t→∞,
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Figure 12: Performance measures of the H2(t)/M/st +H2 model having (i) quadratic arrival rate
(left) and (ii) piecewise constant arrival rate, with QoS targets w = 0.5, α = 0.1, . . . , 0.9.
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where

σV ∗ =
C

2λf(w)
, X∗ = λ

∫ w

0
Ḡ(x)dx− zα

√
λCF̄ (w)

2hF (w)
+ sw,α, (1)

σX∗ = λ

∫ w

0
F̄ (x)((c2

λ − 1)F̄ (x) + 1)dx+
λCF̄ (w)

2hF (w)
, sw,α = s(1)

w + βw,α

√
s

(1)
w (2)

is given in Corolloary 1 and C is defined in Corollary 3.

9.1 Marginal Price of Staffing

We now demonstrate how our analytic TTGA staffing formulas can help estimate the marginal
price of staffing (MPS), that is, in order to improve the service to a next level (e.g., reducing w or
α for ∆w by ∆α), how much additional staffing (extra servers) is needed. We address this question
by considering the case of constant arrival rate, which represents the average level of the staffing
functions. Assuming the density f is differentiable, taking partial derivatives of the staffing formula
in (2) with respect to w and α yields

−∂sw,α
∂w

= f(w)
λ

µ
+

√
λzα[(c2

λ − 1)(−f2(w) + F̄ (w)ḟ(w)) + 2ḟ(w)]

2µ
√

2f(w)[(c2
λ − 1)F̄ (w) + 2]

, (3)

−∂sw,α
∂α

=

√
λf(w)[(c2

λ − 1)F̄ (w) + 2]
√

2µφ(Φ−1(1− α))
. (4)

The above two equations can help estimate the MPS of TTGA. For instance, in order to reduce the
delay (probability) target from w to w −∆w (from α to α−∆α), we have to increase the staffing
level by adding approximately −∂sw,α/∂w · ∆w (−∂sw,α/∂α · ∆α) servers. Using the example
considered in the left-hand plot of Figure 13, we plot the partial derivatives in (3) and (4) for
n = 100, 50 and 10. In the left-hand plot of Figure 14, we fix α = 0.5 and let w increase from 0 to
6 with a step size 0.1. It shows that the MPS is monotonically decreasing in w. In the right-hand
plot of Figure 14, we fix w = 0.5 and let α increase from 0.02 to 0.98 with step size 0.02. We observe
that the MPS is high when α is close to 0 or 1 but low when α ≈ 0.5. For instance, for ∆α = 0.1
and n = 100, we need to add to the staffing function (−∂s0.5,α/∂α|α=0.5) × ∆α ≈ 30 × 0.1 = 3
servers if we hope to reduce α from 0.5 to 0.5−∆α = 0.4. For n = 10, we need to only add around
9×∆α ≈ 1 server in order to reduce α from 0.5 to 0.4. This example also demonstrate the impact
of adding one server, which is consistent with results in §5 here and §5.2 of the main paper.

9.2 On-and-Off Arrivals

Unlike the perfectly stabilized TPoDs in Figures 12-13, the example with on-and-off arrivals (with
rates alternating between 100 and 0) exhibits some performance degradations. Because the arrival
rate jumps drastically by adding or subtracting 100 servers at a time, the required TTGA staffing
functions will accordingly increase or decrease extremely fast. Given full staffing flexibility, we can
make sure the staffing level increases at desired speed. However, since we do not kick customers
out of service before they finish service, our real staffing level cannot decrease as fast as desired. As
shown in the last plot of Figure 15, the actual number of servers can be higher than the planned
TTGA staffing function (shown in Subplot 3 of Figure 15) by at most 2 servers when the staffing
function decreases. As a result, the system becomes inevitably overstaffed as the staffing function
decreases. This explains the periodic drops of the TPoDs as shown in Figure 15. Nevertheless, our
TTGA method can successfully control the TPoDs at or below the desired targets.
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Figure 13: Performance measures of the H2(t)/M/st + H2 model having (i) constant arrival rate
(left) and (ii) piecewise linear arrival rate, with QoS targets w = 0.5, α = 0.1, . . . , 0.9.
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10 Non-exponential Service Distribution

We supplement §5.6 of the main paper by considering additional examples with (i) lognormal and
(ii) hyperexponential service distributions.

10.1 Lognormal Serivce

First, we provide Figure 16 (an analog of Figure 13 of the main paper) to verify the effectiveness of
TTGA for lognormal service times with c2

s = 1 (i.e., LN(1, 1)) and c2
s = 0.25 (i.e., LN(1, 0.25)).

Next, we substantiate the important role of c2
s for the heuristic TTGA formula for GI service.

In particular, we compare the performance of TPoDs for the H2(t)/LN(1, 4)/st+H2 example using
two staffing levels: (i) the TTGA formula with c2

s = 4 and (ii) the TTGA formula for M service
(i.e., with c2

s = 1), see Figure 17 for this comparison. We observe that the heuristic staffing formula
which incorporate the service SCV c2

s indeed achieves time-stable TPoDs, thus outperforming the
case with c2

s = 1. It is not surprising to see that even the case (ii) staffing level achieves somewhat
acceptable TPoD performance, because this refinement with c2

s only affects the secondary staffing

term s
(2)
w,α so the two versions of TTGA formulas are only slightly different.

10.2 Explaining Where the c2
s Comes From When Service Is GI

We now provide more insights into the TTGA staffing formula ((9) in the main paper) and explain
where the term c2

s comes from. First, the term I2(t) in (20) of the main paper is obtained by
summing three terms I2

λ(t), I2
s (t) and I2

a(t). These terms characterize the fluctuations of the
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Figure 15: Performance measures of the H2(t)/M/st + H2 model with QoS targets w = 0.5,
α = 0.1, . . . , 0.9, and on-and-off arrival rate function

limiting diffusion processes for the Gt/M/st + GI model, brought by three independent random
processes: arrival, service completion and abandonment. See Theorem 4.2 in Liu and Whitt [2014a]
for details. In particular,

I2
λ(t) =

c2
λF

c(w(t))b(t, 0)

(λ(t− w(t))F c(w(t)))2
, I2

s (t) =
b(t, 0)− ṡ(t)

(λ(t− w(t))F c(w(t)))2
, I2

a(t) =
F c(w(t))F (w(t))

(λ(t− w(t))F c(w(t)))2
.

Here the term I2
s (t) is obtained from the diffusion limit of the NHPP departure process having rate

µs(t) (because of the assumption of M service). When the service times are nonexponential, we
approximate the departure process by a renewal process with time changes, of which the limiting
diffusion process is a Brownian motion multiplied by the service SCV cs. In other words, we use a
revised version

I2
s (t) =

c2
s(b(t, 0)− ṡ(t))

(λ(t− w(t))F c(w(t)))2
,
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Figure 16: Performance measures of the H2(t)/LN(1, c2
s)/st + H2 model with arrival rate λ(t) =

100 + 20 sin t, SCV c2
s = 1(left) and c2

s = 0.25(right), QoS targets w = 0.5, α = 0.1, . . . , 0.9,
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Figure 17: Comparison of TPoD of the H2(t)/LN(1, 4)/st + H2 model with arrival rate λ(t) =
100 + 20 sin t, SCV c2

s = 4, QoS targets w = 0.5, α = 0.1, . . . , 0.9, when using (i) TTGA staffing
function with c2

s = 4 (left), and (ii) TTGA staffing function for exponential service with c2
s = 1

(right)

which leads to the general TTGA formula in (10) of the main paper. This heuristic refinement is
based on our understanding of what the more general FCLT with GI service will be. Of course,
it remains to provide rigorous MSHT limit theorems for the Gt/GI/st + GI model, see Liu and
Whitt [2014b] for recent developments.

10.3 Hyperexponential Service

To end this section, we repeat the H2(t)/GI/st +H2 example by letting the service distribution be
H2 with cdf

G(x) = 1− pse−µ1x − (1− ps)e−µ2x,

where µ1 = 2psµ, µ2 = 2(1−ps)µ, µ = 1, ps = (5+
√

15)/10, so that c2
s = 4 and E[S] = 1. Figure 18

shows that the TPoD is stabilized and other performance measures are well approximated, except
for a warm-up period.

11 Additional Proofs

11.1 Proof of Theorem 1

The proof of Theorem 1 follows from the proof of Theorem 2 in Liu and Whitt [2012a]. Theorem
2 in Liu and Whitt [2012a] establishes the asymptotic stability of the DIS staffing function for
achieving the constant mean delay, by considering the Mt/GI/st + GI model. In particular, it
states that for the nth Mt/GI/st +GI model having arrival rate λn(t) ≡ nλ(t), if the staffing level

sn(t) = dn s(1)
w (t)e with s

(1)
w (t) given in (7) of the main paper, then

sup
0<t≤T

|E[Wn(t)]− w| → 0, as n→∞.

The proof of Theorem 2 in Liu and Whitt [2012a] applies (i) the FWLLN result for the Gt/GI/st+
GI developed in Liu and Whitt [2012c], and (ii) the staffing formula to stabilize the fluid waiting
time for the Gt/GI/st +GI fluid model developed in Theorem 8 in Liu and Whitt [2012a]. Since
both results (i) and (ii) allow Gt arrival process, we can quickly generate Theorem 2 to the case of
Gt arrival. Thus the proof of Theorem 1 in the main paper is completed.
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Figure 18: Performance measures of the H2(t)/H2/st + H2 model with arrival rate λ(t) = 100 +
20 sin t, SCV c2

s = 4, QoS targets w = 0.5, α = 0.1, . . . , 0.9,
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11.2 Proofs of corollaries

Proof of Corollary 1. When λ(t) = λ, (2) in the main paper implies that

s(1)
w (t) = F̄ (w)

∫ t−w

0
λḠ(x)dx =

F̄ (w)λ

µ
(1− e−µ(t−w)) (5)

Letting t→∞, s(1)
w (t) ∼ F̄ (w)λ/µ. Define

C ≡ (c2
λ − 1)F̄ (w) + 2. (6)

Then from (5) and (10) in the main paper, we have

e−µtZ(t) = e−hF (w)t

√∫ t

w
e2hF (v)xF̄ (w)λ

(
C − e−µ(x−v)

)
dx

=
√
F̄ (w)λ

√
C

2hF (w)
(1− e2hF (w)(w−t))− eµw

2hF (w)− µ
(e−µt − e(2hF (w)−µ)w−2hF (w)t)

∼

√
CF̄ (w)λ

2hF (w)
(7)

Similarly, we have

lim
t→∞

e−µt
∫ t

w
Z(u)du = lim

t→∞

Z(t)

µeµt
=

1

µ

√
CF̄ (w)λ

2hF (w)
(8)

Combining (7) and (8) yields that

s(2)
w,α(t) = zα

(
e−µtZ(t)− (µ− hF (w))e−µt

∫ t

w
Z(u)du

)
· 1{t≥w}

∼ zαhF (w)

µ

√
CF̄ (w)λ

2hF (w)
= zα

√
[(c2

λ − 1)F̄ (w) + 2]hF (w)s
(1)
w /2µ.

Proof of Corollary 2. NHPP arrival implies that cλ = 1. Hence,

(s(2)
w,α(t))2 = z2

α e
−2µt

∫ t

w
e2hF (w∗)x(2µs(1)

w (x) + ṡ(1)
w (x))dx = z2

α e
−2µt

∫ t

w
d(e2µxs(1)

v (x)) = z2
α s

(1)
w (t),

where the forth equality holds because s
(1)
w (w) = 0.
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Proof of Corollary 3. If arrival rate is λ(t) = λ̄(1 + r sin(γt+ φ), and let C ≡ (c2
λ − 1)F̄ (w) + 1,

ϕ ≡ arctan(γ/µ), and η ≡ ϕ+ arctan(γ/(2hF (w)). We have

s(1)
w (t) = F̄ (w)

∫ t−w

0
e−µx(λ̄+ rλ̄ sin γ(t+ φ/γ − w − x))dx

= λ̄F̄ (w)

(∫ t−w

0
e−µxdx+ r

∫ t−w

0
e−µx sin γ(t+ φ/γ − w − x)dx

)
= λ̄F̄ (w)

[
1− e−µ(t−w)

µ
− r

(
γe−µ(t−w)

µ2 + γ2
(µ sinφ− γ cosϕ)

− 1

µ2 + γ2
(µ sin γ(t+ φ/γ − w)− γ cos γ(t+ φ/γ − w))

)]
= λ̄F̄ (w)

[
1− e−µ(t−w)

µ
− r√

µ2 + γ2

(
e−µ(t−w) sin(φ− ϕ)− sin(γ(t+ φ/γ − w)− ϕ)

)]
(9)

∼ λ̄F̄ (w)

(
1

µ
+

r√
µ2 + γ2

sin(γ(t+ φ/γ − w)− ϕ)

)

Next, we compute∫ t

w
e2hF (w)x

([
(c2
λ − 1)F̄ (w) + 2

]
(µs(1)

w (x) + ṡ(1)
w (x))− ṡ(1)

w (x)
)
dx

=

∫ t

w
e2hF (w)x(µCs(1)

w (x) + (C − 1)ṡ(1)
w (x))dx

= µC

∫ t

w
e2hF (w)xs(1)

w (x)dx+ (C − 1)

∫ t

w
e2hF (w)xṡ(1)

w (x)dx (10)

We compute the two integrands in (10) respectively. For the first integrand,∫ t

w
e2hF (w)xs(1)

w (x)dx

=

∫ t

w
e2hF (w)xλ̄F̄ (w)

[
1− e−µ(x−w)

µ
− r√

µ2 + γ2

(
e−µ(x−w) sin(φ− ϕ)− sin(γ(x+ φ/γ − w)− ϕ)

)]
dx

= λ̄F̄ (w)

(
1

µ

∫ t

w
e2hF (w)xdx+

r√
µ2 + γ2

∫ t

w
e2hF (w)x sin(γ(x+ φ/γ − w)− ϕ)dx−

eµw(
1

µ
− r sin(φ− ϕ)√

µ2 + γ2
)

∫ t

w
e(2hF (w)−µ)xdx

)

= λ̄F̄ (w)

e2hF (w)t − e2hF (w)w

2µhF (w)
+
r(e2hF (w)t sin(γ(t+ φ/γ − w)− η)− e2hF (w)w sin(φ− η))√

(µ2 + γ2)(4h2
F (w) + γ2)

−

(
1

µ
− r sin(φ− ϕ)√

µ2 + γ2

)
eµw

(
e(2hF (w)−µ)t − e(2hF (w)−µ)w

)
2hF (w)− µ

)
(11)
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For the second integrand, we have∫ t

w
e2hF (w)xṡ(1)

w (x)dx =

∫ t

w
e2hF (w)xds(1)

w (x) = e2hF (w)ts(1)
w (t)− 2hF (w)

∫ t

w
e2hF (w)(x)s(1)

w (x)dx.

(12)

Note that the integrand in the second term of (12) coincide with the first integrand in (10), which
is calculated in (11). Next, we establish the convergence of e−µtZ(t) as t→∞.

e−µtZ(t) = e−hF (w)t

√
µC

∫ t

w
e2hF (w)xs

(1)
w (x)dx+ (C − 1)

∫ t

w
e2hF (w)xṡ

(1)
w (x)dx

=

√√√√√√√√√√√√√√√√

λ̄F̄ (w)(µC − (C − 1)2hF (w))

(
(1− e2hF (w)(w−t))

2µhF (w)

+
r(sin(γ(t+ φ/γ − w)− η)− e2hF (w)(w−t) sin(φ− η))√

(µ2 + γ2)(4h2
F (w) + γ2)

−e−2hF (w)t(
1

µ
− r sin(φ− ϕ)√

µ2 + γ2
)
eµw(e(2hF (w)−µ)t − e(2hF (w)−µ)w)

2hF (w)− µ

)
+ (C − 1)s(1)

w (t)

∼

√√√√√√√√√√√
λ̄F̄ (w)(µC − (C − 1)2hF (w))

 1

2µhF (w)
+
r sin(γ(t+ φ/γ − w)− η)√

(µ2 + γ2)(4h2
F (w) + γ2)


+ (C − 1)λ̄F̄ (w)

(
1

µ
+

r√
µ2 + γ2

sin(γ(t+ φ/γ − w)− ϕ)

) (13)

Similarly to (8), e−µt
∫ t
w Z(u)du ∼ (1/µ) limt→∞ e

−µtZ(t). Therefore,

s(2)
w,α(t) ∼ zαhF (w)

µ

√√√√√√√√√√√
λ̄F̄ (w)(µC − (C − 1)2hF (w))

 1

2µhF (w)
+
r sin(γ(t+ φ/γ − w)− η)√

(µ2 + γ2)(4h2
F (w) + γ2)


+ (C − 1)λ̄F̄ (w)

(
1

µ
+

r√
µ2 + γ2

sin(γ(t+ φ/γ − w)− ϕ)

)

=
zαf(w)

√
λ̄

µ
√
F̄ (w)

√√√√√√√√√√√
(µC − (C − 1)2hF (w))

 1

2µhF (w)
+
r sin(γ(t+ φ/γ − w)− η)√

(µ2 + γ2)(4h2
F (w) + γ2)


+ (C − 1)

(
1

µ
+

r√
µ2 + γ2

sin(γ(t+ φ/γ − w)− ϕ)

)

=
zαf(w)

√
λ̄

µ
√
F̄ (w)

√√√√√√√√√
C

2hF (w)
+

r(µC − 2(C − 1)hF (w))√
(µ2 + γ2)(4h2

F (w) + γ2)
sin(γ(t+ φ/γ − w)− η)

+
r(C − 1)√
µ2 + γ2

sin(γ(t+ φ/γ − w)− ϕ)

(14)
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12 Explicit Expressions for Approximating Formulas in §4

To facilitate computations of the approximating performance functions in Theorem 3, we simplify
these formulas and provide explicit expressions in terms of the Gaussian pdf φ and cdf Φ, especially
for E[V (t)],E[Q(t)], and u(t). To calculate the expectation and variance of a Gaussian random
variable X truncated below at 0 and above a > 0, we have the following formula

E[X+ ∧ a] = aΦ

(
µ− a
σ

)
+ µ

(
Φ

(
a− µ
σ

)
− Φ

(
−µ
σ

))
+ σ

(
φ
(µ
σ

)
− φ

(
a− µ
σ

))
Specifically, if a = +∞,E[X+] = µΦ

(µ
σ

)
+ σφ

(µ
σ

)
. Therefore, we have

E[V (t)] = (w − zασV ∗(t))Φ

(
w

σV ∗(t)
− zα

)
+ σV ∗(t)φ

(
w

σV ∗(t)
− zα

)
E[Q(t)] = (X∗(t)− sw,α(t))Φ

(
X∗(t)− sw,α(t)

σX∗(t)

)
+ σX∗(t)φ

(
X∗(t)− sw,α(t)

σX∗(t)

)
u(t) = sw,α(t)Φ

(
X∗(t)− sw,α(t)

σX∗(t)

)
+X∗(t)

(
Φ

(
sw,α(t)−X∗(t)

σX∗(t)

)
− Φ

(
− X∗(t)

σX∗(t)

))
+ σX∗(t)

(
φ

(
X∗(t)

σX∗(t)

)
− φ

(
sw,α(t)−X∗(t)

σX∗(t)

))

13 Staffing Formula of the Main Example

s
(1)
w (t) is the same as (9), s

(2)
w,α(t) is the same as (9) in the main paper where

Z(t) = eµt

√√√√√√√√√√√√√√√√

λ̄F̄ (w)(µC − (C − 1)2hF (w))

(
(1− e2hF (w)(w−t))

2µhF (w)

+
r(sin(γ(t+ φ/γ − w)− η)− e2hF (w)(w−t) sin(φ− η))√

(µ2 + γ2)(4h2
F (w) + γ2)

−e−2hF (w)t

(
1

µ
− r sin(φ− ϕ)√

µ2 + γ2

)
eµw(e(2hF (w)−µ)t − e(2hF (w)−µ)w)

2hF (w)− µ

)
+ (C − 1)s(1)

w (t)

and ϕ, η are defined as in Corollary 3.

14 Implementation Details

All numerical calculations and simulations are implemented in MATLAB. We sample the values of
the performance functions at fixed time points ∆T, 2∆T, . . . , N∆T = T where T = 24 is the length
of the time interval, ∆T = 0.05, and N = T/∆T = 480 is the total number of samples in [0, T ].

In each simulation replication r, if a customer arrives at time τ and enters service at time t,
the potential waiting time at τ is V r(τ) = t− τ . Let Br(τ) and Qr(τ) be the number of customers
waiting in queue and in service at time τ . The mean delay and mean queue length at each time
τ are estimated by the averages of V r(τ) and Qr(τ) over all 5000 replications. We estimate the
TPoD and PoD at time τ using the average of the indicator variable 1{V r(τ)>w} and 1{V r(τ)>0}.
The service utilization is estimated by the average of the ratio Br(τ)/s(τ).
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