
1 23

Queueing Systems
Theory and Applications
 
ISSN 0257-0130
 
Queueing Syst
DOI 10.1007/s11134-014-9419-5

A law of iterated logarithm for multiclass
queues with preemptive priority service
discipline

Yongjiang Guo & Yunan Liu



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Queueing Syst
DOI 10.1007/s11134-014-9419-5

A law of iterated logarithm for multiclass queues
with preemptive priority service discipline

Yongjiang Guo · Yunan Liu

Received: 31 July 2013 / Revised: 29 May 2014
© Springer Science+Business Media New York 2014

Abstract A law of iterated logarithm (LIL) is established for a multiclass queueing
model, having a preemptive priority service discipline, one server and K customer
classes, with each class characterized by a renewal arrival process and i.i.d. service
times. The LIL limits quantify the magnitude of asymptotic stochastic fluctuations
of the stochastic processes compensated by their deterministic fluid limits. The LIL
is established in three cases: underloaded, critically loaded, and overloaded, for five
performance measures: queue length, workload, busy time, idle time, and number of
departures. The proof of the LIL is based on a strong approximation approach, which
approximates discrete performance processes with reflected Brownian motions. We
conduct numerical examples to provide insights on these LIL results.

Keywords Law of iterated logarithm · Multiclass queues · Priority queues ·
Preemptive-resume discipline · Non-Markovian queues · Strong approximation
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1 Introduction

In this paper, we develop a law of iterated logarithm (LIL) for the multiclass
(G I/G I )K /1/PPSD queueing system, which has one server, K customer classes,
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a preemptive priority service discipline (PPSD) with class i taking priority over class
j for 1 ≤ i < j ≤ K , class-dependent renewal arrival processes (the first G I )
and independent and identically distributed (i.i.d.) non-exponential service times (the
second G I ).

Priority queueing systems In the literature of queueing theory, multiclass priority
queues have largely captured researchers’ attention because the models are relevant for
many applications. For instance, in emergency rooms, patients are treated in the order
based on their severity levels; in service systems such as call centers, VIP customers
experience much less waiting time; in entertainment parks, customers who purchase
“quickpasses” can jump over the long regular waiting lines. Various asymptotic the-
ories have been developed for priority queueing models including heavy-traffic weak
convergence results [1–3]; diffusion approximations [1,4,5]; and strong approxima-
tions (SAs) [6–9]. Because strong approximations are crucial building blocks for our
proofs, we emphasize that among the literature on priority queues the most relevant
work to the current paper is [7], which established the strong approximations for the
(G I/G I )K /1/PPSD model.

Law of iterated logarithm As a classical asymptotic result in probability theory, the
LIL for a standard Brownian motion (BM) W is

lim sup
T →∞

W (T )√
2T log log T

= lim sup
T →∞

|W (T )|√
2T log log T

= 1 (1)

= lim sup
T →∞

sup0≤t≤T W (t)√
2T log log T

= lim sup
T →∞

sup0≤t≤T |W (t)|√
2T log log T

, with probability 1, (2)

where (1) was the earliest LIL result developed by Lévy [10,11] and (2) was a later
generalization by [12,13]. These versions of LIL in (1) and (2) are called the strong
forms because they provide an explicit value (the “1” on the right-hand side of (1)) to
quantify the asymptotic rate of the increasing variability for a standard BM. Motivated
by the LIL for BM, various LIL results have later been developed for performance
functions in queueing systems. Iglehart [14] developed LILs for the queue lengths of
multiple channel queues; Sakalauskas and Minkevičius [15,16] obtained LILs for the
queue lengths and waiting times of generalized Jackson networks assuming all queues
are strictly overloaded. Also see [17] for LIL for strictly overloaded tandem queueing
models. In contrast to the strong form in (1) and (2), Chen and Yao [18] provided a
weak form of LIL for the queue length process Q (centered by its fluid function Q̄) of
the G I/G I/1 queue: they showed that sup0≤t≤T

∣
∣Q(t) − Q̄(t)

∣
∣ is of the same order

as the function
√

T log log T as T → ∞. The result is called the weak form because
the LIL limit (as in (1)) was not clearly identified. Also see [7,18,19] for more results
on weak LILs.

There also exists a body of literature on the functional LIL (FLIL). Analogous to (1),
Strassen [20] developed the FLIL for the standard BM by considering a sequence of
scaled BMs indexed by n, Wn(t) ≡ W (nt)/

√
n log log n, n ≥ 3. Strassen showed that,

with probability 1, the sequence {Wn, n ≥ 3} is relatively compact and that the limits
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of the convergent subsequences are contained in K1, which is the set of absolutely
continuous functions x satisfying x(0) = 0 and

∫ 1
0

[

x ′(t)
]2 dt ≤ 1. A major tool to

establish FLIL results is the continuous mapping theorem (CMT); see Whitt [21].
Iglehart [14] adapted Strassen’s approach to establish the FLIL for queue lengths,

departures, and waiting times of the multiple channel queueing systems; also see
Glynn and Whitt [22–24] for a Little’s law version FLIL. In [3], Whitt hinted that the
FLIL for the (G I/G I )K /1/PPSD could be developed using CMT, that is, the limits
of convergent subsequences of performance functions could be characterized by some
compact subset KT . However, we point out that (i) this set KT usually does not have an
explicit form so it is difficult to provide useful engineering approximations by directly
using the FLIL results; (ii) in general, LIL results cannot simply be obtained as special
cases of the corresponding FLILs (i.e., FLILs do not necessarily imply LILs); and (iii)
the LILs are in some sense more difficult to establish because the powerful tool CMT
cannot apply.

Our contributions We next summarize our contributions in four important directions.
First, we establish a strong version of LILs in the form of (2) for all key performance
functions of the (G I/G I )K /1/PPSD queueing system, including the queue length,
workload (waiting time), idle time, busy time, and departure processes (see Sect. 2
for their definitions). Second, unlike many results in the literature which omit the
difficult critically loaded (CL) and underloaded (UL) cases (thus only assuming the
systems are strictly overloaded (OL)), we provide a complete analysis by covering all
three regimes defined in terms of the traffic intensity ρ: (i) UL with ρ < 1, (ii) CL
with ρ = 1, and (iii) OL with ρ > 1, see Sect. 2 for details of these three regimes.
Third, we identify the LIL limits of the above performance measures as simple and
analytic functions in terms of the model input parameters. Our results significantly
refine the FLIL in [3,22–24] because these explicit limits can be exploited to pro-
vide useful engineering approximations for their corresponding stochastic processes.
Fourth, our LIL limits provide interesting and sometimes counterintuitive observa-
tions. For instance, the LIL limits (in Theorems 2–6) are discontinuous in the traffic
intensity ρ; in the OL case, in terms of the class index k, these limits always peak at
the classes that deplete the remaining service resources; the LIL limits of high-priority
classes are strongly influenced by their arrivals, while those of low-priority classes are
independent with their arrivals. To elaborate and better understand these interesting
observations, we provide comprehensive discussions (see Remarks 3–7) and concrete
numerical examples (see Sect. 5).

A strong approximation approach The strong version of LIL for the (G I/G I )K /1/

PPSD remained an open problem prior to the current paper because it is particularly
difficult to deal with the CL and OL cases. To treat these cases, we follow three steps:
The first is to relate the LILs of the performance functions to the LILs of their strong
approximations (SAs). In order to establish convergence for the LILs, we next develop
asymptotic theories for functions involving two BMs, see Lemmas 3 and 4 in Sect.
6. These results are legitimate in their own right and can be viewed the generalized
version of the standard LIL of BMs in (1) and (2). Finally, we obtain the desired LIL
limits by analyzing the (reflected) BMs given by the SAs.
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Refining the functional strong laws of large numbers (FSLLNs) and fluid approxi-
mations that have been widely used to approximate the mean values of the correspond-
ing stochastic processes, SAs provide effective estimates of the stochastic fluctuation
around those mean values. We now demonstrate the idea of SA using a renewal process
{N (t), t ≥ 0} with rate λ > 0 and interrenewal-time variance σ 2 < ∞. Let N̄ (t) ≡ λ t
and Ñ be the SA for N . Suppose that the r -moment of the interrenewal-time exists
with some r > 2. For a large t > 0, we write

N (t) ≈ Ñ (t) ≡ N̄ (t) + λ3/2σ W (t). (3)

In addition, the error of the SA N (t) − Ñ (t) is a higher order infinitesimal of t1/r, see
[25,26]. SAs have been developed for various stochastic processes, such as random
walks [27] and renewal-related processes [13,28]. There is a large volume of the
literature using the SA to study queueing models, including the G I/G I/1 queue
[18], G I/G I/∞ queue [29], multiple channel queue [30], tandem-queue network
[31], generalized Jackson network [19,32,33], non-preemptive priority queue [9],
time-dependent Markovian network queues [34,35], and (G I/G I )K /1/PPSD queue
[7,18].

Organization of the rest of the paper We close this section by summarizing
all notations used throughout the paper. In Sect. 2, we formally introduce the
(G I/G I )K /1/PPSD model and define the key performance functions. In Sect. 3,
we review the FSLLN and fluid limit of the (G I/G I )K /1/PPSD model because the
fluid functions will be used to construct the prelimits of the LILs. In Sect. 4, we present
our main results through Theorems 2–6. We also provide insights into these results.
To substantiate the LIL results from an engineering perspective, we provide concrete
numerical examples in Sect. 5. In Sect. 6, we give the proofs of the main results.
Finally, in Sect. 7 we draw conclusions. Additional supporting materials, including
extra numerical examples, omitted proofs, and alternative representations, appear in
the Appendix.

Notations All random variables and processes are assumed to be defined on a common
probability space (Ω,F , P). We reserve E(·) for expectation and V ar(·) for variance.

If two random variables X and Y have a common distribution then we write X
d=

Y . The symbols R and R+ are used to denote the sets of real numbers and non-
negative real numbers, respectively. For a, b ∈ R, define a ∨ b ≡ max{a, b} and
[a]+ ≡ max{a, 0}. For a sequence x1, x2, . . ., define

∑ j
i=k xi ≡ 0 for k > j (e.g.,

∑0
i=1 xi = 0). Let C be the space of continuous functions and D be the space of

right-continuous functions with left limits. Define D0 ≡ {x ∈ D : x(0) ≥ 0}. Let
|| f ||T ≡ sup0≤t≤T | f (t)| be the uniform norm of f . We say fn → f uniformly on
compact set (u.o.c.) if || fn − f ||T → ∞, as n → ∞. For two functions f and g,
let f ◦ g(t) = f (g(t)) denote the composition of f and g. We say f (t) = O(g(t))
as t → ∞ if lim supt→∞ | f (t)/g(t)| ≤ M for some M > 0 and f (t) = o(g(t)) as
t → ∞ if limt→∞ | f (t)/g(t)| = 0. We use the acronym “w.p.1.” for “with probability
one”. Finally, we define the LIL scaling function
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(a) (b) (c)

Fig. 1 The (G I/G I )3/1/PPSD example a The server is serving a class-3 customer when there are no
class-2 and class-3 customers in the system; b a newly arrived class-2 customer enters service preempting
that class-3 customer who returns to the head of queue 3; and c a newly arrived class-1 customer enters
service preempting that class-2 customer

ϕ(t) = √2t log log t .

2 The (G I/G I)K /1/PPSD queueing model

The model consists of a single server and K queues, K ≥ 2. Each queue k is fed by
an external class-k arrival process, 1 ≤ k ≤ K . In each queue, customers are served
in the order of arrival. A preemptive priority service discipline (PPSD) is enforced
among K classes: If a customer of higher priority arrives, the low-priority customer
that is currently being served (if any) will be immediately bumped out of service and
placed at the head of line of its own queue; after all customers of higher priorities leave
the system, the server will resume serving that preempted customer until its service
is completed or another interruption by a customer of higher priority. We label these
classes from 1 to K with class 1 takes the highest priority, while class K the lowest.
See Fig. 1 for an illustration.

For each class k, let vk(n) and uk(n) be the service time and interarrival time
(time between two consecutive arrivals) of the nth customer. We assume that
uk = {uk(n), n = 1, 2, . . . } and vk = {vk(n), n = 1, 2, . . . } are two indepen-
dent i.i.d. sequence of non-negative random variables, having means E[uk(1)] ≡
1/λk and E[vk(1)] ≡ 1/μk , variances V ar [vk(1)] and V ar [vk(1)], and squared
coefficients of variation (SCV) c2

a,k ≡ V ar [uk(1)]/(E[uk(1)])2 and c2
s,k ≡

V ar [vk(1)]/(E[vk(1)])2, respectively. Define the partial sums

Uk(n) ≡
n
∑

i=1

uk(i) and Vk(n) ≡
n
∑

i=1

vk(i), n = 1, 2, . . . , (4)

and their corresponding renewal processes

Ak(t) ≡ max{n ≥ 0 : Uk(n) ≤ t} and Sk(t) ≡ max{n ≥ 0 : Vk(n) ≤ t}, (5)
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where Ak(t) counts the total number of arrivals for class k customers in the time interval
[0, t] and Sk(t) counts the number of class k customers the server can potentially serve
in [0, t] if there are no class i customers with i < k.

Define the overall traffic intensity

ρ ≡
K
∑

k=1

ρk where ρk ≡ λk

μk
, k = 1, 2, . . . , K . (6)

We say the system is UL when ρ < 1, CL when ρ = 1, and OL when ρ > 1. Let
c2

k ≡ c2
a,k + c2

s,k be the variability coefficient for class k (capturing the variabilities of
both the arrival and service distributions). Let

σ 2
k ≡

k
∑

j=1

ρ j w j , with w j ≡ c2
j

μ j
.

Here σ 2
k can be understood as the (weighted) cumulative utilization of service capacity

by the first k classes.

Performance functions Let Qk(t) be the total number of class-k customers in the
system at time t , let Zk(t) be the workload for class k at time t , that is the total
amount of time required to process all class k customers assuming no future arrivals
and no class i < k customers after time t . Let Bk(t) be the total amount of time
the server is busy serving class k customers in [0, t], that is B1(t) = ∫ t

0 1{Q1(s)>0}ds
and

Bk(t) =
∫ t

0
1{

Qk (s)>0,Qi (s)=0,i<k
}ds, for 2 ≤ k ≤ K . (7)

Let Ik(t) be the residual time in [0, t] available to serve classes k + 1, . . . , K after
serving the first k classes, i.e.,

Ik(t) = t −
k
∑

i=1

Bi (t). (8)

Let Dk(t) ≡ Sk(Bk(t)) count the total number of class k customers that complete
service by time t . We have

Qk(t) = Ak(t) − Sk(Bk(t)) ≥ 0, (9)

Zk(t) = Vk(Ak(t)) − Bk(t), (10)

0 =
∫ t

0
Qk(t)dIk(t), (11)
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where (9) holds by flow conservation, (10) holds because Vk(Ak(t)) represents the
total amount of work (measured in time units) of class-k arrivals in [0, t], and (11)
implies that the idle process Ik(t) increases only when Qk(t) = 0.

The objective of the rest of the paper is to establish the LIL for performance functions
(Qk, Zk, Bk, Ik, Dk, 1 ≤ k ≤ K ) and identify the LIL limits as functions of the model
data

D ≡
(

λk, μk, c2
a,k, c2

s,k, c2
k , ρk, σk, 1 ≤ k ≤ K

)

. (12)

3 Fluid limits of the (G I/G I)K /1/PPSD queue

Since the forms of the LILs involve the performance measures centered by their cor-
responding fluid functions, we next review the fluid limits of the (G I/G I )K /1/PPSD
model.

Let Q ≡ (Q1, . . . , QK ) be the vector of the queue length processes, also let Z , B,
I , and D be the vectors of the workload, busy time, idle time, and departure processes
in the same token. Define their LLN-scaled processes as

Q̄(n)(t) = 1

n
Q(nt), Z̄ (n)(t) = 1

n
Z(nt), B̄(n)(t) = 1

n
B(nt),

Ī (n)(t) = 1

n
I (nt), D̄(n)(t) = 1

n
D(nt).

We summarize the FSLLN and the fluid limits [8] in the next lemma, also see [6] for
details and proofs.

Theorem 1 (FSLLN for the (G I/G I )K /1/PPSD queue [8]) Assume the system is
initially empty. If E[uk(1)] < ∞ and E[vk(1)] < ∞, then

(

Q̄(n), Z̄ (n), B̄(n), Ī (n), D̄(n)
)

→ (

Q̄, Z̄ , B̄, Ī , D̄
)

, u.o.c., w.p.1, as n → ∞,

where Q̄, Z̄ , B̄, Ī , and D̄ are K -dimensional deterministic vectors with their kth com-
ponents satisfying

Ȳk(t) ≡ Ψ (X̄k)(t), Q̄k(t) ≡ λk t − D̄k(t) = X̄k(t) + Ȳk(t) = Φ(X̄k)(t),

X̄k(t) ≡ (λk − μk)t + μk

k−1
∑

l=1

B̄l(t), B̄k(t) ≡ t −
k−1
∑

l=1

B̄l(t) − Īk(t),

Īk(t) ≡ Ȳk(t)

μk
, D̄k(t) ≡ μk B̄k(t), Z̄k(t) ≡ Q̄k(t)

μk
, k = 1, . . . , K , (13)

and functions Φ and Ψ are defined for x ∈ D0 as

Ψ (x)(t) ≡ sup
0≤s≤t

{−x(s)}+ and Φ(x)(t) ≡ x(t) + sup
0≤s≤t

{−x(s)}+. (14)
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Remark 1 (Oblique reflection mapping) The mapping (Ψ,Φ) is known as the one-
dimensional oblique reflection mapping (ORM), and is Lipschitz continuous in uni-
form norm; see [18] for detailed discussions. Alternative representations for (Ψ,Φ)

are given in Appendix.

Remark 2 (Analytic solutions of the fluid functions) Equations in (13) uniquely define
a set of deterministic and continuous functions

(

Q̄, Z̄ , B̄, Ī , D̄
)

that are performance
measures for the (G I/G I )K /1/PPSD fluid model; see [8,36] for details. We provide
the analytic solutions of the equations in (13) in Appendix.

4 Main results

In this section, we develop the LIL for the (G I/G I )K /1/PPSD model in the following
form:

lim sup
T →∞

∥
∥Qk − Q̄k

∥
∥

T

ϕ(T )
= Q∗

k , lim sup
T →∞

∥
∥Zk − Z̄k

∥
∥

T

ϕ(T )
= Z∗

k ,

lim sup
T →∞

∥
∥Bk − B̄k

∥
∥

T

ϕ(T )
= B∗

k , lim sup
T →∞

∥
∥Ik − Īk

∥
∥

T

ϕ(T )
= I ∗

k ,

lim sup
T →∞

∥
∥Dk − D̄k

∥
∥

T

ϕ(T )
= D∗

k , w.p.1, for k = 1, . . . , K , (15)

where
(

Q̄k, Z̄k, B̄k, Īk, D̄k
)

are the fluid functions defined in Sect. 3, and the LIL
limits

(

Q∗
k , Z∗

k , B∗
k , I ∗

k , D∗
k

)

are explicit functions of the model data D in (12). Since
the fluid functions have been widely used to approximate the mean values of their
corresponding stochastic functions, these LIL limits refine the fluid approximation
and provide an estimate (in the order of ϕ(t)) for the growth of the approximating
error (deviation from the fluid paths).

We next present the LILs in three cases: (i) ρ < 1 (UL), (ii) ρ = 1 (CL), and (iii)
ρ > 1 (OL) through Theorems 2–6. We give all proofs in Sect. 6. Throughout the rest
of the paper, we assume that, for all k = 1, . . . , K ,

E
[

uk(1)r ] < ∞ and E
[

vk(1)r ] < ∞ for some r > 2. (16)

4.1 LILs for the UL and CL cases

We first establish the LIL for the UL case.

Theorem 2 (LIL for the UL (G I/G I )s K/1/PPSD queue) If ρ < 1, then the LIL
(15) holds for k = 1, 2, . . . , K with

Q∗
k = Z∗

k = 0, B∗
k = ck

√
λk

μk
, I ∗

k = σk, and D∗
k = ca,k

√

λk . (17)

In addition, the limit superiors for Q and Z in (15) become limits.
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Remark 3 (Understanding the LIL limits for the UL case) In the UL case, the whole
queueing system is in light traffic. In an interval [0, t] for large t , the server is idling
asymptotically for a significant amount of time (1 − ρ)t > 0. Hence the fluid queue
length and workload vanish, i.e., Q̄ = Z̄ = 0 (see Appendix); also the queue length
and workload of the queueing system are stochastically bounded, namely they do not
grow with t at all. This explained why Q∗ = Z∗ = 0 in (17). In addition, the LILs for
Q and Z hold in a strong sense with “lim supT →∞” upgraded to “limT →∞” because
∥
∥Qk − Q̄k

∥
∥

T = ∥∥Zk − Z̄k
∥
∥

T = O(log(T )); see Sect. 6.
Interestingly, since the waiting times at all classes are asymptotically negligible, i.e.,

all customers are quickly served upon arrival, the class-k busy time Bk and service
completion Dk become asymptotically independent with the performance of other
classes. Hence B∗

k and D∗
k are determined only by parameters of class k: λk , μk , ca,k ,

and cs,k . In addition, D∗
k , capturing the asymptotic variability of the class-k departure,

is solely characterized by λk and ca,k (parameters of the class-k arrival process),
because the server is asymptotically always available when an arrival occurs, which
makes the arrival process (rather than the service times) the deciding factor. The idle
process Ik is determined by the busy times B1, . . . , Bk so that I ∗

k embodies parameters
of all classes 1 to k through σk .

We next establish the LIL for the CL case.

Theorem 3 (LIL for the CL (G I/G I )K /1/PPSD queue) If ρ = 1, then the LIL (15)
holds with limits in (17) for k = 1, 2, . . . , K − 1 and

Q∗
K = μK σK , D∗

K =
√

μ2
K σ 2

K−1 + λK c2
s,K ∨ (

√

λK c2
a,K ),

Z∗
K = I ∗

K = σK and B∗
K = 1

μK

[

(μK σK−1) ∨ (
√

λK cK )
]

. (18)

Remark 4 (Understanding the LIL limits for the CL case) Due to the preemptive
priority policy, the performance of class k is independent with that of all classes
j > k. Since

∑K−1
k=1 ρk = 1 − ρK < 1, the subsystem consisting of the first K − 1

classes can be treated as a UL (G I/G I )K−1/1/PPSD system. Hence, the LIL limits
for the first K − 1 classes coincide with those of the UL case in Theorem 2.

The class-K LIL limits are functions of the parameters of the first K − 1 classes
because class K takes the lowest priority and thus is influenced by the first K − 1
classes. At the fluid level, the remaining service capacity for class K , ρK = 1 −
∑K−1

k=1 ρk , is barely enough to serve the class-K arrival. Note that the LIL limits for
the departure process either are characterized only by ca,K+1 and independent with
all other parameters, if ca,K+1 is large, or is independent with ca,K+1 is if ca,K+1 is
small. Interestingly, only one of the two terms (i) the variability of class-K arrival and
(ii) the sum of the variability of class-K service and those of the first K − 1 classes,
whichever is bigger, plays a role. We make a similar observation on the LIL limit of
the busy period process.
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4.2 LIL for the OL case

The OL case becomes more complicated. We next carefully treat three types of OL
queues (in Theorems 4–6), categorized by the values of ρ1, . . . , ρK :

Type − 1 : there exists a k0 : 1 ≤ k0 < K such that
k0∑

j=1

ρ j = 1 <

k0+1
∑

j=1

ρ j ; (19)

Type − 2 : there exists a k0 : 1 ≤ k0 < K such that
k0∑

j=1

ρ j < 1 <

k0+1
∑

j=1

ρ j ; (20)

Type − 3 :ρ1 > 1. (21)

We point out that the two types in (19) and (20) have to be investigated separately
because the LIL limits are not continuous in ρ at value 1.

Theorem 4 (LIL for the type-1 OL (G I/G I )K /1/PPSD queue) If the system is type-
1 OL defined in (19), then the LIL (15) holds for all classes. First, the LIL limits for
class k0 satisfy (18) with K replaced by k0. Second, the LIL limits for classes 1 to
k0 − 1 satisfy (17) with k = 1, 2, . . . , k0 − 1, if k0 > 1. Third, for class k0 + 1,

Q∗
k0+1 =

√

λk0+1c2
a,k0+1 + μ2

k0+1σ
2
k0

, Z∗
k0+1 =

√

λk0+1c2
k0+1 + μ2

k0+1σ
2
k0

μk0+1
,

I ∗
k0+1 = 0, B∗

k0+1 = σk0 , and D∗
k0+1 = μk0+1σk0 . (22)

Last, if k0 + 1 < K , then for k = k0 + 2, k0 + 3, . . . , K ,

Q∗
k = √λkca,k, Z∗

k = ck
√

λk

μk
, and I ∗

k = B∗
k = D∗

k = 0. (23)

Remark 5 (Understanding the LIL limits for the type-1 OL case) Since the subsystem
consisting the first k0 queues can be treated as a CL (G I/G I )k0/1/PPSD queue, we
refer to Remark 4 for interpretations of the LIL limits of the first k0 classes. We next
provide insights for classes k0 + 1, . . . , K .

We first explain the LIL limit of the queue length. The first term of Q∗
k0+1 coincides

with Q∗
k , k ≥ k0 + 2, representing the variability of the arrival process. Interestingly,

Q∗
k is independent of the service SCV c2

s,k because customers from classes k ≥ k0 +1
asymptotically will “never” enter service because the service capacity is completely
occupied by the first k0 classes. As a result, the queue length of class k ≥ k0 + 1 will
grow to infinity. The second term of Q∗

k0+1 is μk0+1σk0 = μk0+1 I ∗
k0

, which represents
the influence from the first k0 classes (recall that Ik is the residual time the server
spends on serving low-priority classes after serving the first k0 classes). Although
the first k0 classes have utilized all service capacity, it is still possible to serve some
(perhaps very little) class k0 +1 customers. However, Q∗

k for k ≥ k0 +2 does not have
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such a term and is thus independent of the first k0 classes because customers there are
indeed “never” served.

The comparison between Z∗
k0+1 and Z∗

k (k ≥ k0 +2) is similar. However, unlike the
LIL limits for the queue length, Z∗

k depends on the service SCV because it involves

ck =
√

c2
a,k + c2

s,k , for k ≥ k0 +1. This is so because the workload process keeps track
of the total amount of unfinished service times, while the queue length process only
counts the number of unfinished customers. Although these customers will “never”
be served, their service variability will still make an impact to the workload: if service
times are highly variable, it does not affect the queue lengths because no one will enter
service, but it will make the workload process highly variable because a customer’s
service time will be added to the workload process immediately upon its arrival. An
interesting observation is that Little’s law (which holds for the fluid model, see Sect.
1) does not hold here (i.e., Z∗

k is not proportional to Q∗
k ), unlike the UL and CL case.

To explain D∗
k0+1 = μk0+1 B∗

k0+1 and B∗
k0+1 = B∗

k0
= σk0 , we use a similar

argument in Remark 4 because the busy times Bk0 and Bk0+1 again play a seesaw.
Finally, since customers of class k ≥ k0 + 2 are indeed “never” served thus having 0
stochastic fluctuations, we have I ∗

k0+1 = I ∗
k = B∗

k = D∗
k = 0.

Theorem 5 (LIL for the type-2 OL (G I/G I )K /1/PPSD queue) If the system is type-
2 OL defined in (20), then the LIL (15) holds for all classes. First, the LIL limits for
classes 1 to k0 satisfy (17) with k = 1, 2, . . . , k0. Second, for class k0 + 1,

Q∗
k0+1 =

√
√
√
√
√μ2

k0+1σ
2
k0

+ λk0+1c2
a,k0+1 + μk0+1c2

s,k0+1

√
√
√
√1 −

k0∑

i=1

ρi ,

Z∗
k0+1 = σk0+1, B∗

k0+1 = σk0 , I ∗
k0+1 = 0,

and D∗
k0+1 =

√
√
√
√
√μ2

k0+1σ
2
k0

+ μk0+1c2
s,k0+1

√
√
√
√1 −

k0∑

l=1

ρl . (24)

Last, if k0 + 1 < K , then (23) holds for class k = k0 + 2, k0 + 3, . . . , K .

Remark 6 (Understanding the LIL limits for the type-2 OL case) First, since the sub-
system consisting the first k0 queues can be treated as a UL (G I/G I )k0/1/PPSD
queue, we refer to Remark 3 for explanations of the LIL limits of the first k0 classes.
Second, we refer to Remark 5 for explanations on LIL limits of classes k0 + 2 to K
because in both type-1 and type-2 OL cases, customers of these classes are indeed
“never” served. Hence, the only complication (difference) appears in class k0 + 1,
which we exploit next.

The LIL limit of the queue length Q∗
k0+1 is the square root of the sum of three

terms, with the first term capturing the influence from the first k0 classes through σk0 ,
the second term representing the variability of the arrival process, and the last term
characterizing the variability of the departure process Dk0+1(t) = Sk0+1(Bk0+1(t))
because as t → ∞, Bk0+1(t)/t → 1 −∑k0

i=1 ρi > 0 is the long-run proportion of
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service capacity allocated to class k0 + 1. Also note that Q∗
k0+1 is not continuous

in the traffic intensity at 1 (comparing to the type-1 OL case), namely, Q∗
k0+1 does

not coincide with that in (22) if we let
∑k0

i=1 ρi = 1, which justifies the separation of
type-1 and type-2 in the OL case. See Sect. 5 for more discussions on the discontinuity
the LIL limits in the traffic intensity.

The LIL limit of the departure process D∗
k0+1 can be understood similarly, except

for the absence of the term λk0+1c2
a,k0+1. This is so because the available service

capacity is enough to serve only a proportion of class k0 + 1 customers so that the
queue length will go to infinity and neither the rate nor the variability of the arrival
process makes an impact to D∗

k0+1.
Little’s law again fails to hold for the LIL limit of the workload Z∗

k0+1, which
captures both the variability of class k0 + 1 and the influence from the first k0 classes.
The LIL limit of the busy time B∗

k0+1 = σk0 = I ∗
k0

because, Ik(t), the remaining service
capacity available for low-priority classes k > k0, will asymptotically all be devoted
to class k0 + 1. Even so, it is still not enough to serve all class-(k0 + 1) customers,
so it leaves no capacity at all for any class k ≥ k0 + 2 classes, which explains why
I ∗
k0+1 = 0.

Theorem 6 (LIL for the type-3 OL (G I/G I )K /1/PPSD queue) If the system is type-
3 OL defined in (21), then the LIL (15) holds with limits in (23) for k = 2, 3, . . . , K
and

Q∗
1 =

√

λ1c2
a,1 + μ1c2

s,1, Z∗
1 = σ1, B∗

1 = I ∗
1 = 0, and D∗

1 = μ
1/2
s,1 cs,1. (25)

Remark 7 (Understanding the LIL limits for the type-3 OL case) Theorem 6 supple-
ments Theorem 5. We can simply treat class 1 as the class k0 +1 of the type-2 OL case
(namely, setting k0 = 0 so that σk0 = 0 in Theorem 5). Since class 1 will be partly
served while classes 2 to K will “never” get served, we refer to Remark 6 for detailed
discussions. Although Theorem 6 can be viewed as a special case of Theorem 5, we
present the type-3 OL case separately to avoid complications in notations.

5 Numerical examples

Before presenting the proofs, we next consider two numerical examples to obtain
insights of the LIL limits in Theorem 2–6.

5.1 Discontinuities in the queue index k

Due to the PPSD service discipline, the LIL limits of queues establish discontinuities
around k0. We next demonstrate this jump structure.

Example 1 (Discontinuity of the LIL limits in the class index k) We first consider a
(G I/G I )6/1/PPSD model with K = 6, λk = 0.3, μk = ca,k = cs,k = 1 for all
1 ≤ k ≤ K = 6. This example belongs to the type-2 OL case because k0 = 3,
∑3

k=1 ρk = 0.9 < 1, and
∑4

k=1 ρk = 1.2 > 1.
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Table 1 The LIL limits for Example 1

k 1 2 3 4 5 6

Q∗
k 0 0 0

√

2.1 + √
0.1

√
0.3

√
0.3

Z∗
k 0 0 0

√
2.4

√
0.6

√
0.6

B∗
k

√
0.6

√
0.6

√
0.6

√
1.8 0 0

I∗
k

√
0.6

√
1.2

√
1.8 0 0 0

D∗
k

√
0.3

√
0.3

√
0.3

√

1.8 + √
0.1 0 0

1 2 3 4 5 6
0

0.5

1

1.5

Q
* k

1 2 3 4 5 6
0

0.5

1

1.5

2

Z
* k

1 2 3 4 5 6
0

0.5

1

1.5

B
* k

1 2 3 4 5 6
0

0.5

1

1.5

I* k

1 2 3 4 5 6
0

0.5

1

1.5

D
* k

Queue k

Fig. 2 LIL limits of Example 1 as functions of k, 1 ≤ k ≤ 6, with k0 = 3,
∑3

k=1 ρk < 1 and
∑4

k=1 ρk > 1

According to Theorem 5, we compute the LIL limits in Table 1 and plot these
limits as functions of k in Fig. 2. The vertical line in 2 serving as a “benchmark”
for ρ = 1 separates queue 3 and queue 4 (because

∑3
k=1 ρk = 0.9 < 1 and

∑4
k=1 ρk = 1.2 > 1). We see that all LIL limits jump at k0 and k0 + 1. Simi-

larly, the LIL limits Q∗
k , Z∗

k , B∗
k and D∗

k all peak at k = k0 + 1 = 4, with stochastic
processes Qk , Zk , Bk and Dk experiencing the largest asymptotical variability at
k = k0 + 1. The LIL limit I ∗

k increases in k, peaks at k0 = 3 and then drops to
0, because the variability of Ik is cumulative (thus increasing) for 1 ≤ k ≤ k0 and
then becomes asymptotically negligible for all k0 < k ≤ K . See Remark 6 for more
discussions.

We consider a second example in the Appendix to explore the discontinuity in k
for the type-1 OL model. See Table 2 and Fig. 4 in Appendix.
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Table 2 The LIL limits for Example 3

k 1 2 3 4 5 6

Q∗
k 0 0 3

√
2/3

√
7 1 1

Z∗
k 0 0

√
2/3

√
8/3

√
2/3

√
2/3

B∗
k

√
2/3

√
2/3 2/3

√
2/3 0 0

I∗
k

√
2/3 2/3

√
2/3 0 0 0

D∗
k 1 1

√
5 3

√
2/3 0 0

5.2 Sensitivity to the traffic intensity ρ

We have exhibited different structures for the LIL limits in Theorems 2–6 that cover
all cases (UL, CL, and OL) categorized by different values of the traffic intensity ρ.
We find it impossible to unify these cases into one framework because our formulas
are in different form and our results provide distinct implications. On the one hand,
this disparity can be understood through the distinct proof technique for each category
(see Sect. 6); on the other hand, we conduct another numerical example to understand
the discontinuity of these LIL limits in the traffic intensity ρ.

Example 2 (Discontinuity of the LIL limits in the traffic intensity) Let K = 4, λ1 =
λ3 = λ4 = 0.5, μk = ca,k = cs,k = 1 for all k = 1, 2, 3, 4. But we will vary
ρ2 = λ2/μ2 = λ2 in an interval [0, 1]. The idea is to increase ρ2 so that we can walk
through all cases considered in Theorems 2–6.

We have four cases: (i) ρ1 < 1, ρ1 + ρ2 < 1 and ρ1 + ρ2 + ρ3 = 1 when ρ2 = 0
(with k0 = 3 for the case in Theorem 4); (ii) ρ1 < 1, ρ1 +ρ2 < 1 and ρ1 +ρ2 +ρ3 > 1
when ρ2 ∈ (0, 0.5) (with k0 = 2 for the case in Theorem 5); (iii) ρ1 < 1, ρ1 +ρ2 = 1
and ρ1 + ρ2 + ρ3 > 1 when ρ2 = 0.5 (with k0 = 2 for the case in Theorem 4); and
(iv) ρ1 < 1, ρ1 + ρ2 > 1 and ρ1 + ρ2 + ρ3 > 1 when ρ2 ∈ (0.5, 1] (with k0 = 1 for
the case in Theorem 5).

Since the LIL limits for classes 1 and 4 are relatively simple, we plot the LIL
limits of classes 2 and 3 as functions of ρ2 in Fig. 3. In Sect. 1, we provide complete
formulas for all LIL limits as functions of ρ2. We see that the limits are neither right
continuous nor left continuous. The variabilities are non-decreasing functions in ρ2
for 0 < ρ2 < 1/2, representing the type-2 OL case with k0. When ρ2 = 1/2, jumps
occur because the system now switches to the type-2 OL case with k0 = 2. These
functions jump again after value 1/2 and are non-decreasing in the interval (1/2, 1].
This example clearly explains why all these cases have to be treated separately as in
Theorems 2–6.

6 Proofs of main results

In this section, we prove the main results, namely the LIL (15) in UL, CL, and OL
cases given in Theorems 2–6. We first present some preliminary results that are building
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(a) (b)

(c) (d)

Fig. 3 The LIL limits Q∗
k , Z∗

k , B∗
k and D∗

k , k = 2, 3, as functions of ρ2. We omit I∗
k which is relatively

simple

blocks for the proofs. We introduce results related to SAs of the performance functions
for the (G I/G I )K /1/PPSD system in Sect. 6.1. We next prove the LILs in UL, CL,
and OL cases in Sects. 6.2–6.6, applying these preliminary results.

6.1 Strong approximations and related results

The idea of the SA is to approximate a discrete process, such as the queue length Q,
by the sum of two continuous functions: (i) the deterministic fluid function Q̄ and
(ii) standard BMs, with Q̄ characterizing the mean value and the BMs quantifying
the stochastic fluctuations around that mean value. We next introduce the SAs for the
(G I/G I )K /1/PPSD system.

Lemma 1 (Strong approximations for (G I/G I )K /1/ PPSD) If (16) holds, then for
k = 1, 2, . . . , K ,

∥
∥Qk − Q̃k

∥
∥

T = o(T 1/r ),
∥
∥Zk − Z̃k

∥
∥

T = o(T 1/r ),
∥
∥Bk − B̃k

∥
∥

T = o(T 1/r ),
∥
∥Ik − Ĩk

∥
∥

T = o(T 1/r ),
∥
∥Dk − D̃k

∥
∥

T = o(T 1/r ), w.p.1. (26)

where

Q̃k(t) ≡ X̃k(t) + Ỹk(t) = Φ(X̃k)(t), Ỹk(t) ≡ Ψ (X̃k)(t),
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X̃k(t) ≡ (λk − μk)t + μk

k−1
∑

l=1

B̃l(t) + W̃k(t),

B̃k(t) ≡ t −
k−1
∑

j=1

B̃ j (t) − Ĩk(t), Ĩk(t) ≡ 1

μk
Ỹk(t),

Z̃k(t) ≡ 1

μk
Q̃k(t) + 1

μk

[

μ
1/2
k cs,k Ws,k(B̄k(t)) − μ

1/2
k cs,k Ws,k(ρk t)

]

,

D̃k(t) ≡ μk B̃k(t) + μ
1/2
k cs,k Ws,k(B̄k(t)),

W̃k(t) ≡ λ
1/2
k ca,k Wa,k(t) − μ

1/2
k cs,k Ws,k(B̄k(t)), (27)

Wa,k and Ws,k are independent standard BMs associated with the arrival and service
processes of class k, respectively, and Ψ and Φ are defined in (14).

Proof Complementing Chen and Shen [7] which establishes the SAs for Qk , Zk , and
Ik , we provide the SAs for B̃k and D̃k .

We first prove the SA for Bk . The SA for Ik , namely
∥
∥Ik − Ĩk

∥
∥

T = o(T 1/r ),
together with (8) and the third equation in (27), implies that

∥
∥Bk − B̃k

∥
∥

T = o(T 1/r ), w.p.1. (28)

Since the system is assumed to be empty initially, we note that X̃k(0) = 0 for all
k = 1, 2, . . . , K . The sixth equation of (27) implies that

Dk(t) − D̃k(t)= Sk(Bk(t)) − D̃k(t)

=
[

Sk(Bk(t)) − μk Bk(t) − μ
1/2
k cs,k Ws,k(Bk(t))

]

+μk(Bk(t) − B̃k(t))

+μ
1/2
k cs,k

[

Ws,k(Bk(t)) − Ws,k(B̄k(t))
]

.

Following Theorem 3.4 in [7], we have
∥
∥Bk − B̄k

∥
∥

T = O(ϕ(T )) w.p.1., which
together with Lemma 6.21 in [18] implies that

∥
∥Ws,k(Bk) − Ws,k(B̄k)

∥
∥

T = o(T 1/r ), w.p.1.

Therefore, (28) and SA of renewal processes (see Theorem 5.14 in [18]) conclude that
∥
∥Dk − D̄k

∥
∥

T = o(T 1/r ). ��
We next provide two corollaries following Lemma 1.

Corollary 1 For k = 1, 2, . . . , K ,

X̃k(t) − X̄k(t) = −
k−1
∑

l=1

μk

μl

[

Q̃l(t) − Q̄l(t)
]+ Wk(t), (29)
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B̄k(t) − B̃k(t) = 1

μk

[

Q̃k(t) − Q̄k(t)
]− 1

μk
W̃k(t), (30)

where Wk(t) ≡ μk
∑k

l=1 W̃l(t)/μl , W̃l is defined in (27), k = 1, 2, . . . , K .

Using the SAs, Corollary 1 expresses X̃k as a function of Q̃1, Q̃2, . . . , Q̃k−1.
Because Q̃k = Φ(X̃k) and Ĩk = Ψ (X̃k)/μk (see (27)), we exploit an inductive
argument to find Q∗

k using Q∗
1, Q∗

2, . . . , Q∗
k−1. We obtain B∗

k (as a function of Q∗
k )

through (30). Corollary 1 will be used in the proofs of Theorems 2–5.

Proof We prove Corollary 1 by induction. We first show that (29) and (30) hold for
class k = 1. By (27), we have

X̃1(t) = X̄1(t) + W1(t) and

B̄1(t) − B̃1(t) = (

B̄1(t) − t
)+ Ĩ1(t) = (B̄1(t) − t

)+ 1

μ1

[

Q̃1(t) − X̃1(t)
]

.

If ρ1 ≤ 1, then B̄1(t) = ρ1t , X̄1(t) = (λ1 − μ1)t ≤ 0, Q̄1(t) = 0, and B̄1(t) − t =
X̄1(t)/μ1 (see Theorem 1 and Sect. 1). Hence

B̄1(t) − B̃1(t) = 1

μ1
X̄1(t) + 1

μ1

{

Q̃1(t) − [X̄1(t) + W1(t)
]}

= 1

μ1

[

Q̃1(t) − Q̄1(t)
]− 1

μ1
W̃1(t).

If ρ1 > 1, then B̄1(t) = t and Q̄1(t) = (λ1 − μ1)t = X̄1(t), so that

B̄1(t) − B̃1(t) = 1

μ1

[

Q̃1(t) − X̃1(t)
]

= Q̃1(t) − [X̄1(t) + W̃1(t)
]

μ1
= Q̃1(t) − Q̄1(t)

μ1
− W̃1(t)

μ1
.

We next assume that (29) and (30) hold for 1, 2, . . . , k. For class k + 1,

X̃k+1(t) = (λk+1 − μk+1)t + μk+1

k
∑

l=1

B̃l(t) + W̃k+1(t)

= (λk+1 − μk+1)t+μk+1

k
∑

l=1

B̄l(t)−μk+1

k
∑

l=1

[

B̄l(t) − B̃l(t)
]+W̃k+1(t)

= X̄k+1(t) + W̃k+1(t) − μk+1

k
∑

l=1

{
1

μl

[

Q̃l(t) − Q̄l(t)
]− 1

μl
W̃l(t)

}

= X̄k+1(t) −
k
∑

l=1

μk+1

μl

[

Q̃l(t) − Q̄l(t)
]+ Wk+1(t), (31)

123

Author's personal copy



Queueing Syst

where the first equality follows from (27) and the third equality holds by (13) and the
induction hypothesis.

B̄k+1(t) − B̃k+1(t)

= B̄k+1(t) −
[

t −
k
∑

l=1

B̃l(t) − Ĩk+1(t)

]

= (B̄k+1(t) − t
)−

k
∑

l=1

[

B̄l(t) − B̃l(t)
]+

k
∑

l=1

B̄l(t) + Ĩk+1(t)

=
[

k+1
∑

l=1

B̄l(t) − t

]

−
k
∑

l=1

{
Q̃l(t) − Q̄l(t)

μl
− W̃l(t)

μl

}

+ Q̃k+1 − X̃k+1(t)

μk+1

=
[

k+1
∑

l=1

B̄l(t) − t

]

− X̄k+1(t)

μk+1
+ Q̃k+1(t)

μk+1
− W̃k+1(t)

μk+1

= − 1

μk+1

[

λk+1t − D̄k+1(t)
]+ Q̃k+1(t)

μk+1
− W̃k+1(t)

μk+1

= 1

μk+1

[

Q̃k+1(t) − Q̄k+1(t)
]− 1

μk+1
W̃k+1(t),

where the first equality follows from (27), the third equality follows from the induction
hypothesis and (27), the fourth equality holds by (31), and the last two equalities hold
by (13). ��

Because T 1/r = o(ϕ(T )) for some r > 2, following Lemma 1 we have the next
Corollary, which transforms the original LIL of the performance functions (defined in
(15)) to the equivalent LIL of their corresponding SAs. Its proof is omitted.

Corollary 2 If (16) holds, then for k = 1, 2, . . . , K ,

lim sup
T →∞

∥
∥Qk − Q̄k

∥
∥

T

ϕ(T )
= lim sup

T →∞

∥
∥Q̃k − Q̄k

∥
∥

T

ϕ(T )
,

lim sup
T →∞

∥
∥Zk − Z̄k

∥
∥

T

ϕ(T )
= lim sup

T →∞

∥
∥Z̃k − Z̄k

∥
∥

T

ϕ(T )
,

lim sup
T →∞

∥
∥Bk − B̄k

∥
∥

T

ϕ(T )
= lim sup

T →∞

∥
∥B̃k − B̄k

∥
∥

T

ϕ(T )
,

lim sup
T →∞

∥
∥Ik − Īk

∥
∥

T

ϕ(T )
= lim sup

T →∞

∥
∥ Ĩk − Īk

∥
∥

T

ϕ(T )
,

lim sup
T →∞

∥
∥Dk − D̄k

∥
∥

T

ϕ(T )
= lim sup

T →∞

∥
∥D̃k − D̄k

∥
∥

T

ϕ(T )
, w.p.1. (32)

Given Corollary 2, it remains to prove that the right-hand sides of (32) agree with the
LIL limits in (15).
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6.2 Proof of Theorem 2

The next two results will be used in the proof of Theorem 2. Lemma 2 provides an
exponential bound for the tail probability of the extreme value of the queue length,
namely sup0≤t≤T Q̃k(t). Because the proof of Lemma 2 is similar to the proof of
Theorem 3.1 in [37], we omit it here but give it in the Appendix. Using this exponential
bound, we can easily establish Corollary 3, which implies that the extreme value of
the queue length is O(log T ) as T → ∞.

Lemma 2 (Exponential bounds for the UL queue lengths) If ρ < 1, then for any
z ≥ 0 and k = 1, . . . , K ,

P

{

sup
0≤t≤T

Q̃k(t) ≥ z

}

≤ Nk exp

⎧

⎨

⎩
−2γ

k
∏

j=1

δ j z

⎫

⎬

⎭
, (33)

where

δ1 ≡ 1, N1 ≡ 1, Nk ≡ 2 +
k−1
∑

l=2

Nl , δk ≡ min{μ1, . . . , μk}
2(k − 1)μk

, k = 2, . . . , K ,

γ ≡ min

{

θ1

μ2
1σ

2
1

, . . . ,
θK

μ2
K σ 2

K

}

and θk ≡ μk

(

1 −
k
∑

l=1

ρl

)

, k = 1, . . . , K .

Corollary 3 If ρ < 1, then for all k = 1, 2, . . . , K ,

∥
∥Q̃k

∥
∥

T = O(log T ), w.p.1. (34)

Proof Lemma 1 implies that Q̃k(t) ≥ 0 for all t ≥ 0 and k = 1, 2, . . . , K . Letting
z = log T/(γ

∏k
j=1 δ j ) in (33) yields that

P

(

sup
0≤t≤T

Q̃k(t) ≥ log T

γ
∏k

j=1 δ j

)

≤ Nk
1

T 2 .

Hence, Borel-Cantelli lemma implies that
∥
∥Q̃k

∥
∥

T = O(log T ) w.p.1. for all k =
1, . . . , K . ��
Proof of Theorem 2 We now prove Theorem 2 using Lemma 2 and Corollary 3. We
consider a UL system. First, for k = 1, 2, . . . , K , we observe that Q̄k(t) = Z̄k(t) = 0
and B̄k(t) = ρk t (see Sect. 1 for details), so that Z̃k(t) = Q̃k(t)/μk in (27). Hence,
the LIL for Qk holds as a simple consequence of (34) with Q∗

k = 0 and the LIL for
Zk holds with Z∗

k = 0.
We next prove the LILs for Bk and Ik . Since W̃k(t) now becomes a driftless BM

with variance λkc2
k , it follows from (30) and (2) that
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lim sup
T →∞

∥
∥B̄k − B̃k

∥
∥

T

ϕ(T )
= 1

μk
lim sup

T →∞

∥
∥W̃k

∥
∥

T

ϕ(T )
= ck

√
λk

μk
, w.p.1.

Regarding the LIL for Ik , (27) and (30) imply that

Īk(t) − Ĩk(t) =
(

t −
k
∑

l=1

B̄l(t)

)

−
(

t −
k
∑

l=1

B̃l(t)

)

= −
k
∑

l=1

(

B̄l(t) − B̃l(t)
) = −

k
∑

l=1

1

μl

[

Q̃l(t) − Q̄l(t)
]+

k
∑

l=1

1

μl
W̃l(t).

The LIL for Ik holds then with I ∗
k = σk because Q∗

k = 0 and
∑k

l=1 W̃l(t)/μl is a
driftless BM with variance parameter σk .

Finally, (30) implies that

D̃k(t) − D̄k(t) = μ
1/2
k cs,k Ws,k(B̄k(t)) + μk(B̃k(t) − B̄k(t))

= μ
1/2
k cs,k Ws,k(B̄k(t)) − [Q̃k(t) − W̃k(t)

]

= −Q̃k(t) + λ
1/2
k ca,k Wa,k(t).

This, together with Q∗
k = 0 and (2), completes the proof of the LIL for Dk with

D∗
k = ca,k

√
λk . ��

6.3 Proof of Theorem 3

We next prove Theorem 3 for a CL (G I/G I )K /1/PPSD system with ρ = 1. First, it
is easy to see that the LIL in (15) holds with limits in (17) for k = 1, 2, . . . , K − 1,
because the first K − 1 classes form a UL (G I/G I )K−1/1/PPSD system (since
∑K−1

l=1 ρl < 1). Hence, it suffices to prove the LIL for class K with limits in (18). We
do so by exploiting the next three Lemmas.

Lemma 3 (Generalizing the LIL of one BM) Suppose Ŵ1(t) and Ŵ2(t) are two
independent standard BMs, σ̄1 > 0 and σ̄2 > 0 are two constants, then w.p.1

lim sup
T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣
σ̄1Ŵ1(t) + sup

0≤s≤t
σ̄2Ŵ2(s)

∣
∣
∣
∣
∣

ϕ(T )
=
√

σ̄ 2
1 + σ̄ 2

2 . (35)

Proof Notice that

sup
0≤t≤T

∣
∣
∣
∣
∣
σ̄1Ŵ1(t) + sup

0≤s≤t
σ̄2Ŵ2(s)

∣
∣
∣
∣
∣
= sup

0≤t≤T

∣
∣
∣
∣
∣
σ̄1Ŵ1(t) + sup

0≤r≤1
σ̄2Ŵ2(r t)

∣
∣
∣
∣
∣
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= sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤r≤1

[

σ̄1Ŵ1(t) + σ̄2Ŵ2(r t)
]

∣
∣
∣
∣
∣

d= sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤r≤1

[

σ̄1Ŵ1(t) + √
r σ̄2Ŵ2(t)

]

∣
∣
∣
∣
∣

d= sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤r≤1

(

√

σ̄ 2
1 + r σ̄ 2

2 )Ŵ1(t)

∣
∣
∣
∣
∣
,

where the second equality in distribution holds because Ŵ1 and Ŵ2 are independent
standard BMs. So,

lim sup
T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣
σ̄1Ŵ1(t)+ sup

0≤s≤t
σ̄2Ŵ2(s)

∣
∣
∣
∣
∣

ϕ(T )
= lim sup

T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤r≤1

(

√

σ̄ 2
1 +r σ̄ 2

2 )Ŵ1(t)

∣
∣
∣
∣
∣

ϕ(T )

= sup
0≤r≤1

(

√

σ̄ 2
1 + r σ̄ 2

2 ) =
√

σ̄ 2
1 + σ̄ 2

2 .

��

Lemma 4 (Generalizing the LIL of one BM) Suppose that Ŵ1(t) and Ŵ2(t) are two
independent standard BMs, σ̄1 > 0, σ̄2 > 0 are two constants, then w.p.1

lim sup
T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤s≤t

[

σ̄1Ŵ1(t − s) − σ̄2Ŵ2(s)
]

∣
∣
∣
∣
∣

ϕ(T )
= σ̄1 ∨ σ̄2. (36)

Proof First,

sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤s≤t

[

σ̄1Ŵ1(t − s) − σ̄2Ŵ2(s)
]

∣
∣
∣
∣
∣

= sup
0≤t≤T

∣
∣
∣
∣
∣

sup
r∈[0,1]

[

σ̄1Ŵ1((1 − r)t) − σ̄2Ŵ2(r t)
]

∣
∣
∣
∣
∣

d= sup
0≤t≤T

∣
∣
∣
∣
∣

sup
r∈[0,1]

[√
1 − r σ̄1Ŵ1(t) − √

r σ̄2Ŵ2(t)
]
∣
∣
∣
∣
∣

d= sup
0≤t≤T

∣
∣
∣
∣
∣

sup
r∈[0,1]

√

(1 − r)σ̄ 2
1 + r σ̄ 2

2 Ŵ (t)

∣
∣
∣
∣
∣
,
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where Ŵ is a standard BM. Next, we have

lim sup
T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤s≤t

[

σ̄1Ŵ1(t − s) − σ̄2Ŵ2(s)
]

∣
∣
∣
∣
∣

ϕ(T )

= sup
r∈[0,1]

√

(1 − r)σ̄ 2
1 + r σ̄ 2

2 = σ̄1 ∨ σ̄2.

��
Lemma 5 Consider g(t), h(t) ∈ D, and a Lipschitz continuous function f on [0,∞)

with Lipschitz constant c > 0. If sup
0≤t≤T

|h(t)| = o (ϕ(T )), then

lim sup
T →∞

‖ f ◦ (g + h)‖T

ϕ(T )
= lim sup

T →∞
‖ f ◦ g‖T

ϕ(T )
.

Proof We have

|‖ f ◦ (g + h)‖T − ‖ f ◦ g‖T | ≤ ‖ f ◦ (g + h) − f ◦ g‖T

=
∣
∣
∣
∣
∣

sup
0≤t≤T

f (g + h)(t) − sup
0≤t≤T

f (g)(t)

∣
∣
∣
∣
∣

≤ c sup
0≤t≤T

|h(t)| ,

under the condition sup0≤t≤T h(t) = o (ϕ(T )). ��
Lemmas 3 and 4 can be viewed as generalized versions of the LIL for the BM in

(2). All three Lemmas will be used to prove the LILs for the CL and type-1 OL cases
(i.e., Theorems 3 and 4).

Proof of Theorem 3 Recall that Q̄k(t) = Z̄k(t) = 0, B̄k(t) = ρk t for k =
1, 2, . . . , K . And by Corollary 3, we have

∥
∥
∥
∥
∥

K−1
∑

l=1

μK

μl
Q̃l

∥
∥
∥
∥
∥

T

= o (ϕ(T )) , w.p.1. (37)

According to (29), we have Q̃K (t) = Φ(X̃ K )(t) and ỸK (t) = Ψ (X̃ K )(t), where

X̃ K (t) = −
K−1
∑

l=1

μK

μl
Q̃l(t) + WK (t). (38)

��
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LIL for idle process IK . Lemma 5 and (38) imply that

lim sup
T →∞

sup
0≤t≤T

ỸK (t)

ϕ(T )
= lim sup

T →∞

sup
0≤t≤T

Ψ (WK (t))

ϕ(T )

= lim sup
T →∞

sup
0≤t≤T

WK (t)

ϕ(T )
= μK σK , w.p.1., (39)

where the second equality holds because WK (0) = 0 so that Ψ (Wk)(t) =
sup

0≤t≤T
[−WK (t)]. Hence, the LIL for IK follows from (27) and (39).

LILs for queue length QK and workload Z K . Combining (27), (38), and Lemma 5
yields that

lim sup
T →∞

sup
0≤t≤T

Q̃K (t)

ϕ(T )
= lim sup

T →∞

sup
0≤t≤T

Φ(WK )(t)

ϕ(T )

= lim sup
T →∞

sup
0≤t≤T

{

WK (t) + sup
0≤s≤t

[−WK (s)]

}

ϕ(T )

= lim sup
T →∞

sup
0≤t≤T

sup
0≤s≤t

WK (t − s)

ϕ(T )

= lim sup
T →∞

sup
0≤t≤T

WK (t)

ϕ(T )
= μK σK , w.p.1.,

which proves the LIL for QK . This and (27) furthermore prove the LIL for ZK with
Z∗

K = σK .

LIL for busy time BK . First, (29) and (30) imply that

B̄K (t) − B̃K (t) = 1

μK
[X̃ K (t) + ỸK (t)] − 1

μK
W̃K (t)

= −
K−1
∑

l=1

1

μl
Q̃l(t) +

K−1
∑

l=1

1

μl
W̃l(t) + 1

μK
ỸK (t). (40)

We then have

lim sup
T →∞

∥
∥B̄K − B̃K

∥
∥

T

ϕ(T )
= 1

μK
lim sup

T →∞

∥
∥
∥
∥

K−1∑

l=1

μK
μl

W̃l + ỸK

∥
∥
∥
∥

T

ϕ(T )
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= lim sup
T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤s≤t

[
K−1∑

l=1

μK
μl

W̃l(t) − WK (s)

]
∣
∣
∣
∣
∣

μK ϕ(T )
, (41)

where the first equality holds by (40) and Corollary 3, and the second equality holds
because, by (38),

ỸK (t) = sup
0≤s≤t

[−X̃ K (s)
] = sup

0≤s≤t

[
K−1
∑

l=1

μK

μl
Q̃l(s) − WK (s)

]

. (42)

Note that

K−1
∑

l=1

μK

μl
W̃l(t) − WK (s)

d=
K−1
∑

l=1

μK

μl
W̃l(t − s) − W̃K (s),

is the sum of two independent BMs with variances μ2
K σ 2

K−1 and λK c2
K . We exploit

Lemma 4 to complete the proof of the LIL for BK .

LIL for departure process DK . By (13), (27), and (30), we have

D̃K (t) − D̄K (t)

= −Q̃K (t) + λ
1/2
K ca,K Wa,K (t)

= −X̃ K (t) − ỸK (t) + λ
1/2
K ca,K Wa,K (t)

=
K−1
∑

l=1

μK

μl
Q̃l(t) − WK (t) − ỸK (t) + λ

1/2
K ca,K Wa,K (t)

= −
[

−
K−1
∑

l=1

μK

μl
Q̃l(t) +

K−1
∑

l=1

μK

μl
W̃k(t) − μ

1/2
K cs,K Ws,K (B̄K (t)) + ỸK (t)

]

,

where the second equality follows from (27) and the third equality follows from (38).
The rest of the proof is similar to that of BK with

−
K−1
∑

l=1

μK

μl
Q̃l(t) +

K−1
∑

l=1

μK

μl
W̃l(t) − μ

1/2
K cs,K Ws,K (B̄K (t))

replacing the function

−
K−1
∑

l=1

1

μl
Q̃l(t) +

K−1
∑

l=1

1

μl
W̃l(t)

in (40).
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6.4 Proof of Theorem 4

We now consider a type-1 OL (G I/G I )K /1/PPSD model with ρ > 1 and
∑k0

k=1 ρk = 1 for 1 ≤ k0 < K . Because the first k0 classes naturally form a CL
(G I/G I )k0/1/PPSD model (already discussed in Theorem 3 and proved in Sect.
6.3), it remains to prove the LILs for classes k0 +1, k0 +2, . . . , K . We seek help from
Lemmas 3–4 and the following Lemma 6.

Lemma 6 Consider a type-1 OL system defined in (19). For i = 1, . . . , K − k0,

X̃k0+i (t) − X̄k0+i (t) = W̃k0+i (t) − μk0+i Ĩk0+i−1(t), (43)

Q̃k0+i (t) − Q̄k0+i (t) = W̃k0+i (t) − μk0+i
[

Ĩk0+i−1(t) − Ĩk0+i (t)
]

. (44)

Proof Consider a type-1 OL (G I/G I )K /1/PPSD system, we have Īk(t) = 0 for all
t and k = k0, k0 + 1, . . . , K . First, (29) implies that

X̃k0(t) − X̄k0(t) = −
k0−1
∑

l=1

μk0

μl

[

Q̃l(t) − Q̄l(t)
]+ Wk0(t). (45)

In addition, since Q̄k0(t) = X̄k0(t) = 0, we have

Q̃k0(t) − Q̄k0(t) = X̃k0(t) + Ỹk0(t)

= −
k0−1
∑

l=1

μk0

μl

[

Q̃l(t) − Q̄l(t)
]+ Wk0(t) + Ỹk0(t). (46)

Following (29), we have

X̃k0+1(t) − X̄k0+1(t) = −
k0∑

l=1

μk0+1

μl

[

Q̃l(t) − Q̄l(t)
]+ Wk0+1(t). (47)

Substituting (46) into (47) yields (43) for i = 1, and then (44) for i = 1 with the help
of (27).

We next prove (43) and (44) using induction. Assume (43) holds for 1, 2, . . . , i
with i < K − k0, (29) implies that

X̃k0+i+1(t) − X̄k0+i+1(t)

= −
k0∑

l=1

μk0+i+1

μl

[

Q̃l(t)− Q̄l(t)
]−

k0+i
∑

l=k0+1

μk0+i+1

μl

[

Q̃l(t)− Q̄l(t)
]+Wk0+i+1(t)

= Wk0+i+1(t) − μk0+i+1

μk0

[Wk0(t) + Ỹk0(t)]

−
k0+i
∑

l=k0+1

μk0+i+1

μl

{

W̃l(t) − μl
[

Ĩl−1(t) − Ĩl(t)
]}
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= Wk0+i+1(t) − μk0+i+1

μk0

Wk0(t) −
k0+i
∑

l=k0+1

μk0+i+1

μl
W̃l(t) − μk0+i+1 Ĩk0+i (t)

= W̃k0+i+1 − μk0+i+1 Ĩk0+i (t),

where the second equality holds by (46) and the induction hypothesis. Hence, (43)
holds for i + 1. ��

6.4.1 LIL for class k0 + 1

We first prove the LIL for class k0 + 1.

LIL for idle process Ik0+1. Theorem 1 (also see Sect. 1) implies that X̄k(t) = λk t for
k ≥ k0 + 1, B̄k(t) = ρk t for 1 ≤ k ≤ k0, and B̄k(t) = 0 for k ≥ k0 + 1. Following
(29), we have

X̃k0+1(t) = X̄k0+1(t) −
k0∑

l=1

μk0+1

μl
Q̃l(t) +

k0∑

l=1

μk0+1

μl
W̃l(t)

+ λ
1/2
k0+1ca,k0+1Wa,k0+1(t). (48)

Observe that the last two terms in (48) are two driftless BMs. Because LILs hold for
the first k0 classes with limits Q∗

k = 0 for k = 1, 2, . . . , k0 − 1 and Q∗
k0

= μk0σk0 ,

we have limt→∞ X̃k0+1(t)/t = λk0+1 or equivalently, limt→∞ X̃k0+1(t) = ∞, w.p.1.
Therefore, by (27) and the definition of the ORM Ψ in (14), supt≥0 Ỹk0+1(t) < ∞
w.p.1. so that

lim sup
T →∞

∥
∥Ỹk0+1

∥
∥

T

ϕ(T )
= 0, w.p.1.

This, together with (27), proves the LIL for Ik0+1 with I ∗
k0+1 = 0.

LIL for queue length Qk0+1. Note Q̄k(t) = 0 for all k = 1, 2, . . . , k0 under
∑k0

l=1 ρl =
1. Hence, (14) and (29) imply that

Ĩk0(t) =
sup

0≤s≤t

[−X̃k0(s)
]

μk0

= sup
0≤s≤t

[
k0−1
∑

l=1

Q̃l(s)

μl
− Wk0(s)

μk0

]

. (49)

Following (44), we have

lim sup
T →∞

∥
∥Q̃k0+1 − Q̄k0+1

∥
∥

T

ϕ(T )

= lim sup
T →∞

∥
∥
∥λ

1/2
k0+1ca,k0+1Wa,k0+1 − μk0+1

(

Ĩk0 − Ĩk0+1
)
∥
∥
∥

T

ϕ(T )
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= lim sup
T →∞

∥
∥
∥λ

1/2
k0+1ca,k0+1Wa,k0+1 − μk0+1 Ĩk0

∥
∥
∥

T

ϕ(T )
,

= lim sup
T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣
λ

1/2
k0+1ca,k0+1Wa,k0+1(t) + sup

0≤s≤t

μk0+1

μk0
Wk0(s)

∣
∣
∣
∣
∣

ϕ(T )

=
√

λk0+1c2
a,k0+1 + μ2

k0+1σ
2
k0

, (50)

where the second equality holds because I ∗
k0+1 = 0, the third equality holds because,

by (27) and (29),

∥
∥
∥λ

1/2
k0+1ca,k0+1Wa,k0+1 − μk0+1 Ĩk0

∥
∥
∥

T

= sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤s≤t

{

−λ
1/2
k0+1ca,k0+1Wa,k0+1(t)+

[
k0−1
∑

l=1

μk0+1

μl
Q̃l(s)− μk0+1

μk0

Wk0(s)

]}∣
∣
∣
∣
∣
,

and Q∗
k = 0, k = 1, 2, . . . , k0 − 1, and the last equality in (44) holds by Lemma 3

with two independent BMs Wa,k0+1(t) and Wk0(t) having variance parameters 1 and
μk0σk0 .

LIL for workload process Zk0+1. Because B̄k0+1(t) = 0, it follows from (13), (27),
and (44) that

Z̃k0+1(t) − Z̄k0+1(t)

= 1

μk0+1

[

Q̃k0+1(t) − μ
1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1t)

]

− 1

μk0+1
Q̄k0+1(t)

= 1

μk0+1
W̃ ∗

k0+1(t) − [ Ĩk0(t) − Ĩk0+1(t)
]

,

where W̃ ∗
k0+1(t) ≡ λ

1/2
k0+1ca,k0+1Wa,k0+1(t) − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1t). Hence,

with I ∗
k0+1 = 0, we have

lim sup
T →∞

∥
∥Z̃k0+1 − Z̄k0+1

∥
∥

T

ϕ(T )

= 1

μk0+1
lim sup

T →∞

sup
0≤t≤T

∣
∣
∣−μk0+1 Ĩk0(t) + W̃ ∗

k0+1(t)
∣
∣
∣

ϕ(T )

= 1

μk0+1
lim sup

T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣

sup
0≤s≤t

μk0+1

μk0
Wk0(s) + W̃ ∗

k0+1(t)

∣
∣
∣
∣
∣

ϕ(T )
= Z∗

k0+1, w.p.1.,
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where the second equality holds by similar analysis for Qk0+1 in (50) and the third
equality holds by Lemma 3 with two independent BMs Wk0 and W̃ ∗

k0+1 with variance

parameters μk0σk0 and
√

λk0+1ck0+1.

LIL for busy time Bk0+1 and departure process Dk0+1. Because B̃k(t) = Ĩk−1(t) −
Ĩk(t) for k = 2, 3, . . . , K and I ∗

k0+1 = 0, (27) implies the LIL for Bk0+1, that is,

lim sup
T →∞

∥
∥B̃k0+1

∥
∥

T

ϕ(T )
= lim sup

T →∞

∥
∥ Ĩk0

∥
∥

T

ϕ(T )
= σk0 , w.p.1.

Finally, according to (27) and (13) (also see (56)), we have D̃k0+1 = μk0+1 B̃k0+1 and
D̄k0+1 = B̄k0+1 = 0, which concludes the LIL for Dk0+1.

6.4.2 LIL for classes k0 + 2 to K

We next prove the LIL for classes k0 + 2 to K .

LIL for idle processes Ik0+2, . . . , IK . We prove the LIL for Ik using induction. First,
since B̄k0+2(t) = 0, rewriting (43) yields that

X̃k0+2(t) − X̄k0+2(t) = λ
1/2
k0+2ca,k0+2Wa,k0+2(t) − μk0+2 Ĩk0+1(t).

Because X̄k0+2(t) = λk0+2t , I ∗
k0+1 = 0, we obtain the LIL for Ik0+2 with I ∗

k0+2 = 0,
following the analysis for the LIL of Ik0+1 in Sect. 6.4.1.

Next, suppose the LIL holds for Ik with I ∗
k = 0 for k = k0 + 2, k0 + 3, . . . , k0 + i

with i < K − k0. Since B̄k0+i+1(t) = 0, (43) implies that

X̃k0+i+1(t) − X̄k0+i+1(t) = λ
1/2
k0+i+1ca,k0+i+1Wa,k0+i+1(t) − μk0+i+1 Ĩk0+i (t).

We have X̄k0+i+1(t) = λk0+i+1t and Ĩ ∗
k0+i = 0 following the induction hypothesis.

We then establish the LIL for Ik0+i+1 with I ∗
k0+i+1 = 0, using the similar analysis of

the LIL of Ik0+2.

LIL for queue lengths Qk0+2, . . . , QK . Since B̄k(t) = 0, k ≥ k0 + 2, by (44), we
have,

Q̃k(t) − Q̄k(t) = λ
1/2
k ca,k Wa,k(t) − μk

[

Ĩk−1(t) − Ĩk(t)
]

for k ≥ k0 + 2.

Because I ∗
k = 0 for all k = k0 + 1, k0 + 2, . . . , K , we have

lim sup
T →∞

∥
∥Q̃k − Q̄k

∥
∥

T

ϕ(T )
= lim sup

T →∞

∥
∥
∥λ

1/2
k ca,k Wa,k

∥
∥
∥

T

ϕ(T )
= √λkca,k, w.p.1.
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LIL for workload processes Zk0+2, . . . , ZK . Since B̄k(t) = 0, k ≥ k0 + 2, according
to (27) and (44), we have, for k = k0 + 2, k0 + 3, . . . , K ,

Z̃k(t) − Z̄k(t)

= 1

μk

[

Q̃k(t) − μ
1/2
k cs,k Ws,k(ρk t)

]

− 1

μk
Q̄k(t)

= 1

μk

[

λ
1/2
k ca,k Wa,k(t) − μ

1/2
k cs,k Ws,k(ρk t)

]

− [ Ĩk−1(t) − Ĩk(t)
]

.

Because I ∗
k = 0 for all k = k0 + 1, k0 + 2, . . . , K , we have,

lim sup
T →∞

∥
∥Z̃k − Z̄k

∥
∥

T

ϕ(T )
= ck

√
λk

μk
, w.p.1., k = k0 + 2, k0 + 3, . . . , K .

LIL for busy times Bk0+2, . . . , BK and departure Dk0+2, . . . , DK . Because B̃k(t) =
Ĩk−1(t) − Ĩk(t) and D̃k(t) = μk B̃k(t) (due to (27)), the LILs for Bk and Dk with
B∗

k = D∗
k = 0 follow from the LILs for Ik and Ik−1, k = k0 + 2, k0 + 3, . . . , K ,

6.5 Proofs of Theorems 5

Consider a type-2 OL (G I/G I )K /1/PPSD model with ρ > 1,
∑k0

k=1 ρk < 1 and
∑k0+1

k=1 ρk > 1 for 1 ≤ k0 < K . The first k0 classes form a UL (G I/G I )k0/1/PPSD
system (already discussed in Theorem 2 and proved in Sect. 6.2). In addition, the
treatment of the LIL for classes k0 + 2 to K is analogous to that of the type-1 OL
model (discussed in Sect. 6.4). Therefore, it remains to prove the LILs for classes
k0 + 1.

LIL for idle time Ik0+1. Following (29), we have

X̃k0+1(t) = X̄k0+1(t) −
k0∑

l=1

μk0+1

μl
Q̃l(t) +

k0+1
∑

l=1

μk0+1

μl
W̃l(t), (51)

where X̄k0+1(t) = μk0+1

(
∑k0+1

l=1 ρl − 1
)

t by (13). Because Q̃ j (t) = O(log(t)) for

1 ≤ j ≤ k0 (by Corollary 3) so that the second term in (51) is o(t) and the third term
in (51) is a driftless BM, we have limt→∞ X̃k0+1(t)/t = μk0+1(

∑k0+1
l=1 ρl − 1) > 0

w.p.1. Therefore, the LIL for Ik0+1 holds with I ∗
k0+1 = 0 following similar analysis

of the proof for the LIL of Ik0+2 in Theorem 4.

LIL for queue length Qk0+1. We write

lim sup
T →∞

sup
0≤t≤T

∣
∣Q̃k0+1(t) − Q̄k0+1(t)

∣
∣

ϕ(T )
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= lim sup
T →∞

sup
0≤t≤T

∣
∣X̃k0+1(t) + Ỹk0+1(t) − X̄k0+1(t)

∣
∣

ϕ(T )

= lim sup
T →∞

sup
0≤t≤T

∣
∣X̃k0+1(t) − X̄k0+1(t)

∣
∣

ϕ(T )
= lim sup

T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣

k0+1∑

l=1

μk0+1

μl
W̃l(t)

∣
∣
∣
∣
∣

ϕ(T )
= Q∗

k0+1,

where Q∗
k0+1 is given in (24), the first equality holds because Q̄k0+1(t) = X̄k0+1(t),

the second equality holds because I ∗
k0+1 = 0, the third equality holds by (51) and

Corollary 3, and the last equality holds by (2) and B̄k(t) = ρk t, k = 1, 2, . . . , k0 and
B̄k0+1(t) = (1 −∑k0

i=1 ρi )t .

LIL for busy time Bk0+1. Following (13) and (27), we have

B̄k0+1(t) − B̃k0+1(t) = [

Īk0(t) − Īk0+1(t)
]− [ Ĩk0(t) − Ĩk0+1(t)

]

= [

Īk0(t) − Ĩk0(t)
]− [ Īk0+1(t) − Ĩk0+1(t)

]

.

The LIL for Bk0+1 thus holds with B∗
k0+1 = σk0 because I ∗

k0
= σk0 and I ∗

k0+1 = 0.

LIL for workload process Zk0+1. Note that Q̄k0+1(t) = X̄k0+1(t) and Q̃k0+1(t) =
X̃k0+1(t) + Ỹk0+1(t), so (27) and (29) imply

Z̃k0+1(t) − Z̄k0+1(t)

= 1

μk0+1

[

X̃k0+1(t) − X̄k0+1(t)
]+ Ĩk0+1(t)

+ 1

μk0+1

[

μ
1/2
k0+1cs,k0+1Ws,k0+1(B̄k0+1(t)) − μ

1/2
k0+1cs,k0+1Ws,k0+1(ρk0+1t)

]

= Ĩk0+1(t) −
k0∑

l=1

1

μl
Q̃l(t) +

k0+1
∑

l=1

1

μl

[

λ
1/2
l ca,l Wa,l(t) − μ

1/2
l cs,l Ws,l(ρl t)

]

,

where the second equality holds by (51). The LIL for Ik0+1 (with I ∗
k0+1 = 0) and

Corollary 3 imply that

lim sup
T →∞

sup
0≤t≤T

∣
∣Z̃k0+1(t) − Z̄k0+1(t)

∣
∣

ϕ(T )

= lim sup
T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣

k0+1∑

l=1

1
μl

[

λ
1/2
l ca,l Wa,l(t) − μ

1/2
l cs,l Ws,l(ρl t)

]
∣
∣
∣
∣
∣

ϕ(T )
= σk0+1.
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LIL for departure process Dk0+1. Following (13), (27), (29), and (30), we have

D̃k0+1(t) − D̄k0+1(t)

= μk0+1
[

B̃k0+1(t) − B̄k0+1(t)
]+ μ

1/2
k0+1cs,k0+1Ws,k0+1(B̄k0+1(t))

= [Q̄k0+1(t) − Q̃k0+1(t)
]+ λ

1/2
k0+1ca,k0+1Wa,k0+1(t)

= [X̄k0+1(t) − X̃k0+1(t)
]− Ỹk0+1(t) + λ

1/2
k0+1ca,k0+1Wa,k0+1(t)

=
k0∑

l=1

μk0+1

μl
Q̃l(t) − Ỹk0+1(t) −

k0∑

l=1

μk0+1

μl
W̃l(t)

+μ
1/2
k0+1cs,k0+1Ws,k0+1(B̄k0+1(t)),

where the third equality holds because Q̄k0+1(t) = X̄k0+1(t) and the last equality
follows from (51).

Since Q∗
k = 0 for all k = 1, 2, . . . , k0 and I ∗

k0+1 = 0, it follows that

lim sup
T →∞

sup
0≤t≤T

∣
∣D̃k0+1(t) − D̄k0+1(t)

∣
∣

ϕ(T )

= lim sup
T →∞

sup
0≤t≤T

∣
∣
∣
∣
∣
−

k0∑

l=1

μk0+1

μl
W̃l(t) + μ

1/2
k0+1cs,k0+1Ws,k0+1(B̄k0+1(t))

∣
∣
∣
∣
∣

ϕ(T )
= D∗

k0+1,

where D∗
k0+1 is given in (24), the second equality holds by Corollary 3 and the LIL

for Ik0+1 (with I ∗
k0+1 = 0), and the last equality holds because B̄l(t) = ρl t for

l = 1, 2, . . . , k0 and B̄k0+1(t) = (1 −∑k0
l=1 ρl)t , so that

−
k0∑

l=1

μk0+1

μl
W̃l(t) + μ

1/2
k0+1cs,k0+1Ws,k0+1(B̄k0+1(t))

is a driftless BM.

6.6 Proof of Theorem 6

Consider a (G I/G I )K /1/PPSD model with ρ1 > 1. The LILs for classes 2 to K are
similar to those of classes k0 + 2 to K in a type-2 OL (G I/G I )K /1/PPSD system,
discussed in Theorem 5 and proved in Sect. 6.5. Hence, it remains to treat the first
class.

Because ρ1 > 1, X̄1(t) = (λ1 − μ1)t > 0, (29) implies that

X̃1(t) = X̄1(t) + λ
1/2
1 ca,1Wa,1(t) − μ

1/2
1 cs,1Ws,1(t),
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that is a BM with positive drift λ1 −μ1 > 0. Therefore, similar to the analysis in Sect.
6.5, we have limt→∞ X̃1(t) = ∞ and supt≥0 I (t) < ∞, w.p.1., which concludes the
LILs for I1 and B1 with I ∗

1 = 0 and B∗
1 = 0 because Ĩ1(t) − Ī1(t) = B̄1(t) − B̃1(t).

Next, (13) and (27) imply that Q̄1(t) = X̄1(t) and Q̃1(t) = X̃1(t) + μ1 Ĩ1(t), so
that

lim sup
T →∞

∥
∥Q̃1 − Q̄1

∥
∥

T

ϕ(T )
= lim sup

T →∞

∥
∥
∥λ

1/2
1 ca,1Wa,1 − μ

1/2
1 cs,1Ws,1

∥
∥
∥

T

ϕ(T )

=
√

λ1c2
a,1 + μ1c2

s,1., w.p.1.

Regarding the LIL for Z1, (13) and (27) imply that

Z̄1(t) = Q̄1(t)

μ1
and Z̃1(t) = Q̃1(t)

μ1
+ μ

1/2
1 cs,1Ws,1(t) − μ

1/2
1 cs,1Ws,1(ρ1t)

μ1
,

so that

Z̃1(t) − Z̄1(t) = 1

μ1

[

Q̃1(t) − Q̄1(t)
]+ 1

μ1

[

μ
1/2
1 cs,1Ws,1(t) − μ

1/2
1 cs,1Ws,1(ρ1t)

]

= 1

μ1

[

λ
1/2
1 ca,1Wa,1(t) − μ

1/2
1 cs,1Ws,1(t)

]

+ Ĩ1(t)

+ 1

μ1

[

μ
1/2
1 cs,1Ws,1(t) − μ

1/2
1 cs,1Ws,1(ρ1t)

]

= 1

μ1

[

λ
1/2
1 ca,1Wa,1(t) − μ

1/2
1 cs,1Ws,1(ρ1t)

]

+ Ĩ1(t).

Hence,

lim sup
T →∞

∥
∥Z̃1 − Z̄1

∥
∥

T

ϕ(T )
= 1

μ1
lim sup

T →∞

∥
∥
∥λ

1/2
1 ca,1Wa,1 − λ

1/2
1 cs,1Ws,1

∥
∥
∥

T

ϕ(T )

= 1

μ1

√

λ(c2
a,1 + c2

s,1) = σ1, w.p.1.

Finally, it follows from (13) and (27) that

D̃1(t) − D̄1(t) = μ1
[

B̃1(t) − B̄1(t)
]+ μ

1/2
1 cs,1Ws,1(B̄1(t)),

where B̄1(t) = t . So, the LIL for D1 easily follows the LIL for B1, with D∗
1 = μ

1/2
1 cs,1.

7 Conclusions

We have developed a strong form of LIL for the multiclass (G I/G I )K /1/PPSD
priority queueing model by focusing on five key performance processes: queue length,
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workload, busy time, idle time, and departure processes. Refining the FSLLNs and
the corresponding limiting fluid functions which are often used to approximate the
mean values, the LILs provide an estimate for the asymptotic rate of the increasing
stochastic variability of these performance functions. We have identified these LIL
limits as explicit functions of the first and second moments of the interarrival and
service times of all K classes. Comprehensive discussions and numerical experiments
have been provided to gain insights of these LIL limits.

Our main results cover all three important cases UL, CL, and OL categorized by
the loading and traffic intensity. There are two important steps in the proofs. First, we
have adapted an SA approach to relate the original LIL pre-limit processes to those of
the corresponding SAs. Second, we have developed asymptotic theories for functions
which involve two BMs. These results are formulated in a series of lemmas which can
be viewed the two-dimensional generalization of the conventional LIL for the standard
BM (as in (2)), so they are legitimate results in their own right.

Acknowledgments We thank Prof. Ward Whitt, Prof. Junfei Huang and the anonymous referees for
providing constructive comments. Both authors were supported by NSFC grant 11471053. The first author
also acknowledges support from NSFC grant 11101050. The second author also acknowledges support
from NSF Grant CMMI 1362310.

Appendix: Overview

This appendix contains additional materials supplementing the main paper. In Sect.
1 we provide an alternative definition for the one-dimensional ORM in (14). In Sect.
1 we provide the analytic solutions to the fluid Eq. (13). In Sect. 1, more numerical
examples are given to supplement Sect. 5. In Sect. 1 we further analyze Corollary 1
in two cases. Finally, in Sect. 1 we prove Lemma 2.

The one-dimensional oblique reflection mapping

We now provide an alternative definition of the ORM in (14).

Definition 1 For any function x ∈ D0, if there exists a unique pair of functions
z, y ∈ D0 satisfying

(i) z(t) = x(t) + y(t) ≥ 0;
(ii) y is non-decreasing and y(0) = 0;

(iii)
∫∞

0 z(t)dy(t) = 0,

is called the one-dimensional oblique reflection mapping, denoted by (z, y) =
(Φ,Ψ )(x).

Fluid solution to (13)

We provide analytic solutions to (13) in three cases: (i) ρ1 > 1, (ii) there exists an
integer k0 : 1 < k0 < K such that

∑k0
l=1 ρl ≤ 1 and

∑k0+1
l=1 ρl > 1, and (iii) ρ < 1.
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Case (i): If ρ1 > 1, then the solution of (13) is

Q̄k(t) = μk Z̄k(t) =
{

(λk − μk)t, k = 1;
λk t, k = 2, 3, . . . , K ,

(52)

B̄k(t) =
{

t, k = 1;
0, k = 2, 3, . . . , K ,

(53)

Īk(t) = 0, k = 1, 2, . . . , K , (54)

and X̄k(t) = Q̄k(t) and D̄1(t) = μ1t and D̄k(t) = 0 for all k = 2, 3, . . . , K .

Case (i i): If there exists an integer k0 : 1 < k0 < K such that
∑k0

l=1 ρl ≤ 1 and
∑k0+1

l=1 ρl > 1, then the solution of (13) is

Q̄k(t) = μk Z̄k(t) = λk t −
⎡

⎣ρk ∧
(

1 −
k−1
∑

l=1

ρl

)+⎤

⎦μk t

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0, k = 1, 2, . . . , k0;
μk0+1

(
k0+1∑

l=1
ρl − 1

)

t, k = k0 + 1;
λk t, k = k0 + 2, k0 + 3, . . . , K ,

(55)

B̄k(t) =
⎡

⎣ρk ∧
(

1 −
k−1
∑

l=1

ρl

)+⎤

⎦ t =

⎧

⎪⎪⎨

⎪⎪⎩

ρk t, k =1, 2, . . . , k0;
(

1−
k−1∑

l=1
ρl

)

t, k = k0+1;
0, k =k0 + 2, k0+3, . . . , K ,

(56)

Īk(t) =
(

1 −
k
∑

l=1

ρl

)+
t =

⎧

⎨

⎩

(

1 −
k∑

l=1
ρl

)

t, k =1, 2, . . . , k0;
0, k =k0 + 1, k0 + 2, . . . , K .

(57)

Finally, we also note that

X̄k(t)=μk

[

ρk t+
k−1
∑

l=1

B̄l(t)−t

]

=
⎧

⎨

⎩

μk

(
k∑

l=1
ρl −1

)

t, k =1, 2, . . . , k0+1;
λk t, k =k0 + 2, k0+3, . . . , K ,

(58)

D̄k(t)=μk B̄k(t)=

⎧

⎪⎪⎨

⎪⎪⎩

λk t, k = 1, 2, . . . , k0;
μk

(

1 −
k−1∑

l=1
ρl

)

t, k = k0 + 1;
0, k = k0 + 2, k0 + 3, . . . , K .

(59)

Case (i i i): If ρ < 1, all fluid functions satisfy the fluid functions in case (ii) with k0
replaced by K .
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Fig. 4 LIL limits of Example 2 as functions of k, 1 ≤ k ≤ 6, with k0 = 3,
∑3

k=1 ρk = 1 and
∑4

k=1 ρk > 1

More numerical examples

A type-1 OL example

Example 3 (Discontinuities of the LIL limits in the class index) Consider a 6-queue
example λk = 1, μk = 3, ca,k = cs,k = 1 for all 1 ≤ k ≤ K = 6. This example
belongs to the type-1 OL case because k0 = 3,

∑3
k=1 ρk = 1 and

∑4
k=1 ρk = 4/3 > 1.

According to Theorem 4, we compute the LIL limits in Table 2 and plot these limits
as functions of k in Fig. 4. The vertical line in 4 serving as a “benchmark” for ρ = 1
(because

∑3
k=1 ρk = 1 and

∑4
k=1 ρk > 1). We see that all LIL limits jump at k0

and k0 + 1. The LIL limits Q∗
k , Z∗

k , B∗
k , and D∗

k all peak at k0 = 3 and k0 + 1 = 4,
where stochastic processes Qk , Zk , Bk , and Dk experiencing the largest asymptotical
stochastic variability. The LIL I ∗

k increases in k and peak at k = k0 = 3, it then
drops to 0. This is so because the variability of Ik is cumulative (thus increasing) for
1 ≤ k ≤ k0 and then Ik becomes asymptotically negligible for all k0 < k ≤ K . See
Remark 5 for more discussions.

We plot the LIL limits as functions of k in Fig. 4.

LIL formulas for Example 2

We next provide the explicit LIL limits for Example 2. These limits are piecewise
functions. The LIL limits for Q are
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Q∗
1(ρ2) = 0, for all 0 ≤ ρ2 ≤ 1,

Q∗
2(ρ2) = √

2 · 1{ρ2=0.5} +
√

1 + √
0.5 + ρ2 · 1{0.5<ρ2≤1},

Q∗
3(ρ2) = √

2 · 1{ρ2=0}+
√

1.5+2ρ2+√0.5 − ρ2 · 1{0<ρ2≤0.5}+
√

0.5 · 1{0.5<ρ2≤1},

Q∗
4(ρ2) = √

2.5 · 1{ρ2=0} + √
0.5 · 1{0<ρ2≤1}.

The LIL limits for Z are

Z∗
1(ρ2) = 0, for all 0 ≤ ρ2 ≤ 1,

Z∗
2(ρ2) = √

1 + 2ρ2 · 1{0.5≤ρ2≤1},
Z∗

3(ρ2) = √

2 + 2ρ2 · 1{0≤ρ2≤0.5} + 1{0.5<ρ2≤1},
Z∗

4(ρ2) = √
3 · 1{ρ2=0} + 1{0<ρ2≤1}.

The LIL limits for B are

B∗
1 (ρ2) = 1, for all 0 ≤ ρ2 ≤ 1,

B∗
2 (ρ2) = √

2ρ2 · 1{0≤ρ2<0.5} + 1{0.5≤ρ2≤1},
B∗

3 (ρ2) = √

1 + 2ρ2 · 1{0≤ρ2≤0.5},
B∗

4 (ρ2) = √
2 · 1{ρ2=0}.

The LIL limits for I are

I ∗
1 (ρ2) = 1, for all 0 ≤ ρ2 ≤ 1,

I ∗
2 (ρ2) = √

1 + 2ρ2 · 1{0≤ρ2≤0.5},
I ∗
3 (ρ2) = √

2 · 1{ρ2=0},
I ∗
4 (ρ2) = 0, for all 0 ≤ ρ2 ≤ 1.

The LIL limits for D are

D∗
1(ρ2) = √

0.5, for all 0 ≤ ρ2 ≤ 1,

D∗
2(ρ2) = √

ρ2 · 1{0≤ρ2<0.5} + √
1.5 · 1{ρ2=0.5} +

√

1 + √
0.5 · 1{0.5<ρ2≤1},

D∗
3(ρ2) = √

1.5 · 1{ρ2=0} +
√

1 + 2ρ2 +√0.5 − ρ2 · 1{0<ρ2<0.5} + √
2 · 1{ρ2=0.5},

D∗
4(ρ2) = √

2 · 1{ρ2=0}.
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More discussion on Corollary 1

Using the analytic solutions to (13), we transform the results of Corollary 1 to more
detailed formulas. We consider two cases: (1) ρ < 1 and (2) there exists k0 : 1 <

k0 < K such that
∑k0

l=1 ρl ≤ 1 and
∑k0+1

l=1 ρl > 1.

Case 1. If ρ ≤ 1, then Q̄k(t) = 0 and B̄k(t) = ρk t for k = 1, 2, . . . , K . Hence (29)
and (30) are the following

X̃k(t)
d= μk

(
k
∑

l=1

ρl − 1

)

t −
k−1
∑

l=1

μk

μl
Q̃l(t)

+
k
∑

l=1

μk

μl

[

λ
1/2
l ca,l Wa,l(t) − λ

1/2
l cs,l Ws,l(t)

]

, (60)

B̄k(t) − B̃k(t)
d= ρk t − B̃k(t) = 1

μk
Q̃k(t)

− 1

μk

[

λ
1/2
k ca,k Wa,k(t) − λ

1/2
k cs,k Ws,k(t)

]

. (61)

Case 2. If there exists 1 < k0 < K such that
∑k0

l=1 ρl ≤ 1 and
∑k0+1

l=1 ρl > 1,
then Q̄k(t) = 0 and B̄k(t) = ρk t for k = 1, 2, . . . , k0, and (60) and (61) hold for
1, 2, . . . , k0. For k = k0 +1, we note that Q̄k0+1(t) = X̄k0+1(t) = μk0+1(

∑k0+1
l=1 ρl −

1)t and B̄k0+1(t) = (1 −∑k0
l=1 ρl)t . Hence,

X̃k0+1(t)
d= μk0+1

(
k0+1
∑

l=1

ρl − 1

)

t

−
k0∑

l=1

μk0+1

μl

[

Q̃l(t) + λ
1/2
l ca,l Wa,l(t) − λ

1/2
l cs,l Ws,l(t)

]

+
⎡

⎣λ
1/2
k0+1ca,k0+1Wa,k0+1(t) − μ

1/2
k0+1cs,k0+1

√
√
√
√1−

k0∑

l=1

ρi Ws,k0+1(t)

⎤

⎦,

(62)

and

B̄k0+1(t) − B̃k0+1(t)

=
(

1 −
k0∑

l=1

ρl

)

t − B̃k0+1(t)

d= 1

μk0+1

[

Q̃k0+1(t) − μk0+1

(
k0+1
∑

l=1

ρl − 1

)

t

]
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− 1

μk0+1

⎡

⎣λ
1/2
k0+1ca,k0+1Wa,k0+1(t) − μ

1/2
k0+1cs,k0+1

√
√
√
√1 −

k0∑

l=1

ρi Ws,k0+1(t)

⎤

⎦ .

(63)

For k = k0 + i, i = 2, 3, . . . , K − k0, Q̄k0+i (t) = λk0+i t , B̄k0+i (t) = 0, we have

X̃k0+i (t)
d= λk0+i t −

k0∑

l=1

μk0+i

μl
Q̃l(t)− μk0+i

μk0+1

[

Q̃k0+1(t) − μk0+1

(
k0+1
∑

l=1

ρl − 1

)

t

]

−
k0+i−1
∑

l=k0+2

μk0+i

μl

[

Q̃l(t) − λl t
]+

k0∑

l=1

μk0+i

μl

[

λ
1/2
l ca,l Wa,l(t) − λ

1/2
l cs,l Ws,l(t)

]

+ μk0+i

μk0+1

⎡

⎣λ
1/2
k0+1ca,k0+1Wa,k0+1(t) − μ

1/2
k0+1cs,k0+1

√
√
√
√1 −

k0∑

l=1

ρi Ws,k0+1(t)

⎤

⎦

+
k0+i
∑

l=k0+2

μk0+i

μl
λ

1/2
l ca,l Wa,l(t), (64)

and

B̄k0+i (t) − B̃k0+i (t)
d= Q̃k0+i (t) − λk0+i t

μk0+i
− λ

1/2
k0+i ca,k0+i Wa,k0+i (t)

μk0+i
. (65)

Proof of Lemma 2

According to (13), B̄k(t) = ρk t and X̄k(t) = −θk t < 0 for k = 1, 2, . . . , K . Next,
(27) implies that Q̃1(t) = Φ(X̃1)(t) is a reflected BM, where X̃1(t) = X̄1(t)+ W1(t)
is a BM with negative drift −θ1 and variance parameter μ1σ1. Theorem 6.2 in [18]
implies that

P

{

sup
0≤t≤T

Q̃1(t) ≥ z

}

≤ exp

{

− 2θ1

μ2
1σ

2
1

z

}

≤ exp {−2γ z} , z ≥ 0. (66)

We next consider k = 2, 3, . . . , K . For z ≥ 0,

P

{

sup
0≤t≤T

Q̃k(t) ≥ z

}

= P

{

sup
0≤t≤T

{

X̃k(t) + sup
0≤s≤t

[−X̃k(s)
]

}

≥ z

}

= P

{

sup
0≤t≤T

sup
0≤s≤t

[

X̃k(t) − X̃k(s)
] ≥ z

}
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≤ P

{

sup
0≤t≤T

sup
0≤s≤t

[

(X̄k(t) + Wk(t)) − (X̄k(s) + Wk(s))
] ≥ z

2

}

+ P

{

sup
0≤t≤T

sup
0≤s≤t

[
k−1
∑

l=1

μk

μl
Q̃l(s) −

k−1
∑

l=1

μk

μl
Q̃l(t)

]

≥ z

2

}

≤ P

{

sup
0≤s≤T

[X̄k(s) + Wk(s)] ≥ z

2

}

+ P

{

sup
0≤s≤T

k−1
∑

l=1

μk

μl
Q̃l(s) ≥ z

2

}

, (67)

where the first equality holds because X̃k(0) = 0 and the first inequality holds by (29).
To bound the second term in (67), we have

P

{

sup
0≤s≤T

k−1
∑

l=1

μk

μl
Q̃l(s) ≥ z

2

}

≤
k−1
∑

l=1

P

{

sup
0≤s≤T

Q̃l(s) ≥ min{μ1, . . . , μk−1}
(k − 1)μk

· z

2

}

≤
k−1
∑

l=1

P

{

sup
0≤s≤T

Q̃l(s) ≥ δk z

}

(68)

with δk given in Lemma 2.
We are now ready to prove (33) for 2 ≤ k ≤ K . We use induction. First, when

k = 2, using (67), (68) and the fact that δk ≤ 1
2 , we have

P

{

sup
0≤t≤T

Q̃2(t) ≥ z

}

≤ P

{

sup
0≤s≤T

[X̄2(s) + W2(s)] ≥ δ2z

}

+ P

{

sup
0≤s≤T

Q̃1(s) ≥ δ2z

}

≤ exp

{

− 2θ2

μ2
2σ

2
2

δ2z

}

+ exp

{

− 2θ1

μ2
1σ

2
1

δ2z

}

≤ N2 exp {−2γ δ2z} ,

where the second inequality holds by (66) and Lemma 5.5 in [18] (with X̄2(t)+W2(t)
being a BM with negative drift −θ2 and variance parameter μ2σ2).

Next, assume (33) holds for classes 2, . . . , k. For class k + 1, we have

P

{

sup
0≤t≤T

Q̃k+1(t) ≥ z

}

≤ P

{

sup
0≤s≤T

[X̄k+1(t) + Wk+1(s)] ≥ δk+1z

}

+
k
∑

l=1

P

{

sup
0≤s≤T

Q̃l(s) ≥ δk+1z

}

≤ exp

{

−2θk+1δk+1z

μ2
k+1σ

2
k+1

}

+exp

{

−2θ1δk+1z

μ2
1σ

2
1

}

+
k
∑

l=2

Nl exp {−2γ δ2δ3 · · · δlδk+1z}
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≤ Nk+1 exp {−2γ δ2δ3 · · · δk+1z} = Nk+1 exp

⎧

⎨

⎩
−2γ

k+1
∏

j=1

δ j z

⎫

⎬

⎭
,

where the first inequality holds by (67), (50), and the fact that δk ≤ 1/2, and the
second inequality holds by the induction hypothesis and Lemma 5.5 in [18] (with
X̄k+1(t) + Wk+1(t) being a BM with negative drift −θk+1 and variance parameter
μk+1σk+1). ��
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