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Appendix

APPENDIX A: OVERVIEW.

This appendix contains additional supplementary material, which is pre-
sented in order of the material to which it relates. First, in §B we present
additional simulation results for the example in §1. Specifically, we report re-
sults of simulations with smaller scaling n but averaged over multiple sample
paths, to show the quality of the fluid model as an approximation for mean
values in the queueing system. We also consider an example with smaller
traffic intensity ρ for the example in §1 to show that the periodic behavior
is eventually broken.

In §C we give proofs of Theorems 7.1-7.4 in §7. In §D we return to the ex-
ample in §1 and show that different initial conditions can yield very different
PSS’s. In §E we apply the algorithm in Remark 5.2 to numerically evaluate
the average performance over a cycle with non-exponential abandonment
distributions. These examples show that the average boundary waiting time
over a cycle tends to be strictly greater than the stationary value, whereas
the average queue length over a cycle can be either strictly greater or strictly
less than the stationary queue content in the fluid model. In §F we provide
a proof of Corollary 8.2, giving explicit expressions for the performance in
the G/D/s + M fluid model with an exponential abandonment cdf. In §G
we provide a proof of Theorem 9.1 showing that there need not exist a fi-
nite time T ∗ after which the system remains overloaded. To do so, we show
that the given example switches back and forth between overloaded and
overloaded infinitely often, with two switches in each cycle. In §H, we give
another counterexample with B(0) < 1 that is an analog of Example 3.1 in
§3.

We then start to consider other service distributions. In §I we provide the
same PSS results for fluid models that have two-point service distributions
with one of the points at 0. Simulation verification is also given there. In
§J we provide results of simulation experiments for queues that have nearly
deterministic service times. The simulation results shows that the behavior
forD service is not exhibited for other two-point distributions. This supports
(but of course does not prove) our conjecture that ALOM holds in all other
GI/GI/s+GI models and even in the more general Gt/GI/st+GI models.

APPENDIX B: MORE ON THE EXAMPLE IN SECTION 1

B.1. Smaller Scaling n. We used a very large scaling, in particular
n = 1000, for the queueing model in the example in §1. We used a very
large n for two reasons: first, to demonstrate that the fluid model becomes
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accurate in the limit as n → ∞ and, second, to provide a good test of the
numerical algorithm for the fluid model. However, in order to be useful as
approximations for realistic large-scale queueing systems, the approximation
also should be reasonable for smaller scaling factors. We demonstrate that
now.
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Fig 4. Performance of the G/D/s+M fluid model compared with simulation results: one
sample path of the scaled queueing model for n = 100.

We consider the same base M/D/n + M fluid model here as in §1, but
we only consider the case θ = 2. The other parameters remain unchanged:
λ = 2, µ = s = 1. However, we consider different values of the scaling factor
n for the associated stochastic queueing model, which coincides with the
number of servers (since we set s = 1).

Figure 4 below provides the analog of Figure 2 for the case of one sample
path of the simulation with n = 100, for the same fluid model. Figure 5
below gives the average of 10 sample paths for the same model. We see
that the fluid approximation provides only a rough approximation for a
single sample path when n = 100 instead of n = 1000, but it is remarkably
accurate for the average over 10 sample paths. The accuracy is especially
high in this example, because the extent of the overloads and underloads
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Fig 5. Performance of the G/D/s +M fluid model compared with simulation results: an
average of 10 sample paths of the scaled queueing model based on n = 100.

are quite large.
The quality of the approximation does degrade as n decreases, for the

given fluid model. To illustrate, we plot a single sample path for n = 30 in
Figure 6 and the average over 100 sample paths in Figure 7. The stochastic
fluctuations are so much greater for a single sample path that we need to
average over more sample paths to get a good estimate of the mean values.
For n = 30, the fluid model clearly yields a good approximation only for the
mean values, but the mean is remarkably well approximated for n = 30. The
approximation for the mean values in Figure 7 are so good that it is evident
that the fluid model approximations can provide useful approximations for
the mean values for much smaller n (and thus s).

B.2. Smaller Traffic Intensity ρ. For the initial heavily loaded ex-
ample with ρ ≡ λ/sµ = 2 and scaling n = 1000 discussed in §1 we were not
able to detect a break in the periodic behavior in simulations. For example,
Figure 3 shows that the periodic behavior of Wn(t), the head-of-line waiting
time at t, remains even for large T (T = 1000). However, we found that a
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Fig 6. Performance of the G/D/s+M fluid model compared with simulation results: one
sample path of the scaled queueing model for n = 30.

break in the periodic behavior can be observed if we considered less heavily
loaded examples.

To illustrate, we now consider the same M/D/n + M queue in §1 with
the same parameters (µ = 1, θ = 2, n = 100) except for a smaller λ,
now letting λ = 1.3n, so that the system has a lower traffic intensity, ρ =
λ/nµ = 1.3 instead of ρ = 2 as in §1. We repeat the same simulation
experiment with ρ = 1.3 and plot Wn in Figure 8. Figure 8 shows essentially
the same periodic behavior over the initial interval [0, 10], but it shows that
the periodic behavior is gone by T = 1000.

APPENDIX C: PROOFS FOR §7
We omitted the proofs for the four theorems in §7 because they follow

from the proofs of corresponding results in [21]. Nevertheless, we provide
the details here.

C.1. Proof of Theorem 7.1.

Proof. Since both queues are overloaded for all t ≥ 0 and they have the
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Fig 7. Performance of the G/D/s +M fluid model compared with simulation results: an
average of 100 sample paths of the scaled queueing model based on n = 30.

same initial fluid densities in service, we have b1(t, 0) = b2(t, 0) = σ1(t) =
σ2(t) by Theorem 5.2. For the fluid content in queue, we have q̃1(t, x) ≤
q̃2(t, x) for all x by Proposition 5.1 because the two queues share the same
F .

It remains to show w1(t) ≤ w2(t) for all t ≥ 0. We will do a proof by
contradiction. Hence suppose this inequality does not hold for some t > 0.
Then continuity of w1 and w2 implies that there exists some 0 < t1 < t such
that w1(t1) = w2(t1) ≡ w̃. However, the ordering of q̃1 and q̃2 implies that
q̃1(t1, w̃) ≤ q̃1(t1, w̃). Hence the BWT ODE in Theorem 5.3 of [19] implies
that w′

1(t1) = w′
2(t1) because b1(t, 0) = b2(t, 0). Therefore, this contradicts

our assumption that there exists a t such that w1(t) > w2(t). Hence that
establishes the desired ordering.

The ordering of Q and α follow directly from the ordering of q and w
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Fig 8. Large-time periodic behavior of an overloaded G/D/s + M queueing model: sim-
ulation estimates of the head-of-line waiting time Wn with λ = 1.3, s = µ = 1, θ = 2,
ρ = 1.3, n = 100, T = 1000.

since

Q1(t) =

∫ w1(t)

0
q1(t, x)dx ≤

∫ w2(t)

0
q2(t, x)dx = Q2(t),

α1(t) =

∫ w1(t)

0
q1(t, x)hF (x)dx ≤

∫ w2(t)

0
q2(t, x)hF dx = α2(t).

Now we turn to v. The equation (27) in Theorem 5 implies that the ordering
of w is inherited by v. That is made clear by applying the proof of Theorem
5, which shows that v(t) is determined by the intersection of the function w
with the linear function Lt(u) = t+u. Clearly, if we increase the w function,
then that intersection point increases as well.

C.2. Proof of Theorem 7.2.

Proof. Without loss of generality, by Theorem 7.1, it suffices to assume
that λ1 ≤ λ2 and q1(0, ·) ≤ q2(0, ·). If that is not initially the case, consider
another two systems, system 3 and 4 with λ3 ≡ λ1∧λ2, q3(0, x) ≡ q1(0, x)∧
q2(0, x), λ4 ≡ λ1 ∨ λ2, q4(0, x) ≡ q1(0, x) ∨ q2(0, x). Therefore, it is easy to
see that |λ1 − λ2| = |λ3 − λ4| and |Q1(0) −Q2(0)| ≤ |Q3(0)−Q4(0)|.

Since both queues are overloaded and b1(t, 0) = b2(t, 0), flow conservation
of fluid in queue implies that for i = 1, 2,

Q′
i(t) = λi − αi(t)− bi(t, 0).

Hence, we have

Q′
2(t)−Q′

1(t) = λ2 − λ1 − (α2 − α1) ≤ λ2 − λ1,(C.1)
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where the inequality follows from Theorem 7.1. This yields

|Q1(t)−Q2(t)| = Q2(t)−Q1(t) ≤ |Q1(0)−Q2(0)| + t |λ1 − λ2|.

Obviously, (7.3) directly follows from (7.1). To show (7.2), we have

|α1(t)− α2(t)| = α2(t)− α1(t)

=

∫ w2(t)

0
q2(t, x)hF (x)dx−

∫ w1(t)

0
q1(t, x)hF (x)dx

=

∫ w1(t)

0
(q2(t, x)− q1(t, x))hF (x)dx+

∫ w2(t)

w1(t)
q2(t, x)hF (x)dx

≤ h↑F

(

∫ w1(t)

0
(q2(t, x)− q1(t, x))hF (x)dx +

∫ w2(t)

w1(t)
q2(t, x)hF (x)dx

)

= h↑F (Q2 −Q1) = h↑F |Q2 −Q1|,

where the first and last equality, and the inequality all follows from Theorem
7.1.

C.3. Proof of Theorem 7.3.

Proof. We first show that (a) follows from (b). Without loss of gen-
erality, we assume Q1(0) ≤ Q2(0). We construct another two systems, 3
and 4, with q3(0, x) ≡ q1(0, x) ∧ q2(0, x) and q4(0, x) ≡ q1(0, x) ∨ q2(0, x).
With this construction, systems 3 and 4 are bona fide fluid models, with
Q3(t) ≤ Q1(t) ≤ Q4(t) and Q3(t) ≤ Q2(t) ≤ Q4(t) for all t, by Theorem 7.1.
This implies that ∆Q1,2(t) ≤ ∆Q3,4(t) for all t. Since δQ3,4(t)(0) ≤ C1 for
C1 in (7.5), (7.4) in (a) follows from (7.10) for ∆Q3,4(t). (The final bound
on C1 in (7.5) arises when the supports of q1(0, ·) and q2(0, ·) are disjoint
sets.)

Now we prove (b). Observe that the first inequality in (7.10) follows (7.9)
because dividing the interval [0, T ] into N subintervals yields

∆Q(T ) ≤
(

1

1 + h↓F
T
N

)N

∆Q(0).

Letting N → ∞, we get (7.9).
We now prove (7.9). Since both queues are overloaded for all t ≥ 0 and

they have the same initial fluid densities in service, we have b1(t, 0) =
b2(t, 0) = σ1(t) = σ2(t), following from Theorem 5.2. Since q1(0, x) ≤
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q2(0, x), we have q1(t, x) ≤ q2(t, x), w1(t) ≤ w2(t) and α1(t) ≤ α2(t) for
all t ≥ 0. Hence, we have

α2(t)− α1(t) =

∫ w2(t)

0
q2(t, x)hF (x)dx−

∫ w1(t)

0
q1(t, x)hF (x)dx

=

∫ w1(t)

0
(q2(t, x)− q1(t, x))hF (x)dx +

∫ w2(t)

w1(t)
q2(t, x)hF (x)dx

≥ h↓F

(

∫ w1(t)

0
(q2(t, x) − q1(t, x))dx +

∫ w2(t)

w1(t)
q2(t, x)(x)dx

)

= h↓F (Q2(t)−Q1(t)) = h↓F ∆Q(t).(C.2)

Flow conservation implies that

Q′
i(t) = λ− αi(t)− bi(t, 0) for i = 1, 2,

which yields

∆Q′(s) = −(α2(s)− α1(s)) ≤ −h↓F ∆Q(s) ≤ −h↓F ∆Q(t), 0 ≤ s ≤ t,

where the first inequality follows from (C.2) and the second inequality holds
since ∆Q(t) has negative derivative. Therefore, integrating both sides with
respect to s from 0 to t, we have

∆Q(t)−∆Q(0) ≤ −h↓F t∆Q(t)

and

∆Q(t) ≤
(

1

1 + h↓F t

)

∆Q(0).

To show the second inequality in (7.10), repeat the reasoning in (C.2) and

use the face hF (x) ≤ h↑F instead of hF (x) ≥ h↓F .
Finally, we treat w(t). As above, it suffices to assume that we have the

ordering in (7.8). We have b(t, 0) ≥ b↓ following from Proposition 5.2 and
Corollary 5.2. First note that at time T ∗ = (Q1(0)+Q2(0))/b

↓, all fluid that
was in queue 1 and 2 at time 0 is gone (entered service or abandoned). Then
(7.6) follows from

∆Q(T ) =

∫ w2(T )

w1(T )
λ F̄ (x)dx ≤ λ F̄ (w2(T ))∆w(T ), T ≥ T ∗.
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Choose w̄ > 0 big enough such that F̄ (w̄) < b↓/λ. The BWT ODE implies
that for t > T ∗,

w′
2(t) = 1− b(t, 0)

λ F̄ (w2(t))
≤ 1− b↓

λ F̄ (w̄)
< 0,

if w2(t) > w̄ for some t. Hence w̄ is an upper bound for w2(t) if w2(T
∗) < w̄. If

w2(T
∗) ≥ w̄, it is easy to see that w2(t) decreases until it is below w̄ because

we can bound w′
2(t). This argument implies that w2(t) ≤ w̄ ∨ (w2(0) + T ∗)

for all t ≥ 0. The constant C2 in (7.7) is obtained by inserting established
bounds.

C.4. Proof of Theorem 7.4.

Proof. Most are elementary; only Q(t) and w(t) require detailed argu-
ment. Flow conservation implies that Q′(t) = λ− α(t) − b(t, 0) ≤ λ− α(t).

Since α(t) ≥ h↓F Q(t), we have Q′(t) < 0 whenever Q(t) > λ/h↓F . The bound
for w(t) follows directly from (7.6) and the proof of Theorem 7.3.

APPENDIX D: DIFFERENT INITIAL CONDITIONS

Theorems 6.1 and 8.1 provide sufficient conditions for Assumption 12 to
hold, and for the performance function to converge to a PSS. That PSS
depends strongly on the fluid density in service, b at the time T ∗ after
which the system remains overloaded. We now illustrate that different initial
conditions can yield very different PSS’s.

We again consider the G/D/s+M example in §1 with λ = 2, µ = s = 1,
θ = 2. In Figure 9, we apply the algorithm in Remark 5.2 and plot the
performance functions B(t), b(t, 0), w(t) and Q(t) in interval [0, 3.5] for two
different initial conditions: (i) The system is initially critically loaded (CL)
with b(0, x) = 1.5 · 1{0≤x≤1/2} + 0.5 · 1{1/2≤x≤1}, Q(0) = 0 (the blue solid
lines); (ii) The system is initially empty (the red dashed lines). Both cases
yield a PSS with period 1/µ = 1, but the performance in these two cases
differs greatly.

APPENDIX E: THE AVERAGE PERFORMANCE OVER A CYCLE

In Remark 8.3 we noted that, unlike ᾱ and σ̄, the averages of other per-
formance functions in a PSS typically do not agree with the steady-state
values. We investigate Q̄ and w̄ ≡ τ−1

∫ τ
0 w(t) dt now.

We consider an initially empty G/D/s+GI fluid model with three types
of abandonment distributions: (i) Erlang-2 (E2), (ii) exponential (M) and
(iii) Hyperexponential-2 (H2). We first review these distributions.
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Fig 9. A comparison of the PSS performance of the G/D/s+M fluid queue with different
initial conditions: (i) critically loaded with b(0, x) = 1.5 · 1{0≤x≤1/2} + 0.5 · 1{1/2≤x≤1},
Q(0) = 0 (the blue solid lines); (ii) starting empty (the red dashed lines).

Let A be the generic abandonment time. A follows E2 implies that A =
X1 +X2 in distribution, where X1 and X2 are two iid exponential random
variables. Moreover, f(x) = γ2 x e−γ x, where γ is rate of X1. If A follows
H2, then A is a mixture of two exponential random variables, i.e., f(x) =
p · θ1 e−θ1 x + (1 − p) · θ2 e−θ2 x, where θ1 and θ2 are the rates of these two
exponential random variables, and 0 < p < 1 is the sampling probability.

We fix the mean of A, letting E[A] = 1/θ. An E2 distribution has squared
coefficient of variation (SCV) C2 ≡ V ar(A)/E[A]2 = 1/2, which is less than
1. On the other hand, all H2 distributions have C2 greater than 1. For E2,
we let γ = 2 θ. For H2, we let p = 0.5(1 −

√
0.6), θ1 = 2p θ, θ2 = 2(1 − p) θ,

so that C2 = 4.
We let λ = 2, θ = 2, µ = s = 1. In Figure 10, we plot w, Q and α

in one cycle [0, 1/µ] of PSS for these three abandonment distributions, by
applying the algorithm described in Remark 5.2. (Here we start the system
empty and compute these performance functions in N cycles for N large.)
In Table 1, we compute and compare w̄, Q̄ and ᾱ, the average of w, Q and
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Fig 10. A comparison of the PSS of the G/D/s+GI fluid queues with different abandon-
ment distributions: (i)E2 (red dashed), (ii) M (blue solid) and (iii) H2 (black dashed).

α in one cycle to w∗, Q∗ and α∗, their steady-state values. We have three
observations: (i) As proved in Corollary 8.1, ᾱ indeed agrees with α∗ (except
for a small computation error from numerical integration); (ii) Q̄ 6= Q∗ in
general, in particular, Q̄ < Q∗ for E2 abandonment and Q̄ > Q∗ for H2

abandonment; (iii) w̄ ≥ w∗, i.e., customers’ average waiting is longer in PSS
than in the steady state.

APPENDIX F: THE CASE OF EXPONENTIAL ABANDONMENT

In this section we prove Corollary 8.2, giving explicit formulas in the case
of exponential abandonment. We give two different proofs.

F.1. First Proof of Corollary 8.2. First, since b(t, x) and σ(t) are
periodic functions and Q(t) and α(t) can be written as expressions in terms
of w(t), it remains to derive the dynamics of w(t).

In a cycle [0, 1/µ], w(t) = w̃+t for 0 ≤ t ≤ 1/µ−s/λ and w(t) solves ODE
w′(t) = 1−1/F̄ (w(t)) = 1−1/e−θw(t) with w(1/µ−s/λ) = w̃+1/µ−s/λ for
1/µ− s/λ ≤ t ≤ 1/µ, where w̃ ≥ 0 is both the starting and the ending value
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abandonment dist. E2 (C2 = 0.5) M (C2 = 1) H2 (C2 = 4)

ᾱ (PSS average) 1.001 1 1.001
α∗ (steady state) 1 1 1

w̄ (PSS average) 0.437 0.367 0.260
w∗ (steady state) 0.420 0.347 0.226

Q̄ (PSS average) 0.649 0.5 0.330
Q∗ (steady state) 0.657 0.5 0.324

Table 1

A comparison of the average performance of PSS of the G/D/s+GI fluid queue with (i)
E2, (ii) M and (iii) H2 abandonment distribution to the steady-state values.

of w(t) in each cycle. Letting v(t) ≡ t−w(t), we have for 1/µ−s/λ ≤ t ≤ 1/µ,

eθt = (1− w′(t))eθ(t−w(t)) = v′(t)eθv(t).

For 1/µ − s/λ ≤ t ≤ 1/µ, integrating both sides from 1/µ − s/λ to t yields

eθt − eθ(1/µ−s/λ) = θ

∫ t

1/µ−s/λ
eθudu = θ

∫ v(t)

v(1/µ−s/λ)
eθudu

= eθ(t−w(t)) − eθ(1/µ−s/λ−w(1/µ−s/λ)) .(F.1)

Because w(1/µ− s/λ) = w̃+1/µ− s/λ and w(1/µ) = w̃, letting t = 1/µ in
(F.1) yields (8.10), from which (8.8) follows. Solving the ODE yields (8.11).

t
21
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)(tw

w
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w
~

45
O

line

0

)(tv

s1 s2

Fig 11. PWT v(t) and BWT w(t) of the PSS of the G/D/s +GI fluid queue.

Finally, to show (c), we consider a cycle [1/µ − w̃, 2/µ − w̃] instead of
[0, 1/µ]. First, the PWT v(t) is periodic with the same period 1/µ. Moreover,
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it is continuous over [1/µ−w̃, 2/µ−w̃) and it has a discontinuity at t = 2/µ−
w̃, as shown in Figure 11, following from Theorem 5.4. Also see Theorem 5
and 6 in [19] for details. Following Theorem 6 in [19], v(t) satisfies the ODE

v′(t) =
λ F̄ (v(t))

b(t+ v(t), 0)
− 1 =

λ e−θ v(t)

λ
− 1

= e−θ v(t) − 1,
1

µ
− w̃ ≤ t <

2

µ
− w̃,(F.2)

where the second equality holds because b(t, 0) = λ for 2/µ− s/λ ≤ t ≤ 2/µ
and t + v(t) ≥ 2/µ − s/λ (obviously from Figure 11). Since v(1/µ − w̃) =
w̃ + 1/µ − s/λ ≡ v0, solving ODE (F.2) with (1/µ − w̃) = v0 yields (8.13).

F.2. Second Proof of Corollary 8.3. We can provide an alternative
proof of Corollary 8.3 by focusing on Q(t). Since σ(t) = b(t, 0) = 0, Q(t)
satisfies an ODE for 0 ≤ t ≤ 1/µ− s/λ with

Q′(t) = λ− θ Q(t),

which has a unique solution

Q(t) =
λ

θ

(

1− e−θ t
)

+Q(0) e−θ t.(F.3)

Since σ(t) = b(t, 0) = λ for 1/µ − s/λ < t ≤ 1/µ, Q(t) satisfies another
ODE

Q′(t) = λ− θ Q(t)− b(t, 0) = −θ Q(t),

which has a unique solution

Q(t) = Q∗ e−θ t,(F.4)

where

Q∗ ≡ Q

(

1

µ
− s

λ

)

=
λ

θ

(

1− e
−θ

(

1
µ
− s

λ

))

+Q(0) e
−θ

(

1
µ
− s

λ

)

is the ending value of Q(t) in [0, 1/µ − s/λ]; i.e., let t = 1/µ − s/λ in
(F.3). Since Q(t) is periodic in the PSS with period 1/µ, we must have
Q̃ ≡ Q(0) = Q(1/µ). Equating Q(0) to Q(t) in (F.4) with t = 1/µ yields

Q̃ =
λ

θ

(

e−θ s/λ − e−θ/µ

1− e−θ/µ

)

.(F.5)
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Plugging Q(0) = Q̃ in (F.5) into (F.3) and (F.4) yields (8.9) and (8.12). To
show (8.10), we let

Q̃ =

∫ w̃

0
λ e−θ xdx =

λ

θ

(

1− e−θ w̃
)

,(F.6)

which yields (8.10).

APPENDIX G: ON THEOREM 9.1

Recall that Theorem 9.1 concludes that there need not exist a finite time
T ∗ after which the system remains overloaded; i.e., there need not exist
T ∗ < ∞ such that B(t) = s for all t ≥ T ∗. The proof involves a con-
crete counterexample. We now show that the counterexample indeed has
the claimed property.

G.1. Proof of Theorem 9.1. We start by giving a feel for the per-
formance by applying the numerical algorithm in Remark 5.2. We plot the
performance functions w(t), Q(t), B(t), b(t, 0) and σ(t) for 0 ≤ t ≤ 5 in Fig-
ure 12. Figure 12 clearly shows that B(n) = s for all n and that B(n+(1/2))
increases towards s.

However, from the picture alone, we cannot be sure that B(n+(1/2)) < s
for all n. To justify that, we need to consider the behavior more carefully.
To show that the system alternates between overloaded and underloaded
infinitely often, we consider successive intervals [n, n+1] for n ≥ 0. First, in
the first unit [0, 1], we have b(t, 0) = σ(t) = b(0, 1−x) = 2 ·1{0≤x≤1/2}. Since
b(t, 0) = σ(t) whenever the system is overloaded and the system is initially
overloaded, the BWT w(t) satisfies the ODE

w′(t) = 1− b(t, 0)

λ F̄ (w(t))
= 1− 2

1.2 e−2w(t)
1{0≤t≤1/2},(G.1)

with w(0) = 2, which has a unique solution

w(t) = t− 1

2
log

(

e2 t − 1

0.6
+ e−2w(0)

)

for 0 ≤ t ≤ 1/2.

Letting w(t) = 0 yields that

t
(1)
1 =

1

2
log

(

1− 0.6 e−2w(0)

0.4

)

= 0.453 < 1/2,(G.2)

that is the time at which the system becomes underloaded. Note that for

t
(1)
1 < t ≤ 1/2, σ(t) = 2 > 1.2 = b(t, 0) = λ, therefore, the fluid content
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in service decreases (linearly) with B(t) = s − (σ(t) − b(t, 0)) (t − t
(1)
1 ) =

1 − 0.8(t − t
(1)
1 ). For t > 1/2, b(t, 0) = λ = 1.2 > 0 = σ(t), B(t) increases

(liearly) with B(t) = B(1/2)+(b(t, 0)−σ(t)) (t−1/2) = 0.96+1.2(t−1/2).

So the system again becomes overloaded at t
(1)
2 = 0.53 since B(t

(1)
2 ) = 1 = s.

Moreover, t
(1)
1 and t

(1)
2 satisfy 1.2(t

(1)
2 −1/2) = 0.8(1/2−t

(1)
1 ). For t2 ≤ t ≤ 1,

by ODE (G.1), w(t) = t− t
(1)
2 , which implies that w(1) = 1− t

(1)
2 = 0.47 <

2 = w(0). In summary, the system is overloaded in [0, t
(1)
1 ] ∪ [t

(1)
2 , 1] and

(strictly) underloaded in (t
(1)
1 , t

(1)
2 ), b(1)(t, 0) ≡ b(t, 0) = 2 · 1

{0≤t<t
(1)
1 }

+ 1.2 ·
1
{t

(1)
1 ≤t≤1/2}

and w(1)(0) ≡ w(0) > w(1) ≡ w(1)(1), with 0 < t
(1)
1 < 1/2 <

t
(1)
2 < 1. See Figure 12.
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Fig 12. The counterexample providing a fluid model that does not become (and stay)
overloaded in finite time; it switches between overloaded and underloaded regimes infinitely
often.
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Now consider the next unit interval [1, 2]. We can simply shift the origin to
time 1 and again consider the interval [0, 1]. Therefore the system is initially
overloaded with w(2)(0) ≡ w(0) = w(1)(1) < w(0)(0), σ(t) = b(1)(t, 0) =
2 · 1

{0≤t<t
(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤t

(1)
2 }

(which is the rate into service in the previ-

ous interval). We want to show that the same structure of all performance
functions are preserved in the second unit interval. The switching time (from
overloaded to underloaded) is a strict monotone function of w(0), by (G.2),

therefore the system becomes underloaded at t
(2)
1 such that t

(2)
1 < t

(1)
1 since

w(0) = w(1)(1) < w(1)(0). Because σ(t) = 2 · 1
{0≤t<t

(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤t

(1)
2 }

,

we have

B(t) = 1
{t∈[0,t

(2)
1 )∪(t

(2)
2 ,1]}

+ [1− 0.8(t− t
(2)
1 )]1

{t
(2)
1 ≤t<t

(1)
1 }

+[1− 0.8(t
(1)
1 − t

(2)
1 )]1

{t
(1)
1 ≤t≤1/2}

+[1− 0.8(t
(1)
1 − t

(2)
1 ) + 1.2(t − t

(1)
2 )]1

{t
(1)
2 ≤t≤t

(2)
2 }

,

where t
(2)
2 satisfies 1.2(t

(2)
2 − t

(1)
2 ) = 0.8(t

(1)
1 − t

(2)
1 ) so that t

(2)
2 > t

(1)
2 , which

implies that the system is overloaded for t
(2)
2 ≤ t ≤ 1 and w(2)(1) ≡ w(1) =

1 − t
(2)
2 < w(0) = w(1)(1) = w(2)(0). In summary, in the second interval,

the system is overloaded in [0, t
(2)
1 ] ∪ [t

(2)
2 , 1] and (strictly) underloaded in

(t
(2)
1 , t

(2)
2 ), b(2)(t, 0) ≡ b(t, 0) = 2 · 1

{0≤t<t
(2)
1 }

+ 1.2 · 1
{t

(2)
1 ≤t≤t

(2)
2 }

, σ(2)(t) ≡
σ(t) = b(1)(t, 0) = 2 · 1

{0≤t<t
(1)
1 }

+ 1.2 · 1
{t

(1)
1 ≤t≤t

(1)
2 }

and w(2)(0) ≡ w(0) >

w(1) ≡ w(2)(1), with 0 < t
(2)
1 < t

(1)
1 ≤ t

(1)
2 < t

(2)
2 < 1. See Figure 12.

Using an inductive argument, we can show that in the nth unit interval
[n−1, n], the same structure is preserved. In particular, if we move the origin
to time n− 1 (i.e., consider [0, 1] instead of [n− 1, n]), then

the system is

{

overloaded, for t ∈ [0, t
(n)
1 ] ∪ [t

(n)
2 , 1],

(strictly) underloaded, for t ∈ (t
(n)
1 , t

(n)
2 ).

b(n)(t, 0) ≡ b(t, 0) = 2 · 1
{0≤t<t

(n)
1 }

+ 1.2 · 1
{t

(n)
1 ≤t≤t

(n)
2 }

,

σ(n)(t) ≡ σ(t) = b(n−1)(t, 0) = 2 · 1
{0≤t<t

(n−1)
1 }

+ 1.2 · 1
{t

(n−1)
1 ≤t≤t

(n−1)
2 }

,

w(n)(0) ≡ w(0) > w(1) ≡ w(n)(1),

with 0 ≤ t
(n)
1 < t

(n−1)
1 ≤ t

(n−1)
2 < t

(n)
2 ≤ 1. Therefore, the bounded sequence

t
(1)
1 , t

(2)
1 , . . . is strictly decreasing and the bounded sequence t

(1)
2 , t

(2)
2 , . . . is

strictly increasing so that we must have t
(n)
1 ↓ t∞1 ≥ 0 and t

(n)
2 ↑ t∞2 ≤ 1. We
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next show that t∞1 > 0 and t∞2 < 1. Suppose t∞1 = 0, then w∞(0) = w∞(1) =
0, which implies that t∞2 = 1 (the monotonicity structure is preserved in the
limit). Therefore, the system is underloaded or critically loaded in [0, 1].
However, since we have ρ = λ/sµ = 1.2 > 1, this cannot happen. Hence a
contradiction.

G.2. More On Theorem 9.1. The example in the proof of Theorem
9.1 discussed above in §G.1 also can illustrate the important role played by
the initial queue density q(0, ·) on the asymptotic performance. Indeed, we
can ensure that a time T ∗ < ∞ exists such that B(t) = s for all t ≥ T ∗

by changing the initial queue density. Moreover, we achieve this finite T ∗ in
this example by reducing the initial fluid content in queue, not by increasing
it.

We consider the same example as before, as discussed in §G.1, with the
same initial fluid density in service but w(0) = 0.2 (instead of w(0) = 2).
Figure 13 is the analog of Figure 12. As shown in Figure 13, the system
becomes overloaded in the second cycle and stays overloaded thereafter.
Moreover, the structure of the PSS is entirely different (in this case there is
no critically loaded interval as in Figure 12).

As concluded in §6 - 8, the initial fluid density in queue q(0, x) does not
play a role in determining the system’s asymptotic behavior if the system
is overloaded for all t ≥ 0, by the ALOM property in Theorem 7.3. In this
example, however, q(0, x) is also critical, because it determines the behavior
of b as well.

By a minor modification of the reasoning used in §G.1, we can show
that the system is overloaded for all t ≥ 1/µ. Let 0 ≤ t1 ≤ 1/µ be the
time at which the system switches from overloaded to underloaded intervals
in [0, 1/µ]. First, we can establish a similar (strict) monotonicity result.
With w(0) = 0.2, we can show that w(1) ≈ 0.3 > w(0), which implies
that Q(1/µ + t1) > 0. Since σ(t + 1/µ) = b(t, 0) for 0 ≤ t ≤ 1/µ, we have
b(t+1/µ, 0) = b(t, 0). Therefore, the system is overloaded in [1/µ, 2/µ]. Using
an inductive argument, we can show that w(n+1) > w(n) and σ(t+n/µ) =
b(t + n/µ, 0) = b(t, 0) so that the system is overloaded in [n, n + 1] for all
n ≥ 1.

APPENDIX H: MORE ON FIRST PASSAGE TIMES

As an analog of Example 3.1 in §3, below we give another counterexample
for first passage times with B(0) < 1.

Example H.1. (counterexample on first passage times with B(0) < 1 )
Suppose that λ > µ = 1. Let b(0, x) = λ for 1 − (1/λ) ≤ x ≤ 1− 1/2λ and
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Fig 13. The dynamics of the system performance of the example in Theorem 9.1 that has
the same initial fluid density in service but w(0) = 0.2 instead of w(0) = 2.

b(0, x) = 0 otherwise, so that B(0) = 1/2, b(t, 0) = λ, 0 ≤ t < 1/λ, and
b(t, 0) = 0, 1/λ ≤ t < 1, B(t) = 1/2 + λ t for 0 ≤ t ≤ 1/2λ and B(t) = 1 for
t > 1/2λ. Therefore, T ∗ = t∗ = 1/2λ.

For n ≥ 1, let {Bn(0, y) : 0 ≤ y ≤ 1} be deterministic. To be a legitimate
sample path for a queueing system, Bn(0, y) must be nondecreasing and
integer-valued as well as satisfy 0 ≤ Bn(0, y) ≤ n. Thus, let Bn(0, y) ≡
⌊Bf

n(0, y)⌋, where ⌊x⌋ is the greatest integer less than or equal to x and

B̄f
n(0, y) ≡ n−1Bf

n(0, y) ≡
∫ y
0 bn(0, x) dx, where bn(0, x) = ((n + 1)/n)λ,

1 − ((n − 1)/nλ) ≤ x ≤ 1 − ((n − 1)/2nλ), and bn(0, x) = 0 otherwise.

First, observe that B̄f
n(0, 1/µ) = (n2 − 1)/2n2 < 1/2 for all n ≥ 1. Second,

observe that we have 0 ≤ B̄f
n(0, y) − B̄n(0, y) ≤ 1/n for all y and n. Hence,

B̄n(0, 1/µ) ≤ B̄f
n(0, 1/µ) < 1/2 for all n ≥ 1. Nevertheless, B̄n(0, ·) → B(0, ·)

as n → ∞. On the other hand, consider a deterministic arrival process with
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rate nλ. Then Bn(1/2λ) = Bn(0) + Nn(1/2λ) = ⌊(n2 − 1)/2n2⌋ + ⌊(n −
1)/2⌋ = n − 1 < n (note there is no departure in [1, 1/2λ]). Also, Sn(t) −
Sn(1/2λ) = ⌊(n + 1)λ (t − 1/2λ)⌋ ≥ ⌊nλ (t − 1/2λ)⌋ = Nn(t) − Nn(1/2λ)
for (n − 1)/2nλ ≤ t ≤ (n − 1)/nλ. Therefore, the system is underloaded
for 0 ≤ t ≤ 1/λ. Hence, Tn = T ∗

n = 1/λ for all n ≥ 1, in contrast to
t∗ = T ∗ = 1/2λ.

APPENDIX I: A TWO-POINT SERVICE DISTRIBUTION

We next generalize the PSS result of the G/D/s + GI fluid queue dis-
cussed in §8 to the G/GI/s+GI model with a special two-point service-time
distribution, in particular, to a two-point distribution where one of the two
points is 0. We also give an analog of Corollary 8.3 where analytic expres-
sions for the PSS functions are available when the system is initially empty
and the abandonment distribution is exponential. The proofs are similar to
the proofs of Theorem 8.1 and Corollary 8.3.

Corollary I.1. (PSS for the overloaded G/D/s+GI fluid model) Con-
sider the stationary G/GI/s +GI fluid model with parameter (λ, µ, p, s, F )
where ρ ≡ λ/sµ > 1 and the service distribution G is a two-point distribu-
tion with P (X = 1/pµ) = p and P (X = 0) = 1 − p for 0 < p ≤ 1 such
that the mean service time is 1/µ. Suppose that Assumption 12 is satisfied.
If b(T ∗, x) = sµ, 0 ≤ x ≤ 1/µ, then there exists a constant function P∗ such
that

(I.1) ‖Ψ(n)
τ (P) − P∗‖ → 0 as n → ∞.

for all τ > 0. Otherwise, the fluid performance P is asymptotically periodic
with period 1/µ, i.e., there exists a periodic function P∗ with period 1/µ
such that (I.1) holds for τ ≡ 1/µ.

Corollary I.2. (explicit expressions for the PSS with the special two-
point service times) Consider the G/D/s + M fluid queue with two-point
service distribution given in Corollary I.1. If ρ ≡ λ/sµ > 1 and the system
is initially empty, then the system is overloaded in the PSS with performance
functions given in two parts ([0, 1/pµ− s/pλ] and (1/pµ− s/pλ, 1/pµ]) of a
cycle 0 ≤ t ≤ 1/pµ:
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(a) In the first part of the PSS cycle, (i.e., for 0 ≤ t ≤ 1/pµ − s/pλ),

w(t) = t+ w̃,

Q(t) =
λ

θ

[

1−
(

1− e−θ s/pλ

1− e−θ/pµ

)

e−θ t

]

,

b(t, x) = λ · 1{t≤x≤t+s/pλ},

σ(t) = b(t, 0) = 0,

where

w̃ =
1

θ
log

(

1− e−θ/pµ

1− e−θ s/pλ

)

≥ 0,(I.2)

(b) In the second part of the PSS cycle, (i.e., for 1/pµ−s/pλ < t ≤ 1/pµ),

w(t) = −1

θ
log

(

1 +

(

1− eθ(1/µ−s/λ)/p

1− e−θ/pµ

)

· e−θ t

)

,

Q(t) =
λ

θ

(

eθ(1/µ−s/λ)/p − 1

1− e−θ/pµ

)

e−θ t

b(t, x) = λ · 1{0≤x≤t−1/pµ+s/pλ}∪{t≤x≤1/pµ},

σ(t) = b(t, 0) = λ.

Moreover, for 0 ≤ t ≤ 1/pµ,

B(t) = s, q(t, x) = λ · 1{0≤x≤w(t)}, α(t) = θ Q(t).

Proof. In a cycle [0, 1/pλ], w(t) = w̃+t for 0 ≤ t ≤ 1/pµ−s/pλ and w(t)
solves ODE w′(t) = 1− 1/e−θw(t) with w(1/pµ − s/pλ) = w̃ + 1/pµ − s/pλ
for 1/pµ−s/pλ ≤ t ≤ 1/pλ, where w̃ ≥ 0 is both the starting and the ending
value of w(t) in each cycle. Similar to the proof of Corollary 8.3, solving this
ODE in [1/pµ − s/pλ, 1/pµ] and set w(1/pµ) = w̃ yields (I.2).

Remark I.1. Theorem 8.1 and Corollary 8.3 in the main paper arise as
special cases of Corollary I.1 and I.2 when p = 1.

We next compare the fluid performance with simulation estimations of
large-scale queueing systems. We consider the overloaded (ρ > 1) G/GI/s+
M example with two-point service distribution such that P (X = 1/pµ) = p
and P (X = 0) = 1 − p. Let the system be initially empty. We plot the
system performance (Q(t), B(t), w(t), b(t, 0), α(t), σ(t)) in Figure 14. We
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Fig 14. Performance of the fluid model with the special two-point service distribution and
s = µ = 1, p = 1/2, λ = θ = 2.

let λ = θ = 2, p = 1/2 and s = µ = 1. We have w̃ ≈ 0.0635 when θ = 2 from
(I.2), which can be verified by Figure 14.

In Figure 15 we compare our fluid approximation (the dashed red lines)
with simulation estimates (the solid blue lines) of a large-scale G/GI/s+M
queueing system that has arrival rate nλ and n s servers. We plot (i) the
elapsed waiting time of the customer at the head of the line Wn(t), (ii) the
scaled number of customers waiting in queue Q̄n(t) ≡ Qn(t)/n and (iii)
the scaled number of customers in service B̄n(t) ≡ Bn(t)/n. We plot single
sample paths of these processes with n = 1000. Figure 15 shows that the
fluid approximation is effective.

However, from simulation experiments of corresponding queueing mod-
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Fig 15. A comparison of the fluid model with the special two-point service times with a
simulation of a corresponding large-scale queue system.

els, we conclude that the fluid model with other kinds of two-point service
distributions must not converge to a PSS.

To illustrate, in Figure 16, we plot single sample paths of processesWn and
Qn of four two-point distributions: (a) P (S = 1) = 1 (red dashed curves), (b)
P (S = 0) = P (S = 2) = 1/2 (blue dashed curves), (c) P (S = 0.2) = P (S =
1.8) = 1/2 (yellow solid curves) and (d) P (S = 0.8) = P (S = 1.2) = 1/2
(black solid curves), with n = 1000 in interval [0, 16]. The traffic intensity is
ρ = λ/nµ = 2 here. Figure 16 shows that the periodic structure is preserved
only for case (a) and (b), where he have established periodic behavior of the
associated fluid model. Cases (c) and (d) involve two-point distributions, but
the periodic structure fades away very quickly and the fluctuations decrease
substantially. Thus we conclude that the corresponding fluid models must
not have asymptotically periodic structure.
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X = 1 P(X = 0) = P(X = 2) = 1/2 P(X = 0.2) = P(X = 1.8) = 1/2 P(X = 0.8) = P(X = 1.2)=1/2

Fig 16. A comparison of simulations of large-scale queue systems with two-point service-
times distributions, all having mean 1.

APPENDIX J: NEARLY DETERMINISTIC SERVICE TIMES

It is natural to wonder to what extent our results for deterministic service
times apply to other service-time distributions that are nearly determinis-
tic, but not fully deterministic. We investigated this question by conducting
simulation experiments of corresponding queueing systems with nearly de-
terministic service times.

For the experiments reported here, as before, we consider the M/GI/n+
M queueing model with λ = 2, µ = 1 and θ = 2, but now we let the service-
time distribution be nearly deterministic. For all examples, E[S] = 1/µ = 1
and we make V ar[S] small, where S is a generic service time.

In our examples now we consider two kinds of service-time distributions,
both of which have small variance: (i) Erlang-N and (ii) a two-point distri-
bution, taking the values 1/µ ± δ with probability 1/2. For the Erlang-N
service times, the variance (and C2) is V ar(S) = 1/N . We plot single sample
paths of process Wn with N = 100 and N = 5000 in Figure 17, with smaller
n (n = 100) and larger T (T = 100). The periodic behavior is preserved for
the case N = 5000 but not for N = 100.

For the two-point distribution at 1/µ±δ with 1/2 probability, the variance
V ar(S) = δ2. We plot single sample path of process Wn with δ = 0.1 and
δ = 0.01 in Figure 18, with n = 100, T = 100. Again, the periodic behavior
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Erlang 100   for 0 ≤ t ≤ 10

Erlang 5000 for 0 ≤ t ≤ 10

Erlang 100   for 80 ≤ t ≤ 90
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Fig 17. Simulation estimates of the head-of-line waiting times Wn in an G/EN/s + M
many-server queue with Erlang-N service, with λ = 2, s = µ = 1, θ = 2, ρ = 2, n = 100,
T = 100 in two cases: (i) N = 100; (ii) N = 5000.

is preserved for the case δ = 0.01 but not for δ = 0.1.
From these experiments, we conclude, first, that over suitably short fi-

nite intervals, both the large-scale many-server queueing systems and the
approximating fluid models with nearly deterministic service-time distribu-
tions should behave much like the fluid model with deterministic service
times and, second, that the asymptotic behavior of the approximating fluid
model will not be periodic. We conclude that a small amount of variability
in the service time distribution will eventually break up the periodic behav-
ior (provided of course we do not have the special two-point distribution
considered in the previous section).

More generally, we conclude that the quality of the approximation pro-
vided by the fluid model withD service over finite time intervals [0, T ] should
improve as the service-time distribution becomes more nearly deterministic,
e.g., as the variance V ar(S) decreases. We conjecture that again the order of
the limits cannot be interchanged: If we first let V ar(S) ↓ 0, e.g., by letting
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 Two−point at 0.9  and  1.1,  80 ≤ t ≤ 90

Two−point at 0.99 and 1.01, 80 ≤ t ≤ 90

Two−point at 0.9  and  1.1,  0 ≤ t ≤ 10

Two−point at 0.99 and 1.01, 0 ≤ t ≤ 10

Two−point at 0.9  and  1.1
Two−point at 0.99 and 1.01

Fig 18. Simulation estimates of the head-of-line waiting times Wn in a G/TP/s + M
many-server queue with a two-point (TP) service-time distribution taking values 1/µ ± δ
with 0.5 probability, with λ = 2, s = µ = 1, θ = 2, ρ = 2, n = 100, T = 100 in two cases:
(i) δ = 0.1; (ii) δ = 0.01.

N ↑ ∞ in the EN distribution, and then afterwards let t → ∞, then we
have the asymptotic PSS established in this paper. On the other hand, if
we first let T → ∞ for any fixed N in the Erlang EN distribution, and then
let N ↑ ∞, then our simulation experiments lead us to conjecture that the
performance converges to the unique steady state of the fluid model.

Even more generally, we conclude that when s system tends to behave
in a deterministic or nearly deterministic way, that the transient behavior
over suitably short time intervals may not be well captured by long-run
stationary or steady-state descriptions.
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