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Abstract A many-server heavy-traffic functional law of large numbers is es-
tablished for the (Gt/GI/st +GI)m/Mt open queueing network, with a finite
number of queues (the superscript m), non-stationary non-Poisson external
arrival processes (the Gt), non-exponential service times (the first GI), time-
varying staffing levels (the st), and customer abandonment following non-
exponential patience times (the +GI). Upon service completion, customers
are either routed to one of the queues in the network or out of the system
according to time-dependent probabilities (the Mt). The limit provides sup-
port for a previously proposed deterministic fluid approximation and extends
a previously established limit for the Gt/GI/st +GI single queue model.

Keywords Functional weak law of large numbers · deterministic fluid
limit · many-server heavy-traffic limit · time-varying arrivals · non-stationary
queues · customer abandonment · open queueing network · non-Markovian
queues · probabilistic routing

1 Introduction

Many large-scale service systems arising in customer contact centers, com-
munication networks, and healthcare systems can be viewed as networks of
multi-server queues [1,2,5,10]. The successful design and management of these
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systems requires effectively allocating available resources (e.g., nurses and beds
in hospitals). However, queueing models capturing realistic features of service
systems can be extremely difficult to analyze. First, arrival rates typically
vary significantly over time [1,5,12,46] which is not accounted for by standard
queueing models. Second, abandonment by waiting customers, which corre-
sponds to patients leaving without being seen by a care provider, or to callers
hanging up in a call center, can significantly alter the system performance [47].
Next, empirical studies show that service times are not exponentially distribut-
ed and arrival processes are not Poisson [5,40,22], which motivates us to build
more general models beyond the conventional Erlang models having tractable
Markovian probability structure. Finally, service systems exhibit complicat-
ed network structures. For instance, callers may choose to call back later for
more service in call centers [46] and patients are routed among different units
in hospitals [40].

Any one of these features presents a significant challenge. Despite the im-
mense queueing-theory literature, the model complexity of all four features
makes exact analysis far beyond existing methods. Thus it is appropriate to
seek effective approximations. Many-server heavy-traffic (MSHT) limit theo-
rems for queueing systems have been proven useful to yield effective engineer-
ing approximations, because they provide both analytic performance formulas
and practical insights; they turn the large scale into an advantage instead of
a disadvantage.

There is a large body of literature on MSHT limits of queueing systems,
see [6,7,20,21,32,34,36,35,39,44] for recent developments. We hereby review
the most relevant works on non-Markovian queues with time-varying parame-
ters. The MSHT fluid and diffusion limits were developed by Mandelbaum et
al. [32] for the time-varying full Markovian queueing networks having Poisson
arrivals and exponential service distributions. Liu and Whitt [25] proposed a
fluid approximation for the Gt/GI/st + GI queue with time-varying arrivals
and non-exponential distributions; they later extended to the framework of
networks [24,29]. A functional weak law of large numbers (FWLLN) [26] has
been established to substantiate the fluid approximation in [25] and a function-
al central limit theorem (FCLT) [28] has been developed for the Gt/M/st+GI
model with exponential service times. More recent developments have been
made. Paralleling [29] and the current paper, He and Liu [14] developed a
fluid approximation for the multi-class queueing network with deterministic
routing paths. Extending [24] and [28], Huang and Liu [16] developed a MSHT
FCLT for network of queues with exponential service times.

Our contributions. This paper is a sequel to [26,29] which are extension-
s of [24,25]. We aim at extending the FWLLN [26] which supports the fluid
approximation [25] for the Gt/GI/st + GI queue. This Gt/GI/st + GI fluid
approximation was later generalized to the (Gt/GI/st+GI)m/Mt open queue-
ing network [29], with a finite number of queues, non-stationary non-Poisson
external arrival processes, non-exponential service times, time-varying staffing
levels, customer abandonment following non-exponential patience times and
probabilistic routing. Following the terminologies in [29], we call this time-
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varying open network fluid approximations the fluid queue network (FQNet-
s). Although simulation experiments have confirmed the effectiveness of the
FQNets proposed in [29], a rigorous MSHT FWLLN supporting such FQNet
approximations remained an open problem.

We will now solve this open problem by establishing a FWLLN for the
(Gt/GI/st+GI)m/Mt open queueing network (see §§2–3 for the detailed mod-
el description and model parameters). In particular, as the scale increases, we
will show that all performance functions, such as the queue lengths, routing
flows and waiting time processes, of a sequence of the (Gt/GI/st+GI)m/Mt s-
tochastic queueing networks (SQNets) converge to the associated deterministic
performance functions of the corresponding (Gt/GI/st + GI)m/Mt FQNets.
We will establish such a convergence in the product space of D, which is the
space of functions that are right continuous and have limits from the left.

A key step is to establish the FWLLN for the total arrival process (TAP) of
each queue, that is the sum of the external arrival process (EAP) and feedback
from the internal routing processes (IRPs) of the network. The total arrival
rate, that is the fluid version of the TAP, is conjectured to satisfy a functional
fixed-point equation (FPE), see [29] and also here in (10). We hereby prove that
conjecture by first showing that the prelimit TAP satisfies a stochastic analog
of the FPE (see (37)) and then establishing the asymptotic equivalence of
the two equations as the scale increases. Exploiting the compactness approach
[42], we (i) first prove the tightness of the TAPs and (ii) next establish the
uniqueness of the limits of all convergent subsequences of TAPs. Once the
FWLLN of the TAPs is established, it remains to separately treat each queue
of the network by adopting results from [26], which treats the FWLLN of the
TAP as an assumption.

A key assumption here is to assume all queues of the FQNet alternate
between overloaded (OL) and underloaded (UL) intervals, or equivalently, the
efficiency-driven (ED) and quality-driven (QD) regimes. As a result, the sys-
tem should not always stay in the stable critically loaded (CL), or quality-and-
efficiency driven (QED) regime. This is not too restrictive because managers
of service systems may not be able or willing to frequently adjust the number
of servers in the face of time-varying arrivals. When the staffing intervals are
long, such as 8 hours in hospitals, these systems inevitably experience periods
of overloadings and underloadings [25]. Effective staffing methods have been
developed [8,19,27,30,31,46] to cope with time-varying arrivals. However, the
time-stable performance can be achieved only in systems with flexible staffin-
g. We hereby assume the system will be CL only at a finite number of time
points.

Organization of the rest of the paper. In §2, we construct a sequence
of (Gt/GI/st +GI)m/Mt SQNets and define the associated performance pro-
cesses. In §3, we review the (Gt/GI/st + GI)m/Mt FQNet proposed in [29];
we specify the model assumptions and describe the system dynamics. In §4,
we present our main result. In §5, we provide the detailed proofs of the main
theorem. In §6, we provide practical confirmation of the FWLLN by consider-
ing an example. Finally, we draw conclusions in §7. Additional supplementary
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materials appear in the appendix. In Appendix B we review useful results on
infinite-server queues in [35]; In Appendices C–F we provide additional proofs
to support §5. All acronyms are summarized in Appendix G.

2 A Sequence of (Gt/GI/st +GI)m/Mt Queueing Networks

The (Gt/GI/st + GI)m/Mt SQNet has a finite number of queues in parallel
(the superscript m). The ith queue, 1 ≤ i ≤ m, has a general non-stationary
external arrival process (EAP), independent and identically distributed (i.i.d.)
service times following a non-exponential cumulative distribution function (cd-
f) Gi, a time-dependent staffing function (i.e., number of servers) si(t) (the st),
and allows customer abandonment with i.i.d. non-exponential abandonment
times following cdf Fi. The service times, abandonment times and the EAP
are mutually independent. External arrivals directly enter service if there are
servers available; otherwise, they wait in an infinite-capacity queue and will
receive service in order of their arrivals (following the first-come first-served
(FCFS) service discipline), if they choose not to abandon.

Right after the service is completed at time t, a customer will independent-
ly be routed either to a queue j (1 ≤ j ≤ m) with a probability pi,j(t) (because
the customer needs more service at station j) or directly out of the network
(because the customer decides to leave the system) with probability pi,0(t).
This routing policy is called the time-dependent probabilistic (Markovian)
routing (the Mt). The probabilistic routing can be useful to model routing un-
certainties. In hospitals, for example, patients leaving the intensive care units
may be transferred to operating rooms due to sudden health deteriorations or
to regular wards due to satisfying recovery.

A standard case of the EAP is the non-homogeneous Poisson process (NH-
PP) which is characterized by a rate function. We hereby consider a more
general framework by relaxing that NHPP assumption, because statistical
analysis shows that the arrival processes in real service systems can be far
from Poisson [22]. If the EAPs are NHPPs (i.e., the Gt simplifies to Mt), and
the service-time and abandonment-time distributions are exponential (i.e., the
GI and +GI degenerate to M and +M), then this SQNet simplifies to the
full Markovian (Mt/M/st +M)m/Mt SQNet studied in [32].

A sequence of SQNets indexed by n. Using the (Gt/GI/st+GI)m/Mt

SQNet introduced above as a base model, we now construct a sequence of
(Gt/GI/st +GI)m/Mt SQNets indexed by n, where the scaling factor n rep-
resents the size (in terms of arrival rates and number of servers) of the nth

SQNet.

We assume all SQNets have the same service cdf Gi, abandonment cdf
Fi and the routing probabilities pi,j(t) (so these parameters are independent

with the scale n). Let N
(0,i)
n and s

(i)
n be the EAP and the number of servers of

station i in the nth SQNet. Let ⇒ denote convergence in distribution [4,42].
We assume the following FWLLNs for the EAPs and staffing levels.
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Assumption 1 (FWLLN for EAPs and staffing levels) For each i, 1 ≤ i ≤ m,
there exist a nondecreasing function Λi(t) with non-negative derivative λi(t)
and a piecewisely differentiable function si(t) with derivative ṡi(t), such that

N̄ (0,i)
n (t) ≡ n−1N (0,i)

n (t)⇒ Λ
(0)
i (t) ≡

∫ t

0

λ
(0)
i (u)du,

s̄(i)
n (t) ≡ n−1s(i)

n (t) ⇒ si(t) ≡
∫ t

0

ṡi(u) du in D, as n→∞.

Remark 1 (Standard case of Assumption 1) Note we do not require the EAP
to have a well-defined arrival-rate function for each n, but we do require the
EAP to have an asymptotic rate function λ(0) as n increases. Considering
the standard case of NHPPs, we can simply let the EAPs of the nth SQNet

be Poisson processes with scaled arrival rates λ
(i)
n = nλi. Standard cases for

the staffing function are (i) s
(i)
n (t) = dn si(t)e and (ii) s

(i)
n (t) = dn si(t) +

β
√
n si(t)e, where β is a constant and dxe is the least integer greater than or

equal to x. Case (ii) is called the square-root staffing (SRS), see [8,27,28,46] for
discussions on SRS. We remark that the

√
n term will not affect the FWLLN

or the fluid limit, but it may make an impact to the FCLT and diffusion limit
[15,28].

We next define the performance functions. Let B
(i)
n (t, y) (Q

(i)
n (t, y)) be the

number of customers in service (in queue) at the ith station at time t that

have been so for time at most y. Let B
(i)
n (t) ≡ B(i)

n (t,∞), Q
(i)
n (t) ≡ Q(i)

n (t,∞)

and X
(i)
n (t) ≡ B(i)

n (t)+Q
(i)
n (t) be the number of customers in service, in queue

and total number in station i at time t. Let A
(i)
n (t), D

(i)
n (t) and E

(i)
n (t) count

the total number of customers that have abandoned, completed service and

entered service by time t. Let R
(i,j)
n (t) (1 ≤ j ≤ m) count the number of

customers routed to station j by time t from station i and let R
(i,0)
n (t) count

the number of customers departed (routed out of the network) from station

i by t. Let N
(i)
n (t) be the TAP (i.e., EAP plus IRPs) at station i by time t.

Finally, let W
(i)
n (t) and V

(i)
n (t) denote the head-of-line waiting time (HWT,

that is the elapsed waiting time for the customer at the head of the waiting
line) and the potential waiting time (PWT, that is the virtual waiting time of
an arrival at t assuming infinite patience).

In order to establish the FWLLN for these performance functions, we define
the law-of-large-numbers-scaled (LLN-scaled) processes:

B̄(i)
n (t, y) ≡ n−1B(i)

n (t, y), Q̄(i)
n (t, y) ≡ n−1Q(i)

n (t, y), X̄(i)
n (t) ≡ n−1X(i)

n (t),

Ā(i)
n (t) ≡ n−1A(i)

n (t), Ē(i)
n (t) ≡ n−1E(i)

n (t), D̄(i)
n (t) ≡ n−1D(i)

n (t),

R̄(i,j)
n (t) ≡ n−1R(i,j)

n (t) and N̄ (i)
n (t) ≡ n−1N (i)

n (t), 1 ≤ i ≤ m, 0 ≤ j ≤ m.
(1)

We remark that the waiting times W
(i)
n and V

(i)
n are not scaled by n because

Fi and Gi are not scaled by n.
We assume the following FWLLN holds for the initial number of customers.
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Assumption 2 (FWLLN for initial numbers) There exist nondecreasing func-
tions Bi(0, x) and Qi(0, x) with non-negative densities bi(0, x) and qi(0, x),
such that (si(t)−Bi(0,∞))Qi(0,∞) = 0 for 1 ≤ i ≤ m and

B̄(i)
n (0, x)⇒ Bi(0, x) ≡

∫ x

0

bi(0, y) dy,

Q̄(i)
n (0, x)⇒ Qi(0, x) ≡

∫ x

0

qi(0, y) dy in D, as n→∞.

3 The (Gt/GI/st +GI)m/Mt Fluid Network

In this section, we review the (Gt/GI/st+GI)m/Mt FQNet [29]. First, in §3.1,
we introduce the FQNet system and its parameters. In §3.2, we describe the
performance of the FQNet in two steps. First, we characterize the performance
of each queue of the FQNet in §3.2.1 assuming the TAR is a given parameter.
Second, we discuss how to compute the m-dimensional vector of the TAR in
§3.2.2.

3.1 The FQNet and Its Parameters

The deterministic FQNet is a legitimate dynamical system. There are m par-
allel fluid stations in the FQNet. At each station i, 1 ≤ i ≤ m, external fluid

arrives with rate λ
(0)
i (t). Upon arrival, fluid immediately enters the service

facility with a finite capacity si(t), if there is space available. Otherwise, fluid
flows into a waiting queue with an infinite capacity. Abandonment occurs for
the fluid that is waiting in queue; in particular, a proportion Fi(x) of fluid
abandons (leaving the queue before entering the service facility) x units of
time after its arrival. If not abandoning, fluid enters the service facility fol-
lowing the FCFS discipline. A proportion Gi(x) of the fluid completes service
x units of time after it enters service. A proportion Pi,j(t) of the fluid com-
pleting service at time t is routed to station j (1 ≤ j ≤ m) and a proportion
Pi,0(t) ≡ 1−

∑m
j=1 Pi,j(t) is routed out of the system.

Let Ri,j(t) be the amount of fluid routed from i to j with rate ri,j(t). Let

Λ
(0)
i (t) and Λi(t) be the external fluid arrival and total fluid arrival of queue i,

with external arrival rate (EAR) λ
(0)
i (t) and TAR λi(t). We have the following

traffic-flow equations

Λi(t) ≡ Λ(0)
i (t) +

m∑
j=1

Rk,i(t) and λi(t) ≡ λ(0)
i (t) +

m∑
j=1

rk,i(t), (2)

where

Λi(t) ≡
∫ t

0

λi(u)du, Λ
(0)
i (t) ≡

∫ t

0

λ
(0)
i (u)du,

Ri,j(t) =

∫ t

0

ri,j(u)du, ri,j(t) = Pi,j(t)σi(t),
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and σi is the service-completion rate of queue i, defined later in (9).
Let the two-parameter function B(t, y) (Q(t, y)) be the quantity of fluid

in service (in queue) at time t that has been so for at most y time units. We
assume B(t, y) and Q(t, y) have densities b(t, y) and q(t, y), namely,

B(t, y) =

∫ y

0

b(t, x)dx and Q(t, y) =

∫ y

0

q(t, x)dx, y ≥ 0, (3)

Let Q(t) ≡ Q(t,∞), B(t) ≡ B(t,∞) and X(t) ≡ Q(t) +B(t). We impose two
constraints: (i) B(t) ≤ s(t) (capacity constraint) and (ii) Q(t)(B(t)−s(t)) = 0
(non-idling constraint).

In order to fully characterize the dynamics of the FQNet, we have to specify
the model input (P, I), with

P ≡
(
m,λ

(0)
i , si, Fi, Gi, Pi,j , 1 ≤ i, j ≤ m

)
, I ≡ (bi(0, ·), qi(0, ·), 1 ≤ i ≤ m) ,

(4)
where the six-tuple P has all model parameters of the FQNet and the pair
I provides complete information on the initial state of the FQNet. We point
out that the TAR λi is not part of the model input because it includes the
internal routing rates ri,j , which is to be determined. We assume the cdf’s Fi
and Gi have probability density functions (pdf’s) fi and gi, and hazard-rate
functions hGi(x) ≡ gi(x)/Gci (x) and hFi(x) ≡ fi(x)/F ci (x), where Gci ≡ 1−Gi
and F ci ≡ 1 − Fi are the cumulative cdf ’s (ccdf’s) of Gi and Fi. We assume
the service capacity function si(t) is piecewise continuously differentiable and
is feasible such that no fluid is forced out of service if si decreases. See [24,25]
for more discussions and sufficient conditions on the feasibility of the service
capacity function.

3.2 Performance Functions of the FQNet

In this subsection, we provide the performance formulas of the (Gt/GI/st +
GI)m/Mt FQNet. Algorithms based on these formulas can be used to compute
effective approximations for the corresponding FQNet [24,29]. In §3.2.1, we
describe the performance of the ith fluid queue as a function of the TAR. In
§3.2.2, we characterize the TAR using a multi-dimensional functional FPE.

3.2.1 Performance of the ith fluid queue given the TAR λi.

We now provide the performance functions for station i with its TAR λi re-
garded as a given parameter. For the sake of ease, we drop the subscript i in
this subsection. We first describe the overloaded (OL) and underloaded (UL)
intervals and the switching criterion of these intervals.

OL and UL periods. A fluid queue is said to be OL at time t if (i) Q(t) > 0
or (ii) Q(t) = 0, B(t) = s(t) and λ(t) > ṡ(t)+σ(t), where ṡ(t) is the derivative
of s(t). An OL period ends at time T1 ≡ inf{u ≥ t : Q(u) = 0, λ(u) ≤
ṡ(u) +σ(u)}. On the other hand, a fluid queue is said to be UL at time t if (i)
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B(t) < s(t) or (ii) B(t) = s(t), Q(t) = 0 and λ(t) ≤ ṡ(t) + σ(t). A UL period
ends at time T2 ≡ inf{u ≥ t : B(u) = s(u), λ(u) > ṡ(u) + σ(u)}. We say the
queue is critically loaded (CL) if Q(t) = 0, B(t) = s(t) and λ(u) = ṡ(u)+σ(u).
Following [24–26,29], we make the following assumption.

Assumption 3 (Finite number of switches between UL and OL) In any finite
interval [0, T ], all queues of the (Gt/GI/st+GI)m/Mt FQNet switches between
OL and UL status for a finite number of times.

See [24,25] for sufficient conditions of this assumption. We next characterize
the performance of the density functions b(t, x) and q(t, x) in (3) for UL and
OL intervals.

Performance in a UL interval. In a UL interval, there is no fluid waiting
in queue or abandonment from the queue, so we have q = Q = w = v = 0
and the abandonment cdf F plays no role. As a result, the Gt/GI/st + GI
fluid queue is equivalent to the Gt/GI/∞ fluid model with an infinite service
capacity. According to Proposition 2 of [25], the service density

b(t, x) = Gc(x)λ(t− x)1{x≤t} +
Gc(x)

Gc(x− t)
b(0, x− t)1{x>t}. (5)

Performance in an OL interval. In an OL interval, the service density

b(t, x) = b(t− x, 0)Gc(x)1{x≤t} +
Gc(x)

Gc(x− t)
b(0, x− t)1{x>t}, (6)

where the initial service density b(0, y) is part of the initial condition descriptor
I in (4), and the rate fluid enters service b(t, 0) uniquely solves the FPE

b(t, 0) = â(t)+

∫ t

0

b(t−x, 0)g(x)dx with â(t) ≡ ṡ(t)+

∫ ∞
0

b(0, y)g(t+ y)

Gc(y)
dy.

(7)
See Theorem 2 in [25] for more details of the FPE (7).

We next determine the queue density function q(t, x) in an OL interval.
Let w(t) and v(t) be the head-of-line waiting time and potential waiting time
at t, which are the deterministic analogs of the BWT W (t) and PWT V (t)
of the corresponding SQNet in §2. According to Corollary 3 of [25], the queue
content density

q(t, x) = q̃(t, x∧w(t)), q̃(t, x) ≡ λ(t−x, 0)F c(x)1{x≤t}+q(0, x−t)
F c(x)

F c(x− t)
1{t<x}

(8)
where x ∧ y ≡ min(x, y), the initial queue density q(0, x) is part of the initial
condition descriptor I in (4), and w(t) and v(t) uniquely solves the following
ordinary differential equations (ODEs)

ẇ(t) = 1− b(t, 0)

q̃(t, w(t))
and v̇(t) = 1− q̃(t+ v(t), v(t))

b(t+ v(t), 0)
,
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where b(t, 0) satisfies (7) and q̃(t, x) is given in (8). See Theorems 3 and 5 in
[25] for details.

Fluid flows. Let A(t), D(t) and E(t) be the amount of fluid that has aban-
doned, completed service and entered service by time t, with rates α(t), σ(t)
and b(t, 0). Define

A(t) ≡
∫ t

0

α(u)du, α(t) ≡
∫ ∞

0

q(t, x)hF (x)dx,

D(t) ≡
∫ t

0

σ(u)du, σ(t) ≡
∫ ∞

0

b(t, x)hG(x)dx,

E(t) ≡
∫ t

0

b(u, 0)du, t ≥ 0, (9)

where q(t, x) and b(t, x) satisfy (5),(6) and (8), and b(t, 0) solves (7).

3.2.2 Characterizing the TAR for the FQNet.

In the previous subsection, we described the performance for each queue in the
FQNet assuming the TAR is given. We now characterize the vector of TAR
for the entire FQNet.

Consider an interval [0, τ ] during which no fluid queue changes status
(switching between UL an OL). Let U(t) ≡ {1 ≤ i ≤ m : Bi(t) ≤ si(t), Qi(t) =
0} and O(t) ≡ {1 ≤ i ≤ m : Bi(t) = si(t), Qi(t) > 0} be the sets of the indices
of UL and OL queues in the FQNet. Note that the indices do not change with
time, i.e., the sets U ≡ U(t) and O ≡ O(t), in the interval [0, τ ].

The TAR λ ≡ (λ1, . . . , λm) satisfies the multi-dimensional FPE

λ = Ψ (λ) , (10)

where for u ≡ (ui, . . . , um) ∈ Dm, the operator Ψ : Dm → Dm is defined as

Ψ(u)i(t) ≡ γi(t) +
∑
i∈U

Pi,j(t)

∫ t

0

gi(x)ui(t− x)dx (11)

where γi(t) ≡ λ(0)
i (t) +

∑
k∈O

Pk,i(t)σk(t) +
∑
j∈U

Pj,i(t)

∫ ∞
0

bj(0, x)gj(t+ x)

Gcj(x)
dx.

By Theorem 1 of [29], Ψ is a contraction operator in Dm, so that (10) has a
unique solution λ in the interval [0, τ ].

4 FWLLN for the (Gt/GI/st +GI)m/Mt SQNet

In this section, we present the FWLLN of (Gt/GI/st + GI)m/Mt SQNet.
We show that the performance functions of the sequence of SQNet defined
in §2 converge to the associated deterministic performance functions of the
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(Gt/GI/st + GI)m/Mt FQNet reviewed in §3, as the scale increases. We es-
tablish the convergence in the appropriate product space of D and DD, where
D ≡ D([0,∞),R) is the space of right continuous real-valued functions with
left limits, endowed with the Skorohod J1 topology and metric dJ1 [42] and
DD ≡ D([0,∞),D([0,∞),R)) [35]. We remark that the convergence under the
J1 metric reduces to the uniform convergence over compact sets [0, T ] for limits
that are continuous functions. The limits for the single-parameter stochastic
processes N̄n, D̄n, Ēn, Ān, R̄n, X̄n, Wn, and Vn are established in the product
space of D whereas the limits for the two-parameter processes Q̄n and B̄n are
established in the product space of DD.

Using bold face symbols to denote vectors, we define the vectors of the
prelimit LLN-processes and the associated fluid functions as

N̄n ≡
(
N̄ (0,1)
n , . . . , N̄ (0,m)

n

)
, Λ ≡ (Λ1, . . . , Λm) ,

R̄n ≡
(
R̄(i,j)
n , 1 ≤ i ≤ m, 0 ≤ j ≤ m

)
, R ≡ (Ri,j , 1 ≤ i ≤ m, 0 ≤ j ≤ m) ,

Q̄n ≡
(
Q̄(1)
n , . . . , Q̄(m)

n

)
, Q ≡ (Q1, . . . , Qm) , (12)

and all other prelimit processes(
N̄

(0)
n , s̄n, Q̄n(0, ·), B̄n(0, ·), D̄n, Ēn, Ān, X̄n,W n,V n, Q̄n

)
and fluid functions(

Λ(0), s,Q(0, ·),B(0, ·),D,E,A,X,W ,V ,Q
)

defined as analogs of (12). We are now ready to state our main result.

Theorem 1 (FWLLN for the (Gt/GI/st +GI)m/Mt queueing network)
If Assumptions 1–3 hold, then the FWLLN established in [26] for the Gt/GI/st+
GI model holds for the more general (Gt/GI/st+GI)m/Mt queueing network,
namely, as n→∞,(

N̄
(0)
n , s̄n, Q̄n(0, ·), B̄n(0, ·), N̄n, D̄n, Ēn, Ān, X̄n,W n,V n, R̄n, Q̄n, B̄n

)
⇒
(
Λ(0), s,Q(0, ·),B(0, ·),Λ,D,E,A,X,W ,V ,R,Q,B

)
(13)

in Dm2+12m × D2m
D , where the vectors of the prelimit processes are defined in

(12) and §2, and the vector of deterministic fluid limit is defined in (12) and
§3.

Remark 2 (Useful engineering approximations from the FWLLN)
Theorem 1 provides mathematical justification for the fluid approximations in
[24,29]. Simulation experiments [25,29] show that the single sample paths of
the LLN-scaled performance processes agree closely with their deterministic
fluid counterparts when n is large (e.g., n = 1000). When n is not large,
stochastic fluctuations become significant, but the mean values of the LLN-
scaled performance functions remain well approximated by the fluid functions
with smaller n (e.g., n = 10).
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Remark 3 (Special case without abandonment)
The (Gt/GI/st)

m/Mt SQNet (FQNet) without customer abandonment can be
viewed a special case of the (Gt/GI/st + GI)m/Mt SQNet (FQNet). Queue-
ing models without customer abandonment are important because many ser-
vice systems indeed have no abandonment or very low abandonment (e.g.,
health care systems and airport security lines). Moreover, the addition (re-
moval) of the element of customer abandonment can significantly alter the
system performance [47]. We remark that the proof of the FWLLN of the
(Gt/GI/st)

m/Mt SQNet is similar. In order to obtain the performance func-
tions of the (Gt/GI/st)

m/Mt FQNet, it suffices to let fFi(x) = Fi(x) = 0 and
F ci (x) = 1 for x ≥ 0 in all performance formulas in §3.

Remark 4 (Joint convergence in (13) and an arbitrary interval)
According to Theorem 11.4.5 of [42], the joint convergence in (13) is equiv-
alent to the marginal convergence of each component, because the FWLLN
limits are all deterministic functions. Hence, in §5, we will prove Theorem 1
by establishing the weak convergence of each component of the performance
processes in space D or DD. The weak convergence in Theorem 1 is equivalent
to uniform convergence over the finite interval [0, T ], because the deterministic
limits are continuous functions. Our proof strategy in §5 is to partition the
interval [0, T ] into a sequence of disjoint intervals separated by a finite number
of time points 0 = t0 < t1 < t2 < · · · < tN = T , such that no fluid queue of
the FQNet changes its OL or UL status in each interval [ti−1, ti]. Therefore,
it suffices to prove the FWLLN in Theorem 1 by focusing on an interval [0, τ ],
where all initially OL (UL) queues remain OL (UL) throughout the interval.

5 Proof of the Main Result

Outline of the proof. We prove the weak convergence in Theorem 1 following
the compactness approach [4,42,35]. In particular, we first show that the pre-
limit processes (indexed by n) are tight (see [42] for definition and conditions
for tightness), which implies that every subsequence has a further convergent
subsequence. We next establish the full convergence by showing all convergent
subsequences converge to the same limit (i.e. having a common probability
law).

According to Remark 4, we will consider an interval [0, T ] where no queue
changes its OL (UL) status (i.e., the queues that are OL (UL) at time 0 stays
OL (UL) throughout the interval [0, T ]). We establish the FWLLN for each
component of (13) in the following order: First, we show the FWLLN for all
service-related processes of OL queues in §5.1, including the service-completion

process (SCP) D̄
(i)
n , enter-service process (ESP) Ē

(i)
n , internal routing process

(IRP) R̄
(i,j)
n and the two-parameter service content B̄

(i)
n , for i ∈ O and 1 ≤

j ≤ m.
Using the FWLLN of the IRPs from OL queues, in §5.2 we next establish

the FWLLNs of the TAP N̄
(j)
n and IRP R̄

(i,j)
n , for i ∈ U and 1 ≤ j ≤ m.
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Finally, in §5.3 we apply the FWLLN of TAP to develop the FWLLNs of all

other processes, including the service-related processes B̄
(i)
n and D̄

(i)
n for i ∈ U ,

and the queue-related processes W
(j)
n , V

(j)
n , Q̄

(j)
n and Ā

(j)
n j ∈ O. See Figure

1 for an illustration.
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Step 1: FWLLN for service-rated 

processes of OL queues in §5.4.2 
Step 2: FWLLN for the TAR  

and routing flows in §5.4.3 

Step 3: FWLLN for all 

other processes in §5.4.4 

Fig. 1 Proof strategy for the FWLLN in Theorem 1.

Asymptotically UL and OL intervals. Suppose queue i of the FQNet is
OL in [0, T ] (the argument for the UL case is similar), with the net input

rate λi(0) − σi(0) > 0 and Λi(t) > Di(t) for 0 < t < T . Because Q̄
(i)
n (0) ⇒

Qi(0) > 0, queue i of the SQNet will become asymptotically OL (that is, all
servers will asymptotically become busy and remain so) throughout an interval
[t1,n, t2] with 0 < t1,n = o(1/n) < t2, even though some servers could be idle
in the neighborhood of 0. We next construct the performance functions for the
asymptotically OL queues (with index i ∈ O) and UL queues (with i ∈ U).
Let |O| and |U| be the numbers of OL and UL queues (i.e., the numbers of
indices in sets O and U).

5.1 FWLLN for service related processes at OL queues

In this subsection, we establish the FWLLN for the service related processes,
including the SCP, ESP, IRP and service-content processes. In particular, we
now show, for i ∈ O, 1 ≤ j ≤ m,

(D̄(i)
n , Ē(i)

n , R̄(i,j)
n , B̄(i)

n )⇒ (Di, Ei, Ri,j , Bi) in D3 ×DD, as n→∞. (14)

We are able to prove (14) before establishing the FWLLN of the TAP because
the service-related processes of the OL queues do not directly depend on the
TAP. Instead, they depend on the number of existing customers in service
(i.e., old service content), the total number of servers, and how fast the servers
become available to serve customers at the head of the waiting line.

5.1.1 Service-completion process D̄
(i)
n and enter-service process Ē

(i)
n .

Our proof in this subsection draws heavily on the results in [26]. We provide
the major steps here so the paper is self contained. But we refer to [26] for
some detailed proofs to avoid repetition. We also provide the omitted details
in the appendix.
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Flow conservation of the service content (i.e., number of customers in ser-
vice) at an OL queue i implies that

Ē(i)
n (t) = (s̄(i)

n (t)− s̄(i)
n (0)) + D̄(i)

n (t) for all i ∈ O. (15)

Hence, by Assumption 1, the tightness and weak convergence of D̄
(i)
n will easily

imply the tightness and weak convergence of Ē
(i)
n . We give the tightness results

in the next lemma.

Lemma 1 The sequence of processes
(
D̄

(i)
n , Ē

(i)
n , i ∈ O

)
is C-tight in D|O|.

Proof By Theorem 11.6.7 of [42], the tightness of the big vector in Lemma 1

is equivalent to the tightness of the components D̄
(i)
n and Ē

(i)
n , for all i ∈ O.

The proof of the C-tightness of the D̄
(i)
n closely follows from the proof in §3 of

[26], so we give the proof in Appendix C. Given the C-tightness of D̄
(i)
n , the

C-tightness of Ē
(i)
n follows from Assumption 1, the smoothness of the limiting

staffing function si(t) and the continuous mapping theorem with addition.

We next characterize the limit of a convergent subsequence of D̄
(i)
n . We

first split the SCP and service content into two terms, corresponding to old
customers (initially in service at time 0) and new customers (arriving after
time 0). In particular, we write

D̄(i)
n (t) = D̄(i,o)

n (t) + D̄(i,ν)
n (t) and B̄(i)

n (t, x) = B̄(i,o)
n (t, x) + B̄(i,ν)

n (t, x)
(16)

where D̄
(i,o)
n (t) (B̄

(i,o)
n (t, x)) denotes the LLN-scaled number of service com-

pletions by t (customers in service at t with ages no more than x) from those

already in service at time 0, and D̄
(i,ν)
n (t) (B̄

(i,ν)
n (t, x)) denotes the LLN-scaled

number of service completions by t (customers in service at t with ages no more
than x) from the new arrivals in the interval [0, t].

To treat the first term of the SCP in (16), we follow [26] by writing

D̄(i,o)
n (t) = B̄(i)

n (0)− B̄(i,o)
n (t) and B̄(i,o)

n (t) =
1

n

B(i)
n (0)∑
k=1

1
(
ηk,i(τ

(k)
n,i ) > t

)
,

(17)

where 1(·) is the indicator random variable,
{

0 < τ
(1)
n,i ≤ τ

(2)
n,i ≤ . . .

}
is an or-

dered sequence of the ages (i.e., elapsed service times) of the old customers
(i.e., those in service at time 0), and {η1,i(x), η2,i(x), . . .} is an i.i.d. sequence
of random variables following ccdf

P (η1,i(x) > t) =
Gci (t+ x)

Gci (x)
, x ≥ 0. (18)

By Theorem 2 of [26] and Assumption 2, we have, as n→∞,

B̄(i,o)
n (t)⇒ B(i,o)(t) ≡

∫ ∞
0

bi(0, x)
Gci (t+ x)

Gci (x)
dx in D, (19)
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which, together with (17) and Assumption 2, concludes the FWLLN of D̄
(i,o)
n .

Namely, as n→∞, for i ∈ O,

D̄(i,o)
n (t)⇒ D(i,o)(t) ≡ B(i,o)(0)−B(i,o)(t) =

∫ ∞
0

bi(0, x)

(
1− Gci (t+ x)

Gci (x)

)
dx.

(20)
To treat the second term of the SCP in (16), we write

D̄(i,ν)
n (t) = n−1

E(i)
n (t)∑
k=1

1
(
E(i,n)
k + S(i)

k ≤ t
)
, (21)

where E(i,n)
k denotes the time the kth customer enters service, and

{
S(i)

1 ,S(i)
2 , . . .

}
are the i.i.d. service times following the cdf Gi. By (15), (16), (17) and (21),
we have

Ē(i)
n (t) = (s̄(i)

n (t)− s̄(i)
n (0)) +

1

n

n B̄(i)
n (0)∑
k=1

1
(
ηk,i(τ

(k)
n,i ) ≤ t

)

+
1

n

n Ē(i)
n (t)∑
k=1

1(E(i,n)
k + S(i)

k ≤ t). (22)

Following the proofs in §6 of [26] (the details omitted here and provided in
Appendix D), we have the convergence

D̄(i,ν)
n (t)⇒ D(i,ν)(t) ≡

∫ t

0

Gi(t− s)bi(s, 0)ds and (23)

Ē(i)
n (t)⇒ Ei(t) ≡

∫ t

0

bi(s, 0)ds in D, (24)

where b(0, ·) solves the FPE (7). The full convergence of {D̄(i)
n } and {Ē(i)

n }
immediately follows from Lemma 1, (16), (20), (23), (24) and the continuous
mapping theorem with addition.

5.1.2 Two-parameter service content B̄
(i)
n .

Extending the sums in (17) and (21), we give the two-parameter representa-

tions for the LLN-scaled new service content B̄
(i,ν)
n and old service content

B̄
(i,o)
n :

B̄(i,ν)
n (t, y) =

1

n

E(i)
n (t)∑

k=E
(i)
n ((t−y)+)+1

1
(
E(i,n)
k + S(i)

k > t
)
, (25)

B̄(i,o)
n (t, y) =

1

n

B(i)
n (0,(y−t)+)∑

k=1

1
(
ηk,i(τ

(k)
n,i ) > t

)
. (26)
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The FWLLN of (25) follows from (24) and Theorem 3.1 of [35]. In particular,

B̄(i,ν)
n (t, y)⇒ B(i,ν)(t, y) ≡

∫ t

(t−y)+
Gci (t− s)dEi(s) in DD. (27)

The FWLLN of (26) follows from Assumption 2 and Theorem 2 of [26] (here
Lemma 4 in the appendix). We have

B̄(i,o)
n (t, y)⇒ B(i,o)(t, y) ≡

∫ (y−t)+

0

bi(0, x)
Gci (t+ x)

Gci (x)
dx in DD. (28)

Together with (16), (27) and (28), we apply the continuous mapping theorem

with addition to obtain the FWLLN of the two-parameter service content B̄
(i)
n

with the limit Bi given in (3) and (6) .

Remark 5 (FWLLN for processes related to old content in service)
Although the FWLLN for the processes related to the old service content

B̄
(i,o)
n and D̄

(i,o)
n are developed here for an OL queue i (i.e., i ∈ O), the same

arguments (of the FWLLN and fluid limit) hold for an UL queue i (i.e., i ∈ U).
Because we assume no customer is forced out of service before completing
service when the staffing level decreases (if ever), the dynamics of the old
customers in service (those already in service at time 0) does not depend on if

the queue is OL or UL; namely, their behavior is not affected by the ESP E
(i)
n

or the number of servers s
(i)
n , because they will continue to occupy the servers

until their services are completed (in some sense they have higher priorities
comparing with new customers).

However, at an OL queue, the performance of processes related to new con-

tent (e.g., B̄
(i,ν)
n and D̄

(i,ν)
n ) are precisely controlled by the amount of available

service resources (here represented by s
(i)
n (t)−B(i,o)

n (t)), which determines how

often new customers should enter service (reflected by E
(i)
n (t)). On the con-

trary, the dynamics is very different at a UL queue where there is almost no
constraint on the service capacity (because a UL queue is equivalent to an
infinite-server queue). Therefore, in §5.3 we will only have to establish the

FWLLNs for B̄
(i,ν)
n and D̄

(i,ν)
n of a UL queue i, because the proofs of the

FWLLNs for D̄
(i,o)
n and B̄

(i,o)
n are identical to those for an OL queue with

limits in the same forms as in (20) and (28).

5.1.3 Internal routing flows R̄
(i,j)
n from OL queues.

We next establish the FWLLN for the IRP R
(i,j)
n , from an OL queue i (i.e.,

i ∈ O) to another queue j (0 ≤ j ≤ m), with j = 0 denoting the out-
side world (i.e., leaving the network). First we provide the representation
for the routing process using independent indicators splitting the SCP. For

s ≥ 0, let
{
δ

(1)
i,j (s), δ

(2)
i,j (s), . . .

}
and

{
δ̃

(1)
i,j (s), δ̃

(2)
i,j (s), . . .

}
be two indepen-

dent i.i.d. sequences of indicator random variables with P
(
δ

(1)
i,j (s) = 1

)
=
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P
(
δ̃

(1)
i,j (s) = 1

)
= 1 − P

(
δ

(1)
i,j (s) = 0

)
= 1 − P

(
δ̃

(1)
i,j (s) = 0

)
= Pi,j(s). We

write

R̄(i,j)
n (t) = R̄(i,j,o)

n (t) + R̄(i,j,ν)
n (t), (29)

where

R̄(i,j,o)
n (t) ≡ 1

n

D(i,o)
n (t)∑
k=1

δ
(k)
i,j

(
ηk,i(τ

(k)
n,i )

)
and R̄(i,j,ν)

n (t) ≡ 1

n

D(i,ν)
n (t)∑
l=1

δ̃
(l)
i,j

(
ζ

(l)
n,i

)
(30)

denote the routing flows from old customers (those already in service at time

0) and new customers in service (from new arrivals in [0, t]), ζ
(l)
n,i = E(i,n)

l +S(i)
l

is the service-completion time of the lth new customer, with E(i,n)
l and S(i)

l

defined in (21), and ηk,i(τ
(k)
n,i ) is the service-completion time of an old customer

having the kth smallest elapsed service time (age), defined in (17).
We obtain the FWLLN of the IRP using the continuous mapping theorem;

in particular we express R̄
(i,j)
n as a function of the SCP D̄

(i)
n . Adding and

subtracting Pi,j(η
(k)
n,i ) in the first equation and Pi,j(ζ

(l)
n,i) in the second equation

of (30) yields

R̄(i,j,o)
n (t)

=
1

n

D(i,o)
n (t)∑
k=1

[
δ

(k)
i,j

(
ηk,i(τ

(k)
n,i )

)
− Pi,j

(
ηk,i(τ

(k)
n,i )

)]
+

1

n

D(i,o)
n (t)∑
k=1

Pi,j

(
ηk,i(τ

(k)
n,i )

)

=
1

n

D(i,o)
n (t)∑
k=1

[
δ

(k)
i,j

(
ηk,i(τ

(k)
n,i )

)
− Pi,j

(
ηk,i(τ

(k)
n,i )

)]
+

∫ t

0

Pi,j(u)dD̄(i,o)
n (u),

(31)

and

R̄(i,j,ν)
n (t) =

1

n

D(i,ν)
n (t)∑
l=1

[
δ

(l)
i,j

(
ζ

(l)
n,i

)
− Pi,j

(
ζ

(l)
n,i

)]
+

1

n

D(i,ν)
n (t)∑
l=1

Pi,j

(
ζ

(l)
n,i

)

=
1

n

D(i,ν)
n (t)∑
l=1

[
δ

(l)
i,j

(
ζ

(l)
n,i

)
− Pi,j

(
ζ

(l)
n,i

)]
+

∫ t

0

Pi,j(u)dD̄(i,ν)
n (u).

(32)

Convergence of the second terms in (31) and (32). We next show that∫ t

0

Pi,j(u)dD̄(i,ν)
n (u)⇒

∫ t

0

Pi,j(u)dD(i,ν)(u), (33)∫ t

0

Pi,j(u)dD̄(i,o)
n (u)⇒

∫ t

0

Pi,j(u)dD(i,o)(u) in D, as n→∞. (34)

We only show (33) because (34) is similar. We apply the continuous mapping
theorem based on the next lemma, with its proof given in Appendix F.
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Lemma 2 For x ∈ D, the function φ : D→ D defined as

(φ(x))(t) ≡ Pi,j(t)x(t)−
∫ t

0

x(s)dPi,j(s)

is continuous, if the Pi,j(t) is piecewisely differentiable.

Since D̄
(i,ν)
n (ω, t) is nondecreasing in t for almost all ω ∈ Ω, with D̄

(i,ν)
n (0) =

0 satisfying E[D̄
(i,ν)
n (t)] < ∞ for all t ∈ [0,∞), D̄

(i,ν)
n (ω, t) is of bounded

variation for each n ≥ 1. Therefore, combined with the fact that D̄
(i,ν)
n (t) is

right continuous with left limits for almost all ω ∈ Ω, the second term in (32)
is a Stieltjes integral for fixed ω. Then, by integration by parts,∫ t

0

Pi,j(s)dD̄
(i,ν)
n (ω, s) = Pi,j(t)D̄

(i,ν)
n (ω, t)−

∫ t

0

D̄(i,ν)
n (ω, s)dPi,j(s)

for all n ≥ 1. Hence, by Lemma 2 and the FWLLN of D̄
(i,ν)
n in (23), we

conclude the convergence in (33).
Asymptotic negligibility of the first terms in (31) and (32). We now com-

plete the proof of the FWLLN of R̄
(i,j)
n by showing the first terms of (31)

and (32) are asymptotically negligible. Because the proofs are similar, we only
show the latter.

We first condition on a realization of the sequence {ζ(l)
n,i, l ≥ 1}. For a

fixed t, the first term of (32) is a scaled random sum of independent zero-
mean random variables, each taking values in the interval [−1, 1]. Because the
random variables are not identically distributed, we apply the law of large
numbers for non-identically distributed triangular arrays, see Theorem 1 on
p.307 of [9], also see Appendix E. As a result, for fixed t ≥ 0, i ∈ O and
1 ≤ j ≤ m, we have

R̂(i,j,ν)
n (t) =

1

n

D(i,ν)
n (t)∑
l=1

(
δ̃

(l)
i,j (ζ

(l)
n,i)− Pi,j(ζ

(l)
n,i)
)

= D̄(i,ν)
n (t)

D(i,ν)
n (t)∑
l=1

δ̃
(l)
i,j (ζ

(l)
n,i)− Pi,j(ζ

(l)
n,i)

D
(i,ν)
n (t)

⇒ 0. (35)

in R, where the sum in the second equation converges in distribution to 0

by (66) and D̄
(i,ν)
n converges to D(i,ν). The convergence in (35) for a fixed t

can then easily extend to uniform convergence over compact sets according to
Theorem 3.2.1 in the internet supplement of [42].

Repeating the same argument for R̄
(i,j,o)
n and apply the continuous map-

ping theorem using addition, we complete the proof of the FWLLN of (29),
namely,

R̄(i,j)
n (t)⇒

∫ t

0

Pi,j(u)dD(i,ν)(u) +

∫ t

0

Pi,j(u)dD(i,o)(u) i ∈ O, 1 ≤ j ≤ m.

(36)
It is easy to see that the right-hand side of (36) agrees with Ri,j(t) in (2), by
combining (20) and (23).
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5.2 FWLLN for the Total Arrival Process

We now prove the FWLLN of the TAP N̄n. First, we construct equations
describing the prelimits of the TAP. We next prove the full convergence of N̄n

following the compactness approach [42], by establishing (i) the tightness of
the TAP and (ii) showing the limit of all convergent subsequences uniquely
solves the multi-dimensional FPE in (10).

Because the TAP is the sum of the EAP and IRPs, we have, for 1 ≤ j ≤ m,

N̄ (j)
n (t) = N̄ (0,j)

n (t) +
∑
i∈O

R̄(i,j)
n (t) +

∑
i∈U

R̄(i,j)
n (t), (37)

where N̄
(0,j)
n is the EAP of the jth queue and R̄

(i,j)
n is the IRP from queue i to

queue j. Because the FWLLN is obtained in §5.1.3 for R̄
(i,j)
n with i ∈ O and the

FWLLN for N̄
(0,j)
n is given in Assumption 1, it remains to treat the third term

in (37). Although the IRPs from an UL queue has the same representation as
that in (29) and (30) for i ∈ O, the SCP of new customers at a UL queue is

different because the ESP is now the TAP, i.e., E
(i)
n = N

(i)
n . Modifying (21),

we have

D̄(i,ν)
n (t) =

1

n

N(i)
n (t)∑
k=1

1(E(i,n)
k + S(i)

k ≤ t) for all i ∈ U (38)

Following the compactness approach, we first establish the tightness of the
TAP in the next lemma.

Lemma 3 The TAP
(
N̄

(1)
n , . . . , N̄

(m)
n

)
is C-tight in Dm.

Proof By Theorem 11.6.7 of [42], it suffices to show the C-tightness of N̄
(j)
n in

D for all 1 ≤ j ≤ m. Based on (38), we first bound the routing processes R
(i,j)
n

with the departures D
(i)
n , in particular, we have

N̄ (i)
n (t) ≤ N̄ (0,i)

n (t) +
∑
i∈O

D̄(i)
n (t) +

∑
k∈U

D̄(k)
n (t)

= N̄ (0,i)
n (t) +

∑
i∈O

D̄(i)
n (t) +

∑
k∈U

D̄(k,o)
n (t) +

∑
k∈U

D̄(k,ν)
n (t). (39)

The convergence to continuous limits of (i) N̄
(0,i)
n for 1 ≤ i ≤ m (Assumption

1), (ii) D̄
(i)
n for i ∈ O (§5.1.1) and (iii) D̄

(i,o)
n for i ∈ U (Remark 5), implies the

C-tightness of the first three terms of (39). To complete the proof of Lemma
3, it remains to show the C-tightness of the last term in (39), because the
C-tightness is preserved under addition (Chapter VI, Corollary 3.33 of [17]).

For a UL queue k (i.e., k ∈ U), let sk,↑n ≡ sup{s(k)
n (t) : 0 ≤ t ≤ T} and let

Z1(t), Z2(t), . . . be an i.i.d. sequence of renewal processes with inter-renewal
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times following the cdf Gk. We can then bound the SCP D
(k,ν)
n (t) by the sum

of sk,↑n independent renewal processes, in particular,

D̄(k)
n (t) ≤ 1

n

sk,↑n (k)∑
r=1

Zr(t). (40)

By the proof of Lemma 1 (see Appendix C), the right-hand side of (40) is

C-tight. Therefore, by Chapter VI, Proposition 3.35 of [17], D̄
(k)
n has to be

C-tight for each k ∈ U . We thus conclude the proof.

Since Lemma 3 implies that every subsequence of N̄
(i)
n has a further con-

vergent subsequence N̄
(i)
nk , we complete the proof of the FWLLN of the TAP

by showing that every convergent subsequence of N̄
(i)
n converges to Λi(t) =∫ t

0
λi(u)du with λi characterized as the unique solution to the multi-dimensional

FPE in (10). For simplicity, we use {N̄ (i)
n } (instead of {N̄ (i)

nk }) to denote an
arbitrary convergent subsequence of the TAP. Because of the C-tightness,

we assume this subsequence N̄
(i)
n ⇒ N∗i in D for some continuous limit N∗i ,

1 ≤ i ≤ m, as n→∞.

Paralleling the proof of the FWLLN for D̄
(i,ν)
n of an OL queue in (23), we

easily obtain, from (38), that

D̄(i,ν)
n (t)⇒ D

(ν,∗)
i (t) ≡

∫ t

0

Gi(t− s)dN∗i (s) in D, as n→∞, i ∈ U .

(41)

Paralleling the proof of the FWLLN for R̄
(i,j,ν)
n with i ∈ O in §5.1.3, we have

R̄(i,j,ν)
n (t)⇒ R

(ν,∗)
i,j (t) ≡

∫ t

0

Pi,j(s)dD
(ν,∗)
i (s) in D, as n→∞, (42)

for all i ∈ U , 0 ≤ j ≤ m. By Remark 5, we obtain the FWLLN of R̄
(i,j,o)
n for

free, namely,

R̄(i,j,o)
n (t)⇒

∫ t

0

Pi,j(s)dD
(i,o)(s) in D, as n→∞, i ∈ U , 0 ≤ j ≤ m,

(43)
where D(i,o) is defined in (20). Finally, combining (37), (42), (43), Assumption
1 and (36), we have

N∗j (t) ≡ Λ
(0)
j (t) +

∑
i∈O

∫ t

0

Pi,j(u)dDi(u) +
∑
i∈U

∫ t

0

Pi,j(u)dD(i,o)(u)

+
∑
i∈U

∫ t

0

Pi,j(u)dD
(ν,∗)
i (u), (44)

where Di ≡ D(i,o) + D(i,ν), D(i,o) is given in (20), D(i,ν) is given in (23) and

D
(ν,∗)
i is defined in (41). It is not hard to see that (44) agrees with the integral
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version of the FPE (10). In particular, because the proof in Appendix C also
implies the limit N̄∗j is Lipschitz continuous, taking the derivative of (44) with
respect to t gives

Ṅ∗j (t) = λ
(0)
j (t) +

∑
i∈O

Pi,j(t)σi(t) +
∑
i∈U

Pi,j(t)

∫ ∞
0

bi(0, y)gi(t+ y)

Gci (y)
dy

+
∑
i∈U

Pi,j(t)

∫ t

0

gi(t− x)dN∗i (x), (45)

which coincides with the FPE (10). Since this FPE has a unique solution (see
Theorem 1 of [29]) and the choice of the subsequence is arbitrary, all convergent
subsequences must have the same limit, we have P (N∗ = Λ) = 1 for Λ in
(12) and (2). Hence we have completed the proof of the FWLLN of the TAP.

5.3 FWLLNs for Other Processes

We now complete the proof of Theorem 1 by establishing the FWLLNs of
all other processes, including the service-related processes of UL queues (e.g.,

D̄
(i)
n and B̄

(i)
n for i ∈ U) and queue-related processes of OL queues (e.g., W

(j)
n ,

V
(j)
n , Q̄

(j)
n and Ā

(j)
n for i ∈ O). Because the FWLLN of the TAP is established,

we now independently treat each queue i, 1 ≤ i ≤ m, with a given FWLLN of

its TAP N̄
(i)
n . We draw heavily on the proofs in [26,28].

5.3.1 FWLLNs for service-related processes at UL queues.

Mimicking (16) and the arguments in §5.1.1, we split D̄
(i)
n (B̄

(i)
n ) of a UL queue

i into the SCP (service content) of new customers D̄
(i,ν)
n (B̄

(i,ν)
n ) and the SCP

(service content) of old customers D̄
(i,o)
n (B̄

(i,o)
n ). As discussed in Remark 5, the

FWLLNs of D̄
(i,o)
n and B̄

(i,o)
n have been developed in §5.1.1 with limits in (20)

and (28). It remains to prove the FWLLNs for D̄
(i,ν)
n and B̄

(i,ν)
n . Modifying

(21) and (25), we have for i ∈ U ,

D̄(i,ν)
n (t) =

1

n

N(i)
n (t)∑
k=1

1(E(i,n)
k + S(i)

k ≤ t),

B̄(i,ν)
n (t, y) =

1

n

N(i)
n (t)∑

k=N
(i)
n ((t−y)+)+1

1(E(i,n)
k + S(i)

k > t).

By the FWLLN of the TAP in §5.2, (41) and Theorem 3.1 of [35] (here Lemma

4 in the appendix), we quickly obtain the FWLLNs for D̄
(i,ν)
n and B̄

(i,ν)
n , in
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particular,

D̄(j,ν)
n (t)⇒ D

(ν)
j (t) ≡

∫ t

0

Gi(t− s)dΛi(s) in D, (46)

B̄(j,ν)
n (t, y)⇒ B(j,ν)(t, y) ≡

∫ t

t−y
Gci (t− s)dΛi(s) in DD, as n→∞.

(47)

where Λi satisfies the traffic-flow equation in (2).

5.3.2 FWLLNs for queue-related processes at OL queues.

Since all service-related processes have already been treated in §5.1, it remain-
s to prove the FWLLNs for the queue-related processes, including the two-

parameter queue-content Q̄
(i)
n , HWT W

(i)
n , PWT V

(i)
n and the abandonment

process Ā
(i)
n , for i ∈ O.

Following §§6.2–6.3 in [28], we let Q
(i,∗)
n (t, x) be the two-parameter queue-

length process ignoring flows into service (QLIFIS). Namely, Q
(i,∗)
n (t, x) de-

notes the number of customers in queue at t with elapsed waiting times no
more than x, assuming no customer has been allowed to enter service since

time 0. To obtain a representation of the queue-length process Q
(i)
n which al-

lows the usual flow into service, we now bound the second argument x by

the HWT W
(i)
n , because no one waits longer than W

(i)
n (t) at time t. Namely,

we have Q
(i)
n (t, x) = Q

(i,∗)
n

(
t, x ∧W (i)

n

)
. Because Q

(i,∗)
n is continuous in the

second argument [28,35], we can apply the continuous mapping theorem if we

can prove the convergence of the QLIFIS Q
(i,∗)
n and the HWT W

(i)
n .

The FWLLNs of the HWT W
(i)
n and PWT V

(i)
n have been established in

§§6.6.1–6.6.3 of [28]. We now complete the proof by showing the convergence

of the QLIFIS Q
(i,∗)
n . For an OL queue i, we split Q

(i,∗)
n into two terms, cor-

responding to old customers (initially waiting in queue at time 0) and new
customers (arrivals after time 0). In particular, we have

Q̄(i,∗)
n (t, x) = Q̄(i,o,∗)

n (t, x) + Q̄(i,ν,∗)
n (t, x) (48)

where Q̄
(i,o,∗)
n (t, x) denotes the LLN-scaled number of customers in queue at

t with elapsed waiting times no more than x from those customers that are in

queue at time 0, and Q̄
(i,ν,∗)
n (t, x) denotes the LLN-scaled number of customers

in queue at t with elapsed waiting times no more than x from the new arrivals

in the interval [0, t]. Paralleling the treatments for B̄
(i,o)
n (t, x) and B̄

(i,ν)
n (t, x)
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in §5.1.2, we write

Q̄(i,ν,∗)
n (t, x) =

1

n

N(i)
n (t)∑

k=N
(i)
n ((t−x)+)+1

1
(
E(i,n)
k +A(i)

k > t
)
, (49)

Q̄(i,o,∗)
n (t, x) =

1

n

Q(i)
n (0,(x−t)+)∑

k=1

1
(
ξ

(k)
i (χ

(k)
n,i) > t

)
, (50)

where E(i,n)
k and A(i)

k are the arrival and patience times of the kth new cus-
tomer (i.e., arrivals after time 0) so that E(i,n)

k + A(i)
k is the time the kth

customer abandons from the queue if this customer does not enter service by

then,
{

0 < χ
(1)
n,i ≤ χ

(2)
n,i ≤ . . .

}
is the ordered sequence of elapsed waiting times

of customers in queue at time 0, and
{
ξ

(1)
i (x), ξ

(2)
i (x), . . .

}
is an i.i.d. sequence

of random variables with ccdf

P
(
ξ

(1)
i (x) > t

)
= 1−H(i)

x (t) ≡ F ci (t+ x)

F ci (x)
for x > 0, t ≥ 0.

Because (49) and (50) are analogs of (25) and (26), we parallel the proofs for

the FWLLNs of Q̄
(i,ν)
n and Q̄

(i,o)
n in §5.1.2. Because Q̄in(0, ·) ⇒ Qi(0, ·) in D

by Assumption 2, we have for i ∈ O,

Q̄(i,ν,∗)
n (t, x)⇒ Q(i,ν,∗)(t, x) ≡

∫ t

(t−x)+
F ci (t− s)λi(s)ds, (51)

Q̄(i,o,∗)
n (t, x)⇒ Q(i,o,∗)(t, x) ≡

∫ (x−t)+

0

qi(0, y)
(

1−H(i)
y (t)

)
dy in DD.

(52)

Combining the FWLLN of W
(i)
n and (51)–(52), we have

Q̄(i)
n (t, x) = Q̄(i,∗)

n

(
t, x ∧W (i)

n (t)
)

⇒ Q(i,∗) (t, x ∧ wi(t)) ≡ Q(i,ν,∗) (t, x ∧ wi(t)) +Q(i,o,∗) (t, x ∧ wi(t))

=

∫ t

(t−x∧wi(t))+
F ci (t− s)λi(s)ds+

∫ (x∧wi(t)−t)+

0

qi(0, y)
(

1−H(i)
y (t)

)
dy

(53)

in DD, as n→∞. Here the convergence follows from the continuous mapping
theorem with composition and addition. It is not hard to see that the right-
hand side of (53) coincides with the fluid limit Qi(t, x) defined in (3) and
(8).

Given the FWLLNs of (i) the TAP N̄
(0)
n , (ii) queue length Q̄

(i)
n (t, y) and

(iii) ESP Ē
(i)
n , we can easily obtain the FWLLN of the abandonment process

for an OL queue i ∈ O, defined as Ā
(i)
n (t) = Q̄

(i)
n (0)+N̄

(i)
n (t)−Ē(i)

n (t)−Q̄(i)
n (t),

by the continuous mapping theorem with addition.
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6 An (Mt/H2/st + E2)2/Mt Example

To provide engineering verification of Theorem 1, we now report the results
of a simulation experiment. We consider a two-queue (Mt/H2/st + E2)2/Mt

SQNet, with (i) NHPP arrival processes having sinusoidal arrival-rate func-

tions λ
(0,i)
n (t) = nλ

(0)
i (t), λ

(0)
i (t) = ai + bi sin(ci t + φi), (ii) two-phase hyper-

exponential (H2) service times with pdf gi(x) = pi · µ(i)
1 e−µ

(i)
1 x + (1 − pi) ·

µ
(i)
2 e−µ

(i)
2 x, (iii) constant staffing levels s

(i)
n (t) = dnsie, and (iv) two-phase

Erlang (E2) abandonment times with pdf fi(x) = 4θ2
i xe
−2θix, for i = 1, 2.
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Fig. 2 Performance functions of the (Mt/H2/st + E2)2/Mt FQNet, including (i) TAR λ,
(ii) queue content Q, (iii) PWT w, (iv) service content B, (v) total fluid X and (vi) rate
into service b(t, 0).

We let a1 = 0.8, b1 = 0.4, a2 = 0.7, b2 = 0.5, φ1 = 1.5, φ2 = 1, c1 = 2, c2 =
1, θ1 = 0.5, θ2 = 0.3, s1 = 1, s2 = 2, µ1 = 1, µ2 = 0.5, p1 = p2 = 0.5(1−

√
0.6),

µ
(i)
1 = 2piµi, µ

(i)
2 = 2(1− pi)µi, for i = 1, 2. We have the service-time squared

coefficient of variation SCV c2s = 4 and abandonment-time SCV c2a = 1/2. Let
the routing probabilities p1,1 = 0.15, p2,1 = 0.12, p1,2 = p2,2 = 0.2.

Figure 2 shows plots of key performance functions for 0 ≤ t ≤ T ≡ 20,
starting out empty, together with (i) EAPs λ(0) and TARs λ (Subplot 1),
(ii) queue contents Q (Subplot 2), (iii) HWTs w (Subplot 3), (iv) service
contents B (Subplot 4), (v) total fluid X (Subplot 5) and (vi) rate fluid enters
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service b(t, 0) (last subplot). All performance functions are continuous except
for b(t, 0): in UL intervals, b(t, 0) = λ(t); in OL intervals b(t, 0) is the unique
solution of the FPE (7).

To verify the accuracy of the FQNet approximation, we conduct simula-
tion comparisons in Figure 3 for LLN-scaled key performance functions of the
SQNet, starting out empty (dashed lines): (i) HWT, (ii) number in queue, (iii)
number in service and (iv) total number of customers.
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Fig. 3 A comparison of performance functions in the (Mt/H2/st + E2)2/Mt FQNet with
simulation of the corresponding (Mt/H2/st +E2)2/Mt SQNet with (a) single sample paths
and scale n = 3000, and (b) average of 100 paths and scale n = 100.

In Figure 3(a) we compare the fluid functions of the FQNet (the dashed
lines) with the single sample paths of their corresponding LLN-scaled perfor-
mance functions of the SQNet (the solid lines) with a large scale n = 3000. In
Figure 3(b) we compare the fluid functions (the dashed lines) with the means of
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the LLN-scaled performance functions of the SQNet (the solid lines, estimated
by averaging 100 independent samples) with a smaller scale n = 100. Figure 3
verifies the remarkable performance of the FQNet approximation and provides
practical confirmation of the FWLLN in Theorem 1. See [29] for additional
experiments supporting the FQNet approximation.

7 Conclusion

We have established a many-server heavy-traffic limit theorem for a recent-
ly proposed deterministic fluid approximation for the (Gt/GI/st +GI)m/Mt

queueing network [29], with a non-stationary non-Poisson arrival process, non-
exponential service and abandonment times, time-varying staffing levels and
Markovian (probabilistic) routing policy. Numerical analysis and simulation
experiments have been developed in [25,29] confirming the effectiveness of
this deterministic fluid approximations. However, prior to this paper the func-
tional law of large numbers of this (Gt/GI/st+GI)m/Mt fluid limit remained
an open problem.

In this paper we solve this open problem by showing that all scaled perfor-
mance processes, including the queue lengths (both in queue and in service),
flows (of routing, abandonment and departure), and waiting times, jointly
converge in distribution to their corresponding deterministic fluid functions
conjectured in [25,29], in appropriate functional spaces. We draw heavily on
the proofs in [26] which focused on the Gt/GI/st + GI single queue model.
A key step here is to show the convergence of the total arrival process for
all queues in the network. Our proof follows the compactness approach by (i)
establishing the tightness in the appropriate functional space and (ii) showing
that all convergent subsequences of the performance functions converge to the
same desired limits.

Future work. Refining the fluid approximations which can be used to esti-
mate the mean values of the performance functions, we next provide diffusion
approximations for relevant models to quantify and approximate the stochastic
fluctuations around the mean values; we do so in sequel papers [3,16]. Because
the probabilistic routing policy ignores a customer’s routing history (the next
queue to join depends only on the current location), in a sequel paper [14]
we are motivated to seek alternative routing policies which incorporate the
routing history.
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APPENDIX

to

A Functional Weak Law of Large Numbers for the Time-Varying
(Gt/GI/st + GI)m/Mt queueing network

by

A. Korhan Aras and Yunan Liu

A Overview

This appendix contains material supplementing the main paper. We review the FWLLN
for the Gt/GI/∞ infinite-server queue in Appendix B. Appendix C contains the classical
tightness criteria (Theorem 2) followed by the details of the proof of Lemma 1. Appendix D
contains the proof of the convergence result in (23). Next, in Appendix E, we show that the
first terms in (31) and (32) are asymptotically negligible using a LLN for triangular arrays
(see Theorem 9.1 of [9]; also see Theorem 3 here). In §F, we provide the proof of Lemma 2.
In Appendix G, we summarize all acronyms used in the main paper.

B FWLLN for the Gt/GI/∞ queue

In this section we review the FWLLN for the Gt/GI/∞ queue [35]. Consider a sequence
of Gt/GI/∞ infinite-server queueing model indexed by n, having a non-stationary arrival
process (the Gt), i.i.d. service times following a cdf G and infinite servers. For the nth model,
let Nn(t) be the number of arrivals by time t and let Xn(t, y) be the number of customers
in service at time t with elapsed service times at most y.

Assumption 4 (FWLLN for the arrival process) There exist a nondecreasing function
Λi(t) with non-negative derivative λi(t), 1 ≤ i ≤ m, such that

N̄n(t) ≡ n−1Nn(t)⇒ Λi(t) ≡
∫ t

0
λi(u)du.

Suppose the system is initially empty, i.e., Xn(0, x) = 0, x > 0. The two-parameter
queue-length process can be represented as

Xn(t, x) =

Nn(t)∑
i=Nn(t−x)+1

1 (τn,i + ηi > t) . (54)

≡ Xn,1(t, x) +Xn,2(t, x) +Xn,3(t, x), 0 ≤ x ≤ t,

where

Xn,1(t, x) ≡
√
n

∫ t

t−x
Gc(t− s) dN̂n(s),

Xn,2(t, x) ≡
√
n

∫ t

t−x

∫ ∞
0

1(x+ s > t) dK̂n(Λ(s), x),

Xn,3(t, x) ≡ n
∫ t

t−x
Gc(t− s) dΛ(s),

where

N̂n(s) ≡
√
n
(
N̄n(s)− Λ(s)

)
and K̂n(t, x) ≡

√
n

 1

n

bntc∑
i=1

1 (ηi ≤ x)−G(x)


is a Kiefer process, see [35,23] for details. The next lemma gives the FWLLN for the two-
parameter queue-length Xn(t, x). Let X̄n ≡ Xn/n.
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Lemma 4 (FWLLN for the Gt/GI/∞ queue, Theorem 3.1 in [35])
If Assumption 4 is satisfied, then

(
N̄n, X̄n

)
⇒ (Λ,X) in D× DD as n→∞, where

X(t, x) =

∫ t

(t−x)+
Gc(t− s)dΛ(s).

C Proof of Lemma 1

The following theorem provides the classical characterization of C-tightness. Then we prove
that the LLN-scaled service-completion processes in Lemma 1 satisfy the conditions of The-
orem 2.

Theorem 2 (Classical characterization of C-tightness, Theorem 3.2 of [45]) A sequence
of stochastic processes {Xn, n ≥ 1} is tight if and only if
(i) The sequence {Xn, n ≥ 1} is stochastically bounded in D
and
(ii) for each T > 0 and η > 0,

lim
δ↓0

lim sup
n→∞

P (w(Xn, δ, T ) > η) = 0, (55)

where for x ∈ D,

w(x, δ, T ) = sup {w(x, [t, t+ δ]) : 0 ≤ t ≤ (t+ δ) ∧ T} , (56)

w(x, I) = sup
s,t∈I

|x(s)− x(t)|, I ⊂ R+. (57)

Proof of Lemma 1. We use the classical criterion in Theorem 2 to prove the C-tightness of

{D̄(i)
n , i ∈ O}, i.e., we show that, for each i ∈ O, the process D̄

(i)
n (t) is stochastically bounded

in D (satisfying Condition (i) of Theorem 2) and the modulus of continuity condition holds
(satisfying Condition (ii) of Theorem 2), that is, for each T > 0 and η > 0,

lim
δ↓0

lim sup
n→∞

P
(
w(D̄

(i)
n , δ, T ) > η

)
= 0. (58)

Consider an OL queue i (i.e., i ∈ O), with dns(i)(t)e servers for simplicity. Successive service
completions from each server form a (delayed) renewal process since the service times are
i.i.d. random variables with cdf GI. Hence, we can represent the service-completion process
of the ith queue as

D
(i)
n (t) =

dns(i)(t)e∑
k=1

D
(i,k)
n (t), t ≥ 0. (59)

where D
(i,k)
n (t), k = 1, . . . , dns(i)(t)e, are renewal counting processes associated with the

departure processes from each server in the ith queue.

Suppose that {D̄(i)
n }n≥1 is not stochastically bounded in D. Then there exists ε0 > 0

such that P(D̄
(i)
n (0) > η) ≥ ε0 for any η > 0. Integrating both sides with respect to η

implies that E[D̄
(i)
n (0)] =∞. On the other hand, by (59), we have

E[D̄
(i)
n (0)] = n−1

dns(i)(0)e∑
k=1

E[D
(i,k)
n (0)]

≤ n−1dns(i)(0)e max
1≤k≤dns(i)(0)e

{
E[D

(i,k)
n (0)]

}
= ds(i)(0)e max

1≤k≤dns(i)(0)e

{
E[D

(i,k)
n (0)]

}
<∞ . (60)
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since E[D
(i,k)
n (t)] <∞ almost surely for t ≥ 0, k = 1, . . . , dns(i)(0)e. Hence, a contradiction.

Therefore, we conclude that for any ε > 0, there exists η > 0 such that P(D̄
(i)
n (0) > η) < ε.

This proves the first condition in Theorem 3.2 of [45].

Next we verify Condition (58). Since D̄
(i)
n (t) is nondecreasing in t for each i ∈ O and

n ≥ 1, (57) reduces to D̄
(i)
n (b)− D̄(i)

n (a) for [a, b] ⊂ R+. Consequently, (56) for the process

D̄
(i)
n (t) becomes

w(D̄
(i)
n , δ, T ) = sup

{
D̄

(i)
n (t+ δ)− D̄(i)

n (t) : 0 ≤ t ≤ (t+ δ) ∧ T
}
.

Observe that w(D̄
(i)
n , δ, T ) ↓ 0 as δ ↓ 0 for each n ≥ 1 since D̄

(i)
n (t) is a finite sum of renewal

processes (see (59)). This implies that P(w(D̄
(i)
n , δ, T ) > η) ↓ 0 as δ ↓ 0 for any η > 0, n ≥ 1.

Consequently,

lim sup
n→∞

P
(
w(D̄

(i)
n , δ, T ) > η

)
→ 0 as δ ↓ 0.

The proof of the C-tightness of the sequence {D̄(i)
n }n≥1 is completed.

D Proof of the convergence result in (23).

Since the sequence {Ē(i)
n } is C-tight in D by Lemma 1, every subsequence has a convergent

subsequence. Suppose we have such a convergent subsequence. We do not introduce a special
notation for the subsequence and, without loss of generality, we label that subsequence as

{Ē(i)
n (t)} so that we have Ē

(i)
n ⇒ E(i) in D for all i ∈ O where the limit E(i) is yet to be

characterized.
From (21), we see that the service-completion process of new customers has the same

mathematical form as the departure process from an infinite-server queue with arrival process

E
(i)
n (t) and service times following cdf Gi. We can use directly apply Lemma 4 (also see

Theorem 3.1 of [35]). Consequently, we have

D̄
(i,ν)
n (t)⇒ D(i,ν)(t) ≡

∫ t

0
Gi(t− s)bi(s, 0)ds, t ∈ [0, T ] for all i ∈ O. (61)

Combining (22), (61), (28) with y =∞ and by applying the continuous mapping theorem

with addition, we obtain weak convergence of the sequence {Ē(i)
n (t)} to an integral equation

Ē
(i)
n (t)⇒ s(i)(t)− s(i)(0) +B(i,o)(0)−B(i,o)(t) +

∫ t

0
Gi(t− s)bi(s, 0)ds. (62)

For each i ∈ O, the derivative of (62) satisfies the fixed point equation (7), which has a
unique solution (see [25]). Since the choice of the convergent subsequence is arbitrary, the

derivative of the limit of every convergent subsequence of {Ē(i)
n } must satisfy (7). Hence,

we have the full convergence of {Ē(i)
n } and {D̄(i,ν)

n } for all i ∈ O.

E LLN for non-identically distributed triangular arrays

We first review an LLN results for non-identically distributed triangular arrays (e.g., see
Theorem 9.1. of [9]).

Let {Xk,n}, k = 1, . . . , n, be a general triangular array of random variables with cdf
Fk,n. Assume that the random variables in each row of the triangular array are mutually
independent. Define Sn as the partial sum of Xk,n, i.e., Sn =

∑n
k=1Xk,n. Also define

τs(Xk,n) as the truncated version of Xk,n, where τs(x) = x if |x| ≤ s; τs(x) = −s if x < −s;
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τs(x) = s if x > s. Let Ssn =
∑n
k=1 τs(Xk,n). Consider the following condition: for arbitrary

η > 0 and ε > 0
P(|Xk,n| > η) < ε k = 1, . . . , n (63)

for all n sufficiently large. Now, we are ready to state the theorem.

Theorem 3 (LLN for non-iid random variables, Theorem 9.1 of [9]) If Condition (63)
holds, then there exist constants bn such that Sn − bn → 0 in probability if and only if

n∑
l=1

P{|Xl,n| > η} → 0,

n∑
l=1

V ar(τs(Xl,n))→ 0 as n→∞ (64)

for each η > 0 and each truncation level s. In this case, one may take bn = E[Ssn].

We next make use of Theorem 3 to prove that the first terms of (31) and (32) converge

to 0. Conditioning on {ζ(l)n,i}, the first terms of (31), (32) are LLN-scaled sum of independent

non-identically distributed zero-mean random variables with values in [−1, 1]. Therefore, we
can use Theorem 3 to prove convergence. We will later uncondition to obtain the desired
result. The proof of the convergence of the first terms of (31) and (32) are similar. Therefore,
we only provide a proof for the latter.

In our case, we have from (32)

Xl,n ≡ n−1
(
δi,j(ζ

(l)
n,i)− Pi,j(ζ

(l)
n,i)
)

and Sn =

n∑
l=1

Xl,n for all n ≥ 1. (65)

for fixed i ∈ O, j ∈ {1, . . . ,m}. Using τs(·), we define the truncation of Xl,n and the partial
sum of truncated variables accordingly.

Conditioning on the sequence {ζ(l)n,i}, we have, by Markov inequality,

P{|Xl,n| > η} ≤
E[|Xl,n|2]

η2
=
Pi,j(ζ

(l)
n,i)(1− Pi,j(ζ

(l)
n,i))

n2η2
≤

1

n2η2

which implies that
n∑
l=1

P{|Xl,n| > η} ≤
1

nη2
→ 0 as n→∞.

As for the second term in (64), we have that V ar(τs(Xl,n)) = E[(τs(Xl,n))2] since
E[Xl,n] = 0 for n ≥ 1, 1 ≤ l ≤ n. The desired result easily follows because

E[(τs(Xl,n))2] ≤ E[(Xl,n)2] ≤
1

n2
for all s > 0

which implies
n∑
l=1

V ar(τs(Xl,n)) ≤
n∑
l=1

1

n2
=

1

n
→ 0 as n→∞.

for all s > 0. Since E[Ssn] = 0, we have Sn → 0 in probability. More explicitly,

n∑
l=1

δi,j(ζ
(l)
n,i)− Pi,j(ζ

(l)
n,i)

n
→ 0 in probability as n→∞. (66)

The arguments of unconditioning follows from the arguments on p.255 of [37]. In par-
ticular, by Skorohod representation theorem, we may assume that the scaled enter-service
process converges in D almost surely. Then we deduce that the above convergence holds
whenever the enter-service process converges almost surely in D. Therefore, the condition-
al convergence is obtained by applying the generalized continuous mapping theorem, e.g.,
Theorem 3.4.4. of [42].
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F Proof of Lemma 2

Let {xn} be a convergent sequence such that d(xn, x)→ 0 where d(·, ·) is the Skorohod J1
metric [4,17,42]. Then we have ||xn − x ◦ λn||T → 0 and ||λn − e||T → 0 where e is the
identity function, i.e., e(t) = t for t ≥ 0, and || · || is the uniform norm over the interval
[0, T ]. Let M = sup0≤t≤T

∣∣x(t)
∣∣. Our goal is to show that d(φ(xn), φ(x))→ 0. Consider∣∣φ(xn)(t)− φ(x)(λn(t))
∣∣

=

∣∣∣∣∣Pi,j(t)xn(t)−
∫ t

0
xn(u)dPi,j(u)− Pi,j(λn(t))x(λn(t)) +

∫ λn(t)

0
x(u)dPi,j(u)

∣∣∣∣∣
≤
∣∣Pi,j(t)xn(t)− Pi,j(λn(t))x(λn(t))

∣∣+

∣∣∣∣∣
∫ λn(t)

0
x(u)dPi,j(u)−

∫ t

0
xn(u)dPi,j(u)

∣∣∣∣∣
≤ Pi,j(t)

∣∣xn(t)− x(λn(t))
∣∣+
∣∣Pi,j(t)− Pi,j(λn(t))

∣∣∣∣x(λn(t))
∣∣

+

∣∣∣∣∣
∫ λn(t)

0
x(u)dPi,j(u)−

∫ t

0
xn(u)dPi,j(u)

∣∣∣∣∣
≤ Pi,j(t)

∣∣xn(t)− x(λn(t))
∣∣+
∣∣Pi,j(t)− Pi,j(λn(t))

∣∣∣∣x(λn(t))
∣∣

+

∣∣∣∣∫ t

0
x(λn(s))dPi,j(λn(s))−

∫ t

0
xn(s)dPi,j(s)

∣∣∣∣
≤ Pi,j(t)

∣∣xn(t)− x(λn(t))
∣∣+
∣∣Pi,j(t)− Pi,j(λn(t))

∣∣∣∣x(λn(t))
∣∣

+

∣∣∣∣∫ t

0
x(λn(s))d(Pi,j(λn(s))− Pi,j(s))

∣∣∣∣+

∣∣∣∣∫ t

0
x(λn(s))dPi,j(s)−

∫ t

0
xn(s)dPi,j(s)

∣∣∣∣
≤ Pi,j(t)

∣∣xn(t)− x(λn(t))
∣∣+M

∣∣Pi,j(t)− Pi,j(λn(t))
∣∣

+ M
∣∣(Pi,j(λn(t))− Pi,j(t))− (Pi,j(λn(0))− Pi,j(0))

∣∣+

∫ t

0

∣∣x(λn(s))− xn(s)
∣∣dPi,j(s)

≤ 2||xn − x ◦ λn(t)||+M
∣∣Pi,j(t)− Pi,j(λn(t))

∣∣
+ M

∣∣(Pi,j(λn(t))− Pi,j(t))− (Pi,j(λn(0))− Pi,j(0))
∣∣.

The convergence of the first term follows from the convergence of xn → x in D. The
convergence of the second and the third terms follows from the fact that Pi,j(t) is continuous
in t and λn → e uniformly over the interval [0, T ].

G Acronyms

We now summarize all acronyms used in the main paper in the following table.



33

Table 1 Summary of frequently used acronyms (in alphabetic order).

Acronym Meaning
ccdf complementary cumulative distribution function
cdf cumulative distribution function
CL critically loaded
EAP external arrival process
EAR external arrival rate
ESP enter-service process
FCFS first come first served
FCLT functional central limit theorem
FQNet fluid queue network
FPE fixed-point equation
FWLLN functional weak law of large numbers
HWT head-of-line waiting time
i.i.d. independent and identically distributed
IRP internal routing process
LLN law of large numbers
MSHT many-server heavy-traffic
NHPP non-homogeneous Poisson process
ODE ordinary differential equation
OL overloaded
pdf probability density function
PWT potential waiting time
QLIFIS queue length ignoring flow into service
SCP service-completion process
SQNet stochastic queueing network
TAP total arrival process
TAR total arrival rate
UL underloaded


